Generación de números aleatorios
|
|
|
- María Concepción Plaza Lagos
- hace 10 años
- Vistas:
Transcripción
1 Generación de números aleatorios Marcos García González (h[e]rtz) Verano 2004 Documento facilitado por la realización de la asignatura Métodos informáticos de la física de segundo curso en la universidad autónoma de Barcelona en el transcurso del año Números uniformemente distribuidos Un problema básico que nos encontramos habitualmente es el de obtener secuencias de números uniformemente distribuidos en un intervalo [0, 1]. La diferentes posibilidades para resolver dicho problema son: i) Buscar en tablas de números aleatorios publicadas (libros, internet...); ii) Observar un proceso físico tal como la desintegración radiactiva, el ruido eléctrico...; iii) Los lenguajes de programación y las hojas electrónicas incluyen una función para generarlos iv) Mediante algorismos de generación de números aleatorios Las principales ventajas de los generadores de números aleatorios son: - Rapidez - Comodidad - Reproducibilidad - Portabilidad Y la desventaja fundamental: - Las secuencias obtenidas no son realmente aleatorias, ya que se obtienen con operaciones deterministas. Solo podemos obtener secuencias pseudo-aleatorias, que a su vez satisfacen algunos criterios de aleatoriedad adecuados. Los números generados deben cumplir ciertas características para que sean válidos. Dichas características son: 1
2 1. Uniformemente distribuidos. 2. Estadísticamente independientes. 3. Su media debe ser estadísticamente igual a 1/2. 4. Su varianza debe ser estadísticamente igual a 1/ Su periodo o ciclo de vida debe ser largo. 6. Deben ser generados a través de un método rápido. 7. Generados a través de un método que no requiera mucha capacidad de almacenamiento de la computadora. Normalmente se utilizan números enteros, ya que su aritmética es exacta y rápida. Se generan enteros N i entre 0 y M 1, y x i = N i /M da valores reales en el intervarlo [0, 1). En general los algoritmos utilizan relaciones de recurrencia del tipo en el caso de recurrencia simple, o bien N i = f(n i 1 ) N i = f(n i 1,..., N i k ) para el caso de una recurrencia de orden k. Se necesitará dar un valor inicial para comenzar el algoritmo (k valores para recurrencias de orden k) Generadores de congruencia lineal (GCL) Estos generadores son los más utilizados y los más conocidos. Se basan en la relación de recurrencia N i+1 = (an i + c) mod m donde a es el multiplicador y m el módulo. - Hay m valores posibles de N i, entre 0 i m 1. - La secuencia es periodica: cuando vuelve a aparecer un número por segunda vez, la secuencia se vuelve a repetir. El periodo depende de los valores de a, c y m, así como del valor inicial; nótese que el máximo posible es m. Recordemos que lo que nos interesa para trabajar con un buen generador de números aleatorios es que la distribución de los números obtenidos tiene que ser uniforme, no deben de haber correlaciones entre los terminos de la secuencia, el periodo debe ser lo más largo posible, y el algorismo debe ser de ejecución rápida. 2
3 Mejora de los generadores de congruencia lineal Las limitaciones más importantes de los generadores son su periocidad (normalmente el periodo no suele ser más grande de ) y la posible presencia de correlaciones entre términos consecutivos de la secuencia. Una manera sencilla de suprimir éstas limitaciones es desordenar un poco la secuencia mediante el siguiente procedimiento: Se parte de un generador que da enteros aleatorios entre 0 y m 1, y en primer lugar se genera con el GCL un vector que contiene una lista de N enteros aleatorios j n, así como un entero aleatorio y. Se determina el índice k = [y N/m], entre 0 y N 1. El elemento j k de la lista se da como un nuevo nombre aleatorio, y se reasigna a la variable y el valor j k. El valor de j k se renueva con el GCL, y se vuelve a repetir los pasos desde la determinación del índice k Generadores de desplazamiento de bits En estos generadores cada nuevo número entero aleatorio N i, se obtiene manipulando los bits del número anterior, N i 1. En lenguaje C, esto se puede hacer facilmente utilizando operadores sobre bits, >>, <<,,, & Generadores de Fibonacci Las grandes ventajas de estos generadores es que son generadores muy rápidos que tienen un periodo muy largo. La fomentación teorica en la que se basan es diferente a la de los GCL. Los generadores de Fibonacci se basan en una recurrencia del tipo N i = (N i r N i s )mod m donde r < s son enteros dados y denota alguna de las operaciones +,,,. Este tipo de generador precisa iniciar (con otro generador) y mantener una lista de los últimos s números generados. Otros tipos de generadores los podemos encontrar en: - W.H. Press, S.A. Teukolski, W.T. Vetterling i B.P. Flannery, Numerical Recipes in C, Cambridge University Press. -D.E. Knuth, The Art of computing programming, 2: Seminumerical Algorithms, Addison-Wesley. Antes de aceptar un nuevo generador hace falta verificar que satisface una série de pruebas, lo que llamaremos pruebas de aleatoriedad. 3
