Guía de Mecánica Automotriz.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía de Mecánica Automotriz."

Transcripción

1 Fundación Universidad de Atacama Escuela Técnico Profesional Unidad Técnico Pedagógica Profesor: Sr. Jorge Hernández Valencia Módulo: Mantenimiento de Sobrealimentadotes de Motores. Guía de Mecánica Automotriz. (Fuente de información; Objetivo: Conocer la historia, evolución y proyección de los sistemas de sobrealimentación de los motores de combustión interna. Conocer el funcionamiento y componentes de los Turbo cargadores y Super cargadores. Analizar las ventajas y desventajas de cada sistema. 1. LA SOBREALIMENTACIÓN. Los aparatos de sobrealimentación para motores de combustión elevan por compresión la cantidad de aire necesaria para la combustión del combustible, manteniendo constante la cilindrada y el número de revoluciones del motor, con lo cual facilitan una mayor densidad de potencia. Los aparatos de sobrealimentación para motores de combustión se denominan generalmente compresores. Se distingue entre compresor mecánico, turbocompresor de gases de escape y compresor de onda de presión. La potencia de compresión necesaria en los compresores mecánicos procede del cigüeñal del motor (acoplamiento mecánico motor/compresor), también denominados supercargador. En los turbocompresores de gases de escape se obtiene la potencia de los gases de escape (acoplamiento fluidico, motor/compresor). En los compresores de onda de presión la potencia procede de los gases de escape, pero mediante un aparato de transmisión mecánico además (acoplamiento mecánico y fluidico). 2. HISTORIA. En los primeros años del automóvil la forma de conseguir más potencia fue relativamente sencilla: si se querían más caballos se subía la cilindrada, bien empleando pistones de mayor tamaño o bien aumentando el número de cilindros. Este tipo de solución no presentaba problemas graves en vehículos de uso normal, pero en competición pronto se demostró que no era la solución ideal. También se aumentó la velocidad de giro de los motores, pero la fragilidad y el aumento de peso no favorecían lo más mínimo a la hora de competir. Ante este problema surgió una tercera vía para conseguir más potencia. Si ésta, en definitiva, dependía de la cantidad de gasolina que se quemaba dentro de los motores, si se forzaba su entrada a los mismos se podrían conseguir más caballos sin necesidad de construirlos con cilindradas enormes o con más cilindros. La idea de la sobrealimentación es casi centenaria y existen patentes que se remontan al siglo XIX (años de 1800). Ya los hermanos Daimler patentaron un tipo de compresor en 1896, y el ingeniero Büchi también presentó en 1905 la primera idea de lo que podría ser un turbocompresor, la cual completó en 1910 con un sistema básicamente igual al que se utiliza hoy día. El mismo Büchi trabajó intensamente con su idea y en 1925 llegó a perfeccionarlo de tal manera que su invento aún está vigente en determinados tipos de motores diesel.

2 La llegada del turbo al motor de combustión interna se produjo más tarde y su aplicación comenzó en la competición después de que por los años sesenta se utilizase con profusión el compresor volumétrico. Los éxitos más notables en la implantación del turbo vinieron de la mano del ingeniero francés Auguste Rateau. Después, por encargo de Renault, comenzó en los años setenta, ya con los debidos medios, su aplicación a motores de competición en la categoría de los Sport Prototipos. Así nació el Renault Alpine A-442 que sirvió de base para el motor de Fórmula 1 que debuto en A partir de ese momento, comenzó una vertiginosa carrera en la aplicación del turbo para motores de vehículos de gran serie, hasta el punto de que en la actualidad no hay fabricante de prestigio que no comercialice alguno de sus modelos dotado de turbo. 3. Evolución del Turbocompresor. Después de la Segunda Guerra Mundial, con una economía que no permitía grandes alegrías, la mayoría de los fabricantes Europeos se olvidaron de los motores sobrealimentados. Por un lado, resultaban complicados de fabricar, por otro, no había muchas economías que pudieran permitirse su adquisición. Pasarían bastantes años hasta que una marca volviera a lanzar al mercado un coche de serie movido con un sistema fiable de sobrealimentación. Nos referimos a BMW, que con su Ti Turbo a principios de los 70 dio el primer paso de lo que más tarde sería una moda que llegaría a todo el mundo de automóvil y que aún se sigue empleando con éxito. La nueva forma de sobrealimentar era mucho más sencilla y barata que la de los compresores volumétricos. Un sistema de dos turbinas unidas por un eje se encargó de que el rendimiento de los motores subiera, como por arte de magia, de un 50 a 60 por ciento, con la ventaja añadida de no exigir grandes cambios en el motor y ser un sistema muy ligero. La idea no puede ser más simple: los gases de escape, al salir del motor, mueven una turbina. Su movimiento es trasmitido, mediante un eje, a una segunda turbina que lo que hace es aspirar aire y mandarlo comprimido a los cilindros. Bastaron algunas pequeñas modificaciones en los colectores de escape, en el sistema de alimentación, engrase y refrigeración para conseguir potencias de unos 100 caballos por litro. Algo que ahora nos parece relativamente normal, pero que parecía imposible conseguir, en un vehículo de calle, no hace muchos años. Figura 1. Motor turboalimentado Una idea tan buena rápidamente fue utilizada en competición, ya que gracias a ella se conseguían todos los objetivos de cualquier fabricante o preparador de motores de competición. Poco peso y alto rendimiento sin necesidad de complicar mucho el diseño del motor. El turbocompresor no era una idea nueva, ya que se había venido utilizando hacía muchos años como sistema de sobrealimentación de motores Diesel estacionarios. En éstos al no existir cambios frecuentes en su velocidad de giro, poco importaba que el turbocompresor fuera muy pesado, pero en un motor destinado al automóvil había que conseguir que respondiera con rapidez y que fuera fiable. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