4 1.4. Pruebas de aleatoriedad Éstas consisten basicamente en realizar dos tipos de pruebas, empíricas y teoricas. Si los generadores superan estas pruebas, podremos asegurar que estamos ante un generador de números aleatorios bastante competente. Pruebas empíricas (sobre la muestra de la secuencia) - Test de uniformidad: hace falta que los valores esten uniformemente distribuidos en [0, 1]. Se puede realizar un test χ 2. Alternativamente, podemos estimar los momentos de orden k, X k = 1/N i (x i) k y comprobar que se aproximan a sus correspondientes valores teoricos, 1/(k + 1). - Test serial: se generan parejas de valores (x 1, x 2 ), y se comprueba si se distribuyen uniformemente en el cuadrado [0, 1] [0, 1]. - Test de correlaciones: se determina la correlación entre números separados k lugares en la secuencia, C(k) = 1/N i x ix i+k. Su valor tendría que acercarse a 1/4. Pruebas teoricas (sobre toda la secuencia): La sencillez de los generadores de congruencia lineal permiten demostrar propiedades importantes: - Para determinar valores de a, c i m se obtienen secuencias de periodo máximo m. Por ejemplo, si m es una potencia de 2, bastará con que c sea impar y a sea igual a un múltiple de 4 mas 1. - Test espectral: si se forman vectores con k valores consecutivos, u n = (x n, x n+1... x n+k ), estos forman hiperplanos paralelos en el espacio k-dimensional. La separación d k entre los planos tiene que ser la mínima posible. 2. Distribuciones no uniformes El problema a tratar será el de obtener una secuencia con densidad de probabilidad dada w(y), definida en el intervalo (y min, y max ) a partir de una secuencia de números con distribución uniforme U(0, 1). Para resolver este problema utilizaremos el método del cambio de variable. Que concretamente consistirá en buscar una transformación y = f(x) para obtener la distribución deseada. Si la densidad de probabilidad de x es p(x), tenemos: P (X (x, x + dx)) = P (Y (y, y + dy)); p(x)dx = w(y)dy; Si x U(0, 1) la integración de esta ecuación resulta ser x 0 dx = y min w(y )dy. 4
5 Si sabemos calcular la integral, obtenemos una relación del tipo X = g(y ), que se tiene que invertir para poder obtener Y = f(x) Ejemplos: Distribución exponencial. Para obtener Y con distribución { 0, y < 0 w(y) = λe λy, y [0, + ) (1) entonces nos queda la ecuación x = 0 λe λy dy = 1 e λy por lo tanto, el cambio adecuado será y = 1 λln(1 x). Distribución normal. Para obtener Y N(0, 1), nos queda la siguiente ecuación x = e y 2 /2 dy 2π La integral no se puede resolver analíticamente, y menos aun invertir la relación para obtener Y = f(x). La alternativa es aplicar el algoritmo de Box- Muller. Que permite obtener 2 valores independientes x 1, x 2 con distribución N(0, 1) : si x 1, x 2 son las coordenadas de un punto del plano, la densidad de probabilidad de sus coordenadas polares es w(r, θ) = p(x 1, x 2 ) (x 1, x 2 ) (r, θ) = 1 2π re r 2 /2, θ [0, 2π], r [0, + ) Por lo tanto, θ U(0, 2π) i r tiene la densidad de probabilidad re r2 /2. Se pueden obtener a partir de 2 números z 1, z 2 U(0, 1) con las transformaciones θ = 2πz 1, r = 2lnz 2. Por lo tanto x 1, x 2 se pueden obtener con las transformaciones { x1 = 2 ln(z 2 ) cos(z 1 ) x 2 = (2) 2 ln(z 2 ) sin(z 1 ) Método de aceptación-rechazo: Es un método sencillo y general, aunque en ocasiones no muy eficiente. Sea p(x) definida en un intervalo finito, (a, b), y M una cota superior de p(x). Se generan dos valores aleatorios x U(a, b) y p U(0, M). Entonces: { se acepta x si p(x) p (3) se rechaza x si p(x) < p De esta manera el valor x aparece con una densidad de probabilidad p(x), aunque no se aprovechan todos los valores que obtenemos en la realización del método. De todos modos, este es el único método disponible cuando la distribución de probabilidades es complicada. De hecho es la base del algoritmo de Metropolis, posiblemente el más utilizado en física computacional. 5
ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS
ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.
13. Técnicas de simulación mediante el método de Montecarlo
13. Técnicas de simulación mediante el método de Montecarlo Qué es la simulación? Proceso de simulación Simulación de eventos discretos Números aleatorios Qué es la simulación? Simulación = técnica que
Métodos generales de generación de variables aleatorias
Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad
La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. [email protected]
La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. [email protected] Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad
Generadores de números aleatorios
Generadores de números aleatorios Patricia Kisbye FaMAF 23 de marzo, 2010 Para qué se utilizan? Simulación. Muestreo. Análisis numérico. Testeo de programas. Juegos de azar. Toma de decisiones. Secuencias
1. Ecuaciones no lineales
1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar
Tecnologías en la Educación Matemática. Expresiones. Datos. Expresiones Aritméticas. Expresiones Aritméticas 19/08/2014
Tecnologías en la Educación Matemática [email protected] Dpto. de Ciencias e Ingeniería de la Computación UNIVERSIDAD NACIONAL DEL SUR 1 Datos Los algoritmos combinan datos con acciones. Los datos de entrada
Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J.
Generación de Números Aleatorios Números elegidos al azar son útiles en diversas aplicaciones, entre las cuáles podemos mencionar: Simulación o métodos de Monte Carlo: se simula un proceso natural en forma
ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS
ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel Resumen dibujo de grafos mediante algoritmos genéticos
El concepto de integral con aplicaciones sencillas
El concepto de integral con aplicaciones sencillas Eliseo Martínez Marzo del 24 Abstract Este artículo trata de ejemplos sencillos del concepto de integral con aplicaciones a la Física, la Teoría de la
Cálculo Simbólico también es posible con GeoGebra
www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades
RELACIONES DE RECURRENCIA
Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos
18. Camino de datos y unidad de control
Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 18. Camino de datos y unidad de control Un La versatilidad una característica deseable los Los
2. Aritmética modular Ejercicios resueltos
2. Aritmética modular Ejercicios resueltos Ejercicio 2.1 Probar, mediante congruencias, que 3 2n+5 + 2 4n+1 es divisible por 7 cualquiera que sea el entero n 1. Trabajando módulo 7 se tiene que 3 2n+5
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
ESTIMACIÓN. puntual y por intervalo
ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio
EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO
EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde
Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)
Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.
Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria
Oliverio J. Santana Jaria 3. Aritmética tica binaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Para Los La en conocer muchos aritmética comprender otros binaria tipos
Números aleatorios. Contenidos
Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método
Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor
Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,
Euclides extendido y Test de primalidad probabiĺıstico
Euclides extendido y Test de primalidad probabiĺıstico Taller de Álgebra I Verano de 2014 Lema de Bézout Recordemos este lema: Lema (Étienne Bézout) Sean a, b Z, alguno distinto de 0. Entonces existen
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
1. MEDIDAS DE TENDENCIA CENTRAL
1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas
Tema 1: Test de Distribuciones de Probabilidad
Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
SIMULACION. Formulación de modelos: solución obtenida de manera analítica
SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar
Sistemas de numeración
Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan
CRIPTOGRAFÍA SIMÉTRICA Y ASIMÉTRICA
CRIPTOGRAFÍA SIMÉTRICA Y ASIMÉTRICA Para generar una transmisión segura de datos, debemos contar con un canal que sea seguro, esto es debemos emplear técnicas de forma que los datos que se envían de una
Tema 10. Estimación Puntual.
Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos
Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay
Estructuras de Datos y Algoritmos
Estructuras de Datos y Algoritmos Año 205 Deducción de algunos esfuerzos para una Distribución pseudo-aleatoria de datos Introducción Vamos a desarrollar algunos de los esfuerzos para estructuras que utilizan
Medidas de tendencia central o de posición: situación de los valores alrededor
Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas
Algoritmos y Diagramas de Flujo 2
Algoritmos y Diagramas de Flujo 2 Programación Java NetBeans 7.0 RPC Contenido 2.1 Algoritmo...1 Fase de creación de un algoritmo...1 Herramientas de un algoritmo...2 2.2 Diagrama de Flujo...2 Símbolos
Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2
Semestre set04 - feb05 Módulos 11-17 Prueba de evaluación contínua 2 - PEC2 Solución Presentación i objetivos Enunciados: descripción teórica de la práctica a realizar Materiales Criterios de evaluación
Notas de Teórico. Sistemas de Numeración
Departamento de Arquitectura Instituto de Computación Universidad de la República Montevideo - Uruguay Sistemas de umeración Arquitectura de Computadoras (Versión 5. - 4) SISTEMAS DE UMERACIÓ Introducción
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones
Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica
Análisis de los datos
Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización
Ejercicios de Modelos de Probabilidad
Ejercicios de Modelos de Probabilidad Elisa M. Molanes-López, Depto. Estadística, UC3M Binomial, Poisson, Exponencial y Uniforme Ejercicio. Se dispone de un sistema formado por dos componentes similares
Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido
Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6
PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.
PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
Elementos de Probabilidad y Estadística Segundo de Economía Examen del 26 de junio de 2006 DURACIÓN: 2 horas
Elementos de Probabilidad y Estadística Segundo de Economía Examen del 6 de junio de 6 DURACIÓN: horas. a) Se realizan lanzamientos de un dado regular. i) Calcular la probabilidad de obtener exactamente
UNIDAD Nº 1: 1. SISTEMAS DE NUMERACION. Formalizado este concepto, se dirá que un número X viene representado por una cadena de dígitos:
UNIDAD Nº 1: TECNICATURA EN INFORMATICA UNLAR - CHEPES 1.1. INTRODUCCION 1. SISTEMAS DE NUMERACION El mundo del computador es un mundo binario. Por el contrario, el mundo de la información, manejada por
Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11
Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales
Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics-
Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics- 1. Introducción Ficheros de datos: TiempoaccesoWeb.sf3 ; AlumnosIndustriales.sf3 El objetivo de esta práctica es asignar un modelo
Generación de Números Pseudo-Aleatorios
Números Aleatorios Son un ingrediente básico en la simulación de sistemas Los paquetes de simulación generan números aleatorios para simular eventos de tiempo u otras variables aleatorias Una secuencia
Análisis de medidas conjuntas (conjoint analysis)
Análisis de medidas conuntas (conoint analysis). Introducción Como ya hemos dicho anteriormente, esta técnica de análisis nos sirve para analizar la importancia que dan los consumidores a cada uno de los
Integración por el método de Monte Carlo
Integración por el método de Monte Carlo Georgina Flesia FaMAF 7 de abril 2015 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para estudiar procesos mediante la seleccion
MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE
MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE Índice de contenidos: 1. Ley Financiera de capitalización a interés vencido. 1.1. Equivalencia de capitales. 1.2. Tipos de interés equivalentes.
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores
EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u
Características de funciones que son inversas de otras
Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =
Función exponencial y Logaritmos
Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes
1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS
1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una
ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.
Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa
Ejercicios de Programación Lineal
Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de
4 APLICACIONES LINEALES. DIAGONALIZACIÓN
4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos
7. Conclusiones. 7.1 Resultados
7. Conclusiones Una de las preguntas iniciales de este proyecto fue : Cuál es la importancia de resolver problemas NP-Completos?. Puede concluirse que el PAV como problema NP- Completo permite comprobar
Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1
. ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
Relaciones y funciones
Relaciones y funciones En matemáticas, una relación es un conjunto de pares ordenados. Como si se tratara de coordenadas de puntos, un conjunto de pares ordenados, forma una relación. Relación Es un conjunto
Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D
Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Miguel Ángel Otaduy 26 Abril 2010 Contexto Cálculo de la integral de radiancia reflejada en la ecuación de rendering Cálculo de la integral