3 Como en otras muchas ocasiones, fue la mejora en la calidad de los materiales y de los lubricantes lo que permitió que se desarrollaran rápidamente. El turbocompresor moderno tiene un tamaño muy pequeño, lo que permite que gire muy rápido y que tenga pocas inercias. Con esto se consigue que sobrealimente de forma progresiva y que no pase mucho tiempo entre el momento de pisar el acelerador y el de notar cómo el motor comienza a entregar caballos de forma espectacular. 4. TURBOCOMPRESOR. El turbocompresor podría definirse como un aparato soplador o compresor movido por una turbina. Se puede considerar que está formado por tres cuerpos: el de la turbina, el de los cojinetes o central y el del compresor, van acoplados a ambos lados de los cojinetes. Así, en uno de los lados del eje central del turbo van acoplados los álabes de la turbina, y en el otro extremo los álabes del compresor. Los gases de escape, al salir con velocidad hacen que giren los álabes de la turbina a elevadas velocidades, y ésta, a través del eje central, hace girar el compresor que, a su vez, impulsa el aire a presión hacia las cámaras de combustión. Tanto los álabes de la turbina como los del compresor giran dentro de unas carcasas que en su interior tienen unos conductos de formas especiales para mejorar la circulación de los gases. El eje común central gira apoyado sobre cojinetes situados entre compresor y turbina, y también está recubierto por una carcasa. El eje y los cojinetes reciben del propio motor, lubricación forzada de aceite, que llega a la parte superior del cuerpo de cojinetes, se distribuye a través de conductos en el interior y desciende a la parte inferior. En el cuerpo del compresor, el aire entra por el centro de la carcasa dirigido directamente al rodete de álabes, que le dan un giro de 90 y lo impulsan hacia el difusor a través de un paso estrecho que queda entre la tapa, el cuerpo central y la pared interna del difusor. Este es un pasaje circular formado en la carcasa, que hace dar una vuelta completa al aire comprimido para que salga tangencialmente hacia el colector de admisión. Figura 2. Figura 2. Turbocompresor en corte. El sistema de alimentación por medio de turbocompresor, es una tecnología que alcanzó su validez en esta década. La disipación térmica, la lubricación de los componentes móviles y la dosificación de la presión, forman la clave del buen funcionamiento. En el cuerpo de la turbina, los gases de escape entran tangencialmente y circulan por un pasaje de sección circular que se va estrechando progresivamente y los dirige hacia el centro, donde está situado el rodete de álabes de la turbina. Al chocar contra los álabes, los gases hacen girar la turbina, cambian de dirección 90 y salen perpendicularmente por el centro hacia el tubo de escape. El cuerpo de la turbina es de fundición, o de fundición con aleación de níquel, y el rodete se suele fabricar en aleaciones de níquel, de alta resistencia al calor. La utilización del turbo no sería posible en un motor si no se pudiera regular la sobrepresión que en mayor o menor grado aporta, de acuerdo con su mayor o menor velocidad de giro. Es evidente que a pocas revoluciones del motor, la salida de gases es de poca consideración y la velocidad de giro de la turbina resulta muy moderada. Pero cuando el motor aumenta su régimen de giro, la turbina recibe una mayor densidad y velocidad de los gases de escape, de modo que aumenta también su giro y con ella lo hace el compresor, que adquiere de ese modo elevados valores de sobrepresión. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

4 Para que el conjunto funcione correctamente, el turbo no ha de sobrepasar ciertos valores de sobrepresión, que oscilan generalmente entre los 0,4 y 0,7 bares, según el diseño, de modo que se hace necesaria una válvula de seguridad que controle la presión máxima para la que el motor ha sido diseñado. Esto se consigue por medio de la válvula de descarga, también conocida como waste gate (puerta de desecho), que desvía las presiones de los conductos cuando alcanzan valores superiores a los establecidos. Esta válvula está gobernada automáticamente por una cápsula manométrica que actúa en función de la presión de admisión. Como se decía al principio, la utilización del turbo suponía muchas ventajas pero al mismo tiempo aportaba algunos inconvenientes; lo que no quiere decir que muchos de ellos no estén solucionados satisfactoriamente o que supongan un peligro real para la vida útil del motor. La enumeración de estos problemas simplemente quiere reflejar que un motor turboalimentado, aunque fiable, resulta más delicado que un atmosférico; es la contrapartida a las altas cotas de rendimiento y potencia que proporciona la sobrealimentación con un turbo. Por medio del turbocompresor, se llegó a obtener una potencia considerable de un simple motor de dos mil centímetros cúbicos de cilindrada con cuatro cilindros en línea. Un voluminoso intercambiador de calor junto a otro radiador del lubricante, han hecho posible el control de la temperatura. (Figura 3) Figura 3. A la vista de que la mezcla gasolina/aire es altamente explosiva cuando ya ha sido preparada, y es muy sensible a las altas temperaturas y las altas presiones, la aplicación del turbo a un motor de chispa plantea problemas, precisamente porque aumenta las temperaturas y presiones. Este aumento de valores no sólo afecta a la mezcla sino también a las partes móviles del motor, por lo que debe ser preparado convenientemente en sus partes vitales. De ahí una de las razones del encarecimiento de los motores turboalimentados respecto a los atmosféricos. Además del costo elevado de producción, hay una serie de cuestiones fundamentales a tener en cuenta a la hora de hacer una somera descripción de las desventajas del turbo, el aumento de temperatura y los problemas de engrase. En cuanto a la detonación (explosión de la mezcla en la cámara de combustión sin que haya chispa), cuando un motor se somete a la sobrealimentación se produce un aumento de volumen en la entrada de la mezcla cada vez que se abre la válvula de admisión debido a que existe una mayor presión en el colector. El aire entra a mayor velocidad en el cilindro, y cuando se cierra la válvula ha entrado una mayor cantidad de mezcla. La importancia de este aumento se manifiesta en una considerable subida de los valores de temperatura y compresión, que producirá inevitablemente la detonación. Por lo tanto, un motor sobrealimentado ha de tener una relación de compresión inferior a la de un motor atmosférico, lo que se traduce en un rendimiento pobre del motor cuando el régimen de giro es bajo. Respecto a la lentitud de respuesta del turbo, hay que tener en cuenta que la presión de sobrealimentación alcanzada por un turbo, resulta prácticamente proporcional a su régimen de giro, es decir, a más velocidad de giro, mayor caudal y también mayor valor de sobrepresión. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

5 Como el régimen de giro del turbo depende de los gases de escape, y éstos a su vez, del volumen de gas quemado, el turbo aumenta su presión de admisión sólo cuando los gases quemados son abundantes, y son abundantes sólo cuando son recibidos en las cámaras de combustión en suficiente cantidad. Es un problema, cuando se produce un retardo, cuando el motor está en un régimen bajo, lo que determina una lentitud de respuesta del turbo, problema que se agrava además ante la necesidad de una baja relación de compresión por las causas antes explicadas. El constructor sueco Saab, ha logrado motores turboalimentados de elevada fiabilidad mecánica y buenas prestaciones (Figura 4). El propulsor que aparece en la figura, es un claro ejemplo de avanzada tecnología, en el que el turbocompresor ha jugado un papel determinante. Este es un fenómeno que se está investigando y cuya solución pasa por un turbo que se mueva al compás del régimen de giro del motor, que tenga muy poca inercia y sea de tamaño reducido; además de ser muy sensible al paso de los gases, acelerando y desacelerando con gran rapidez. Figura 4. Motor turboalimentado SAAB. Otra solución, que ya comienza a desarrollarse, es la creación de turbinas con álabes de inclinación variable, pero al fin y al cabo son soluciones que aún no se han implantado en serie debido a los altos costos de producción. El problema del aumento del calor es consecuencia de la alta temperatura que se alcanza en la cámara de combustión, del orden de los grados centígrados en el momento de la explosión. Los gases de escape salen por los colectores con temperaturas cercanas a los grados. Estos gases, que son los que mueven la turbina, acaban calentando los de admisión, movidos por el compresor, muy por encima del valor de temperatura ambiente. Esto se traduce en una dilatación del aire y pérdida de oxígeno en una misma unidad de volumen, lo que hace que el excesivo calor de la mezcla en la cámara de combustión eleve la temperatura de funcionamiento del motor, por lo que la refrigeración tradicional del mismo resulta insuficiente. La solución llega con la adopción de un sistema de refrigeración del aire de admisión, por medio de un radiador enfriador aire - aire, conocido también como intercooler. Esta refrigeración del aire de admisión hace posible el uso continuado del turbo y dificulta enormemente la presencia de los efectos de detonación que se presentan con gran frecuencia con el aire caliente, en cuanto los valores de sobrepresión son importantes. Sobre los problemas de engrase en los turboalimentadores, el aceite en los motores de gasolina ha de realizar una labor mucho más dura. Debido a las altas temperaturas que alcanza el turbo, el aceite ha de realizar una doble labor de engrase y refrigeración, lo que significa que está sometido a condiciones mucho más duras y extremas de lo que podría considerarse habitual en otros motores. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

6 Figura 5. Motor Turboalimentado Alfa Romeo 2 litros. En este esquema que pertenece al motor Alfa Romeo 2l. turboalimentado, se puede comprobar en todos sus detalles la instalación de la inyección electrónica. (Figura 5). Por ello, los motores turboalimentados tienen el cárter de aceite sobredimensionado, suelen llevar un radiador de refrigeración para el aceite y se utilizan formulaciones distintas a las habituales en la composición de estos aceites. Además, los fabricantes recomiendan acortar los períodos de cambio del aceite y seguir unas normas básicas para la puesta en marcha y apagado del motor. 4. COLOCACIÓN DEL TURBOCOMPRESOR. Para motores alimentados con carburador, según donde se coloque el sistema de sobrealimentación se pueden distinguir dos casos: * Carburador soplado: el carburador se sitúa entre el compresor y el colector de admisión. De esta forma el aire que entra en el compresor es aire limpio directamente del exterior. (Figura 6) Figura 6. Carburador Soplado. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

7 * Carburador aspirado: el carburador se monta antes del compresor por lo que en este caso lo que se comprime es una mezcla de aire y gasolina. (Figura 7) Este último sistema fue el más utilizado en las primeras aplicaciones de la sobrealimentación, por su sencillez y porque proporcionaba una mezcla de aire - gasolina de temperatura más baja que el sistema soplado. Sin embargo actualmente se utiliza más el sistema de carburador soplado ya que este sistema permite la utilización de un intercambiador de calor o intercooler. Para motores diesel o motores de gasolina alimentados por inyección esta clasificación no tiene sentido ya que los inyectores de combustible se colocan siempre después del sistema de sobrealimentación. Figura 7. Carburador Aspirado. 5. SISTEMA DE INTERCOOLER. El sistema intercooler consiste en un intercambiador de calor en el que se introduce el aire que sale del turbocompresor para enfriarlo antes de introducirlo en los cilindros del motor. (Figura 8) La circulación del aire en el sistema de alimentación de un motor turbo es muy complicada. A- Aire que llega desde el filtro. B- Aire que al pasar por el turbocompresor se calienta. C- Aire refrigerado por el intercambiador de calor. D- Gases productos de la combustión que van a la turbina de escape. E- Dichos gases se expulsan por el tubo de escape. Figura 8. Sistema intercambiador de calor. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