El Método de Monte Carlo. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas
El Método de Monte Carlo Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas El método de Monte Carlo es una técnica numérica para calcular probabilidades y otras cantidades relacionadas, utilizando secuencias
8. Estimación puntual
8. Estimación puntual Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 8. Estimación puntual Curso 2009-2010 1 / 30 Contenidos 1 Introducción 2 Construcción de estimadores
Muestreo estadístico. Relación 2 Curso 2007-2008
Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
Materia: Informática. Nota de Clases Sistemas de Numeración
Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos
CAPÍTULO 7 7. CONCLUSIONES
CAPÍTULO 7 7. CONCLUSIONES 7.1. INTRODUCCIÓN 7.2. CONCLUSIONES PARTICULARES 7.3. CONCLUSIONES GENERALES 7.4. APORTACIONES DEL TRABAJO DE TESIS 7.5. PROPUESTA DE TRABAJOS FUTUROS 197 CAPÍTULO 7 7. Conclusiones
Bases de datos en Excel
Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Bases de datos en Excel Hojas de cálculo Tema 5 Bases de datos en Excel Hasta ahora hemos usado Excel básicamente para realizar cálculos
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
E 1 E 2 E 2 E 3 E 4 E 5 2E 4
Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),
5 Ecuaciones lineales y conceptos elementales de funciones
Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales
Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA
Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer
Matemáticas 2º BTO Aplicadas a las Ciencias Sociales
Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD
Práctica 5. Curso 2014-2015
Prácticas de Seguridad Informática Práctica 5 Grado Ingeniería Informática Curso 2014-2015 Universidad de Zaragoza Escuela de Ingeniería y Arquitectura Departamento de Informática e Ingeniería de Sistemas
INTERNET I LECCIÓN N 3 Cambio de la página principal
Cambio de la página principal Cada vez que abre Internet Explorer, éste se abre en la página principal. Pero dónde se siente mejor que en casa? Es fácil cambiar la página principal. Abra el menú Herramientas
PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables
Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver
8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...
Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación
CÁLCULO PARA LA INGENIERÍA 1
CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!
Profr. Efraín Soto Apolinar. Factorización
Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación
El método de Monte Carlo: generalidades. Simulación de Distribuciones de Poisson. Simulación de Distribuciones Generales
El método de Monte Carlo: generalidades Números aleatorios Simulación de Distribuciones de Poisson Simulación de Distribuciones Generales El método de Monte Carlo en Mecánica Estadística Percolación en
(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las
Ahora comencemos!... Las operaciones matemáticas fundamentales pueden realizarse de forma rápida y sencilla con Miicrosofftt Excell.
Necesitas organizar tus cuentas? O calcular tus notas? Miicrosofftt Excell te ayuda a hacerlo Lleva todas tus cuentas, notas, o lo que necesites, de forma automática, a través de las hojas de cálculo de
CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A
CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo
1. INVERSA DE UNA MATRIZ REGULAR
. INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz
Servicio de Informática
Módulo para la cumplimentación de contratos de movilidad en Universidad Virtual Guía de Usuario Última actualización 21 de abril de 2015 Tabla de contenido 1.- Introducción... 4 2.- Acceso al módulo y
Semana de dieta (X) 1 2 3 4 5 Peso en Kg (Y) 88.5 87 84 82.5 79
. Una persona se somete a una dieta de adelgazamiento durante cinco semanas. A continuación se detalla su peso al término de cada una de esas semanas: Semana de dieta X) 2 3 4 Peso en Kg Y) 88. 87 84 82.
Ejercicios resueltos de vectores
Ejercicios resueltos de vectores 1) Sean a(2,-1,3), b(3,0,-2) y c(-2,-2,1), realiza las siguientes operaciones con vectores: a) 3a + b - c b) a -2b c) a c 2) Utilizando los vectores del ejercicio 1, comprueba
Tema 12: Contrastes Paramétricos
Tema 1 Tema 1: Contrastes Paramétricos Presentación y Objetivos. Se comienza este tema introduciendo la terminología y conceptos característicos de los contrastes de hipótesis, típicamente a través de
SIMULACIÓN CAPITULO 3 LECTURA 6.3. SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México 3.
LECTURA 6.3 SIMULACIÓN Y ANÁLISIS DE MODELOS ESTOCÁSTICOS Azarang M., Garcia E. Mc. Graw Hill. México CAPITULO 3 SIMULACIÓN 3.1 INTRODUCCIÓN Simulación es el desarrollo de un modelo lógico-matemático de
Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología
Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología La metodología para el desarrollo de software es un modo sistemático de realizar, gestionar y administrar un proyecto
ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ
ELECTRÓNICA DIGITAL DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ IES TRINIDAD ARROYO DPTO. DE ELECTRÓNICA ÍNDICE ÍNDICE... 1 1. LIMITACIONES DE LOS CONTADORES ASÍNCRONOS... 2 2. CONTADORES SÍNCRONOS...
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 2 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. La dureza Rockwell de un metal