8 Al enfriar el aire disminuye la densidad de éste por lo que para el mismo volumen de los cilindros se puede introducir mayor masa de aire y así mejorar el rendimiento del motor. (Figura 9) Figura 9. Sistema de enfriamiento Intercooler 6. VENTAJAS E INCONVENIENTES DEL TURBO. a) Ventajas: Obtención de elevadas potencias a partir de cilindradas reducidas. Reducción del consumo de combustible. Reducción de peso y volumen del motor en comparación con motores de aspiración atmosférica de similar potencia ya que los cilindros de estos últimos serán de mayores dimensiones. Ruidos de funcionamiento relativamente menores que en motores de aspiración atmosférica ya que el turbo actúa como silenciador de los gases de escape y del aire o mezcla aire-gasolina. b) Inconvenientes: Potencias reducidas a bajas revoluciones. Cuando se lleva poco pisado el acelerador y por lo tanto un régimen de vueltas bajo, los gases de escape se reducen considerablemente y esto provoca que el turbo apenas trabaje. La respuesta del motor entonces es poco brillante salvo que se utilice una marcha convenientemente corta que aumente el régimen de giro. El mantenimiento del turbo es más exigente que el de un motor atmosférico. Los motores turbo requieren un aceite de mayor calidad y cambios de aceite más frecuentes, ya que éste se encuentra sometido a condiciones de trabajo más duras al tener que lubricar los cojinetes de la turbina y del compresor frecuentemente a muy altas temperaturas. Los motores turboalimentados requieren mejores materiales y sistemas de lubricación y refrigeración más eficientes. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

9 7. COMPRESOR VOLUMÉTRICO. Figura 10. Compresor Volumétrico. Uno de los sistemas más antiguos de sobrealimentar motores ha sido la aplicación de compresores volumétricos, técnica que estuvo casi en desuso a nivel comercial durante años, hasta que a finales de la década de los 80, cobró un nuevo impulso cuando fabricantes como Lancia o Volkwagen iniciaron su aplicación en modelos de gran serie. El objetivo de la instalación en el automóvil de sobrealimentadores, como los compresores volumétricos, es conseguir un mejor rendimiento del motor a base de llenar los cilindros lo más rápido y con la mayor cantidad de mezcla aire/combustible posible. Existen varios tipos de compresor aunque casi todos han partido del mismo concepto: hacer circular aire a mayor velocidad de la que proporciona la presión atmosférica, para acumular la mayor cantidad de aire posible en el conducto de admisión y crear una sobrepresión en él. Todos los compresores volumétricos tienen una característica en común, que además es una de sus principales desventajas: su accionamiento es mecánico y para funcionar necesitan ser movidos por el cigüeñal del motor, arrastre que supone una merma considerable en el potencial del motor. Pero esta desventaja tiene su gran contrapartida y es que al ser accionados directamente por el motor, se ponen en funcionamiento en el mismo instante en que éste arranca, y aumentan o disminuyen su función de sobrealimentación en perfecta armonía con el régimen de giro del motor. Con ello, se consigue una sobrealimentación instantánea y muy equilibrada a cualquier régimen de giro, cosa que no ocurre con el turbo, que solo consigue entrar en funcionamiento útil cuando los gases de escape que lo accionan tienen la suficiente velocidad para arrastrar la turbina. Uno de los compresores más utilizados hace años era el Eaton Roots 1, adoptado por prestigiosos fabricantes de motores, entre otros Abarth. En este compresor, la presión efectiva de carga no se creaba hasta llegar al colector de admisión y sus rotores de dos lóbulos originaban una presión relativamente baja. El Roots 1, para una presión de 0,6 bares y paso máximo de aire, absorbía 12,2 caballos de potencia del motor y su rendimiento, además de no ser muy alto, empeoraba con el aumento de régimen del motor. Luego vino el Roots 2, una versión posterior que llegó a mejores resultados gracias a una mayor complejidad en su construcción, con rotores de tres álabes y que para moverse sólo necesitaba 8 caballos de potencia para conseguir 0,6 bares de presión. (Figura 11) Aquí se puede notar la presencia del Compresor Roots, definiendo al motor como un modelo Super Cargado (Super Charger). Figura 11. Compresor Volumétrico Roots 2, con rotores de tres álabes. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

10 Por su parte, los ingenieros de Wanquel construyeron un compresor de pistones rotativos inspirado en una versión de Roots, con distintas geometrías de rotores y una arquitectura más sencilla. Alcanzaba una presión mucho más alta y absorbía 8 caballos, pero conseguía además un rendimiento que superaba el 50 por ciento. También el fabricante escocés Sprintex pasó a la historia por su compresor de hélice con diseño de rotores en forma de caracol, parecidos a una trituradora de carne, que no consiguió un rendimiento muy bueno, y además tenía un consumo de energía del motor muy elevado, que alcanzaba la cota de los 11 caballos de potencia. Otra solución para la sobrealimentación fue el compresor Pierburg de pistón rotativo, con un cierto parentesco con el motor Wankel; un rotor de tres álabes describe una trayectoria circular en un tambor rotativo con cuatro cámaras. Puesto que éstas en su rotación van variando el volumen, la compresión del aire tiene lugar dentro del compresor y gracias a esto su rendimiento supera el 50 por ciento con un consumo de energía relativamente bajo, con valores comprendidos entre 2,5 y 8,2 caballos de potencia. Otra modificación del compresor Roots es el KKK de pistón rotativo. En éste, el rotor gira en un tambor que lo envuelve, que a su vez también gira. La creación de presión de carga y el paso del aire es muy rápido en este compresor KKK, y la potencia necesaria para conseguir una elevada presión y un alto grado de flujo es relativamente baja, menos de 8 caballos. Pero uno de los mejores logros dentro del campo de la sobrealimentación por medio de compresores volumétricos lo ha construido Volkswagen, aplicándolo en varios de sus modelos más populares. El G, es un compresor en espiral y se diferencia de otros modelos sobre todo porque su diseño ha eliminado los elementos en rotación para conseguir la circulación del aire. En el compresor G, la compresión que se produce en el conducto del caracol es consecuencia del movimiento oscilante de su pieza interior, y las características de suministro de flujo de éste compresor cumplen el requisito más importante: una rápida creación de presión. A su elevada capacidad de circulación se aúna además un bajo consumo de energía, ya que las pérdidas por rozamiento son muy pequeñas en los cojinetes del compresor implantado en sus modelos por el fabricante alemán Volkwagen. La marca japonesa Mazda utiliza un compresor volumétrico helicoidal en su motor V6, mandado por una polea de diámetro variable. Esta polea, al variar su diámetro, y consecuentemente su relación de transmisión, es capaz de disminuir el esfuerzo de giro en regímenes altos. Gracias a ello se palian las pérdidas de potencia producidas por el arrastre del compresor en alta, conservando unas buenas cualidades de sobrealimentación. En base a las experiencias obtenidas en los últimos tiempos, casi todos los fabricantes de automóviles, independientemente del tipo de sobrealimentación que hayan implantado en sus modelos, están de acuerdo en que el compresor volumétrico de accionamiento mecánico es ventajoso sobre todo en motores de pequeña cilindrada, porque en ellos puede trabajar con un buen rendimiento y con resultados altamente positivos. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

11 7. Tipos de Compresores Volumétricos. Compresores Eaton Roots La solución del compresor volumétrico se ha empleado con éxito en coches de competición y de calle. Un ejemplo fueron los Lancia 037 de rally y el Volumex. Los dos rotores compresores del compresor Roots giran de frente en una caja ovalada en sentidos contrarios y sin tocarse. La magnitud del intersticio que existe viene determinada por la construcción, el material elegido y las tolerancias admisibles. La sincronización de ambos rotores se realiza por medio de un par de ruedas dentadas que giran fuera de la cámara de trabajo. (Figura 12) a) COMPRESOR EATON ROOTS 1: ESCUELA TÉCNICO PROFESIONAL. COPIAPÓ Figura 12. Compresor Eaton Roots. Se trata de una máquina pura de circulación, en las que no se comprime el aire. La presión de carga efectiva no se crea hasta llegar al colector de admisión. Esta versión sencilla con rotores de dos álabes origina una presión relativamente baja, y además la crea muy despacio al aumentar el régimen de giro. La potencia absorbida se sitúa para una sobrepresión de 0,6 bares y paso máximo de aire, en 12.2 CV. El rendimiento del compresor Roots no es muy alto y además empeora con el aumento del régimen de giro. La capacidad de suministro sólo supera el 50% en una gama muy limitada. El aire comprimido se calienta extraordinariamente. b) CROMPRESOR EATON ROOTS 2: Al igual que el anterior tampoco comprime el aire internamente, sin embargo la sobrepresión de carga, bajo las mismas condiciones, alcanza un máximo más elevado. La potencia absorbida se sitúa en sólo 8 CV y la temperatura del aire se eleva menos. El rendimiento de este compresor supera el 50% en una gama más alta. c) COMPRESOR VOLUMÉTRICO DE PISTONES ROTATIVOS WANKEL: Su funcionamiento es similar al del compresor roots, pero variando sustancialmente su geometría. De esta manera se mejoraron notablemente las propiedades. La sobrepresión que se alcanza es alta. La potencia absorbida para una presión de 0,6 bares y máximo paso de aire alcanza 8.2 CV. La temperatura del aire no se eleva mucho. El rendimiento está por encima del 50% para capacidad de circulación media y en una pequeña gama incluso supera el 60%. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

12 d) COMPRESOR DE HÉLICE SPRINTEX: Este compresor fabricado en Escocia presenta un elevado consumo de energía, para una baja capacidad de suministro, con el máximo en casi 11 CV. La causa parece radicar en los cojinetes lisos del compresor Sprintex, que ayudados por el rozamiento interno eleva mucho la temperatura del aire. El rendimiento no es muy bueno y sólo con alta sobrepresión y un elevado grado de paso de aire se acerca al 50%. e) COMPRESOR PIERBURG DE PISTÓN ROTATIVO: Este compresor tiene un parentesco cinemático con el motor Wankel. Un rotor de tres álabes describe una trayectoria circular en un tambor rotativo con cuatro cámaras. Las cámaras en su rotación van cambiando de volumen y por lo tanto el aire se comprime dentro del compresor. El consumo de energía es muy bajo también en carga parcial, entre 2.7 y 8.2 CV. La elevación de la temperatura es reducida. El rendimiento del compresor supera el 50% en una amplia gama de capacidad media de suministro. f) COMPRESOR KKK DE ÉMBOLO ROTATIVO : Es una máquina de émbolo rotatorio de eje interno. El rodete interior accionado (émbolo rotatorio) gira excéntricamente en el rodete cilíndrico exterior. Los rodetes con una relación de transmisión de tres a dos giran uno frente al otro y sin contacto con la carcasa, alrededor de ejes de posición fija. A causa de la excentricidad se puede captar el volumen máximo, comprimirlo y expulsarlo. La magnitud de la compresión interna viene fijada por la posición del borde de salida. Por medio de unas aberturas de entrada y salida de gran superficie en el rodete exterior, se consigue un suministro casi continuo con tres llenados de cámara en cada revolución. La sincronización del movimiento se realiza por medio de un par de ruedas dentadas rectas. Estas y los cojinetes de los rodetes van engrasados permanentemente con grasa. El rodete interior y el exterior se unen por medio del escaso juego que existe entre sí. La creación de la sobrepresión de carga y el paso del aire es muy rápido en el KKK. La potencia necesaria para conseguir una elevada presión y un alto grado de flujo es relativamente baja, con valores que se acercan a los 8 CV. El aire se calienta muy poco por la sobrepresión. El rendimiento del compresor KKK es muy bueno y en una amplia gama de alrededor de un 50% y en una gama más pequeña supera el 60%. g) COMPRESOR G DE VOLKSWAGEN: Se diferencia de otros modelos sobre todo porque no se compone de elementos en rotación para conseguir la circulación. La compresión del aire en el conducto del caracol es consecuencia de un movimiento oscilante de la pieza interior. La característica de suministro del compresor G cumple el requisito de una rápida creación de presión. Una elevada capacidad de circulación se une aquí con un bajo consumo de energía, ya que las pérdidas por rozamiento son muy pequeñas en los cojinetes del compresor G. El rendimiento alcanza en determinadas gamas de carga, máximos del 60%. El compresor G de Volkswagen ya no se utiliza, y se ha estado incorporando en algunos motores del W. Polo, W Golf y W. Passat durante menos de una década. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

13 8. VENTAJAS E INCONVENIENTES DEL COMPRESOR. a) Ventajas: Al contrario de lo que solía pasar con los turbos, en los compresores volumétricos la sobrepresión máxima se alcanza desde bajo número de revoluciones, lo cual facilita la conducción al aportar esta sobrealimentación extra en todo el rango de funcionamiento del motor. En motores de pequeña cilindrada el compresor mecánico es ventajoso porque en ellos puede trabajar con un buen rendimiento, y dar resultados a bajo régimen similares al de motores de gran cilindrada. Se calcula que el límite de validez ronda los motores entre 1.6 y 2 litros. b) Inconvenientes: Los compresores volumétricos suelen ser de un gran tamaño y peso. Consumen potencia directamente del motor que en ocasiones para regímenes de giro altos pueden alcanzar los 20 CV. Es difícil conseguir la estanqueidad de los compresores, especialmente a bajas revoluciones, lo cual disminuye notablemente el rendimiento. 9. EJEMPLO DE APLICACIÓN. El VW Polo G40 fue lanzado al mercado automotor en la Primavera de 1991 y ha sido el más rápido Polo construido en serie hasta la actual fecha por la casa VW, habiendo registros de los 0 a 100 km/h entre los 7,5 y 8,5 segundos, y velocidades máximas entre los 195 y 230 km/h. Compresor G montado en el Volkswagen Polo G40 (Figura 13) El Polo G40 comparte muchas de las características de los Polos normales y posee incluso algunas en común con el Polo GT, pero existe una diferencia muy importante que distingue al Polo G40 de sus demás hermanos ; su sobrealimentación debido al compresor volumétrico G, inventado en 1905 por el francés LeCreux. Figura 13. Compresor G Note el compresor G en primer plano, accionado mediante correa desde el cigüeñal. (Figura 14) Este compresor G instalado en el motor de aluminio de 4 cilindros, hace que el mismo llegue a 115 CV a 6250 RPM y un torque de 15,8 kgm a 3600 RPM en la versión sin catalizador, y 113 CV a 6000 RPM y un torque de 15,3 kgm a 3600 RPM en la versión con catalizador. Figura 14. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

14 10. EL TURBO DEL FUTURO. Una de las mejoras más necesarias en los motores turboalimentados tiene que ver con su prestación a bajo régimen. Avances en este apartado implican una mejora en la prestación de la turbina, junto a mayores flujos y rendimientos del compresor. Para conseguir esto una de las últimas técnicas empleadas es la utilización de turbinas de admisión variable. Con esta técnica se mejoran tanto los valores máximos de par y potencia como la respuesta a cualquier régimen. (Figura 15) El peso es otro aspecto a mejorar. En sus últimos modelos, Garrett (fabricante de turbocompresores) ha llegado a reducir el peso en más del 50% (de los 7 Kg del modelo T3 a los 3 Kg del GT12). Figura 15. En los turbo para motores de gasolina otra necesidad es el aumento de la fiabilidad a alta temperatura. A plena carga se pueden pasar de 1000ºC en la turbina y el material más habitual, denominado inconel, sufre cambios en su estructura a partir de esos grados. En el futuro se usará acero austenítico inoxidable para la envolvente, costoso en la actualidad, pero garantizado por su uso en competición. 11. COMPRESOR COMPREX. Es una máquina dinámica de gas, en la cual se verifica un cambio de energía del gas de escape al aire fresco por medio de ondas de presión. Este cambio tiene lugar en las celdas del rotor, llamado también rodete celular, que debe ser accionado por el motor a través de correas trapezoidales para la regulación y mantenimiento del proceso de la onda de presión. El cambio de energía se realiza en el rodete celular a la velocidad del sonido. Es función de la temperatura de los gases de escape y por ello depende principalmente del par motor y no del número de revoluciones. A relación constante de transmisión entre el motor y el sobrealimentador de onda de presión sólo es óptimo para un punto de trabajo. Incorporando bolsas apropiadas en los cuerpos del lado frontal se puede ampliar sin embargo el campo de buenos rendimientos a una zona amplia de funcionamiento, y con ello conseguir una buena característica de la presión de carga. A consecuencia del cambio de energía en el rotor a la velocidad del sonido, el compresor de onda de presión reacciona rápidamente a los cambios de estado. Los tiempos de reacción vienen determinados por los procesos de llenado de los tubos de aire y de gases de escape. (Figura 15) Figura 15. Compresor Comprex. a.-cámara de gases. b.-rotor. c.-correa de transmisión cigüeñal-coprex. d.-colector de admisión. 1.-Mezcla de admisión. 2.-Mezcla de presión. 3.-Gases de escape del motor. 4.- Escape. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

15 El rodete celular del compresor de onda de presión es accionado por el cigüeñal del motor a través de correas trapezoidales. Para reducir el ruido, las celdas del rodete son de distintos tamaños. El rotor gira dentro de un cuerpo cilíndrico, en cuya cara frontal desembocan los conductos de aire y de gas, y además la entrada de aire a baja presión y el aire a alta presión por un lado, y el gas de escape a alta presión y la salida de gas a baja presión en el otro lado. El rotor lleva cojinetes flotantes (los cojinetes se encuentran en el lado del aire), conectado al circuito de aceite del motor. El compresor tipo Comprex utiliza la energía transmitida, por contacto directo, entre los gases de escape y los de admisión, mediante las ondas de presión y depresión generadas en los procesos de admisión y escape. El Comprex resulta de un tamaño bastante grande, y es accionado por el cigüeñal a través de una correa. Por ambas razones las posibilidades para elegir ubicación son muy reducidas. El sistema Comprex, al igual que los sistemas turbo, aprovecha la energía de los gases de escape. Su principal ventaja es que responde con mayor rapidez a los cambios de carga del motor, por lo que éste tendrá un comportamiento más alegre. Los principales inconvenientes que presenta este sistema son: Precios dos o tres veces mayores que los de un turbocompresor equivalente. Presencia de un silbido agudo durante las aceleraciones. Altas temperaturas de los gases de admisión, al haber estado en contacto las paredes con los gases del escape. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

16 Fundación Universidad de Atacama Escuela Técnico Profesional Unidad Técnico Pedagógica Profesor: Sr. Jorge Hernández Valencia Módulo: Mantenimiento de Sobrealimentadotes de Motores. ESCUELA TÉCNICO PROFESIONAL. COPIAPÓ Material Anexo. (Fuente de Información: Sobrealimentación de motores La sobrealimentación es un método que se utiliza para dar potencia y rendimiento a un motor. Sobrealimentar un motor puede definirse como la forma de utilizar un sistema mediante el cual se consiga aportar un mayor llenado al interior de los cilindros, es decir una mayor cantidad de mezcla fresca, para obtener así mayor energía y por lo tanto mayor trabajo del que podría obtenerse de un motor de aspiración natural. La sobrealimentación no sólo sirve para dar mayor potencia al motor, si no también para conseguir la misma potencia en condiciones atmosféricas anormales, como ser a grandes alturas (en el caso de los aviones o vehículos que transiten en zonas montañosas) o zonas de elevadas temperaturas. El problema de las grandes alturas y elevadas temperaturas es que en estos lugares la presión es más baja y por lo tanto la cantidad de mezcla que ingresa al motor es menor. Existen dos formas muy difundidas de sobrealimentar un motor: por medio del Compresor Volumétrico llamado Supercargador, o un Turbocargador. 1. Sobrealimentadores volumétricos o Super cargadores Los sobrealimentadores volumétricos son aparatos que hacen circular el aire a mayor velocidad de la que proporciona la presión atmosférica, con lo que crea un sobrepresión en el múltiple de admisión. Las características fundamentales de éstos compresores es que se encuentran accionados por el cigüeñal del motor a través de engranajes o correas, por lo que tienen buen rendimiento a bajas vueltas cosa que no ocurre con los turbocompresores; pero también tienen contras, ya que el compresor al ser accionado por el cigüeñal le quita potencia al motor. Existen 2 tipos de sobrealimentadores volumétricos que se utilizan en la actualidad: Supercargadores de lóbulos y los Supercargadores centrífugos. 1.1 Supercargadores de lóbulos Entre los supercargadores de lóbulos el más utilizado es el tipo ROOTS, el cual consta de 2 rotores de lóbulos que son solidarios a 2 engranajes, los cuales son comandados por un tercer engranaje el cual esta acoplado al cigüeñal por medio de una correa. El compresor ROOTS trabaja como desplazador del aire de la siguiente manera: Al girar los 2 lóbulos absorben el aire de la atmósfera y lo desplaza comprimiéndolo a lo largo de las paredes del supercargador en el sentido de giro de los rotores hacia la admisión del motor Existen otras formas de accionamiento del supercargador, por medio de un acoplador hidráulico o por medio de un sistema de electroimán que permite ponerlo en funcionamiento o embragarlo a voluntad con un botón, según las características y necesidades de marcha. Sus desventajas son que le quita potencia al motor por ser movido por el cigüeñal (generalmente de 7 a 10 HP aproximadamente), tienen un peso de 3 a 4 veces mayor que los turbocompresores y su colocación se hace difícil debido a su gran tamaño por todo esto no se los utilizan con mucha frecuencia en motores de bajas cilindradas. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

17 Diagrama de un motor con supercargador 1-Motor. 2-Escape. 3-Tanque de combustible. 4-Bomba de bencina. 5-Cañeria de alimentación del tanque a la bomba de bencina. 6-Cañeria de alimentación del carburador. 7-Carburador. 8-Filtro de aire. 9-Válvula de flap que permite pasar aire cuando no está funcionando el compresor. 10-Compresor tipo ROOTS. 11-Embrague electrónico del compresor. 12-Polea del cigüeñal canectada con el embrague del compresor. 13-Botón que habilita al pulsador del embrague del supercargador. 14-Pulsador que pone en marcha el supercargador. 15-Válvula de alivio para controlar la sobrepresión. 16-Cañeria para alimentación extra de combustible. 17-Sensor de cantidad de aire que ingresa. ESCUELA TÉCNICO PROFESIONAL. COPIAPÓ 1.2 Supercargadores centrífugos Los supercargadores centrífugos son muy similares a los turbocompresores ya que el compresor en sí es un rotor con álabes, pero movido por medio de una correa conectada al cigüeñal que toma el aire a presión atmosférica, lo desplaza a través de las paredes de la carcaza comprimiéndolo y enviándolo a la admisión del motor. Sus ventajas son: disponer de buen rendimiento a bajas vueltas (lo que no ocurre con los turbos) y son más pequeños que los de tipo Roots. Sus desventajas son que le quita potencia al motor (generalmente 6 a 9 HP aproximadamente) tiene mayor velocidad de rotación y produce mayor calor que el de tipo Roots por lo que es mejor utilizarlo con intercooler (intercambiador de calor). 2. Turbocompresores En el terreno de la sobrealimentación de motores los mejores resultados obtenidos hasta ahora se han conseguido con la ayuda de los turbocompresores que si bien presentan algunos inconvenientes, tienen la gran ventaja de que no consumen energía efectiva del motor además de estar facultados para poder girar a un gran número de vueltas. Las dos ventajas, junto a la facilidad con que pueden ser aplicados a los motores por su pequeño tamaño (con respecto a los compresores volumétricos) hacen que haya evolucionado su estudio y se hayan conseguido grandes rendimientos en motores de combustión interna de todo tipo. La idea de la sobrealimentación se remonta al siglo XIX, el ingeniero Buchi presentó en 1905 la primera idea de lo que sería un turbocompresor, la cual completó en 1910 con un sistema básicamente igual al que se utiliza hoy en día. El mismo Buchi trabajó con su idea y en 1925 llegó a perfeccionarlo de tal manera que su invento aún está vigente en determinados motores Diesel. Los éxitos más notables con la implementación del turbo vinieron de la mano del ingeniero Rateau. Luego por encargo de Renault comenzó en los años 70 su aplicación a motores de competición. Así nació el Renault A 442 que sirvió de base para el motor de Fórmula 1 que debutó en El reglamento de Fórmula 1 de esos años permitía motores aspirados de 3 litros o motores con turbocompresor de 1,5 litros de cilindrada. Con esto en 1977 los motores de 3 litros como el Cosworth DFV erogaba 487 CV, mientras que el motor Renault Turbo desarrollaba una potencia de 510 CV pero con una desventaja porque a pesar de su capacidad más pequeña era un 25 % más pesado que el Cosworth. En 1985 el motor Honda superó ampliamente esos valores porque éste erogaba 1082 CV con 1,5 litros de cilindrada. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

18 2.1 Desarrollo y funcionamiento Los motores de combustión interna aprovechan sólo un 25% de la energía del combustible el resto se pierde por el escape, por pérdidas de rozamiento mecánico y también por pérdidas de calor al tener que enfriar el motor. El turbocompresor aprovecha la energía desperdiciada por el escape con un dispositivo que consta de una pequeña turbina, por la cual pasan los gases de escape y la hacen girar a grandes velocidades (hasta R.P.M) con temperaturas del orden de los C. La turbina está unida mediante un eje al compresor, que es una rueda con una docena o más de álabes. Cuando gira la turbina también gira el compresor y las paletas curvadas (álabes) succionan el aire de la atmósfera lo hacen girar y lo impulsan a mucha velocidad hacia un difusor que está en la carcaza el compresor haciendo que el aire disminuya la velocidad y aumente considerablemente la presión. En la turbina se produce el efecto contrario; en la carcaza de ésta se encuentra situada una tobera por la cual pasan los gases de escape a presión, la cual disminuye y en consecuencia aumenta considerablemente la velocidad haciendo girar la turbina a altísimas revoluciones. Gracias al aumento de presión que produce el compresor, el aire penetra en el sistema de admisión del motor a través del carburador o múltiple de admisión (en el caso de ser inyección) donde adquiere la cantidad de combustible necesaria y llega a la cámara de combustión para seguir el proceso normal del ciclo. Este hecho de que la mezcla aire-combustible esté a altas presiones quiere decir que una proporción mayor de ella entra en el cilindro que en los motores aspirados. Al penetrar más mezcla el motor desarrolla más energía, de forma que él turbo aumenta significativamente el rendimiento del mismo. Es necesario calcular la forma de los álabes y tamaño del compresor de manera que produzca un sobrepresión útil a la requerida por el motor. Una vez calculado esto es preciso diseñar la turbina que proporcione las velocidades requeridas por compresor. Antes de llegar a la turbina el gas de escape debe retener tanto como sea posible su calor, velocidad y presión a fin de que pueda mantener a la turbina en un giro eficaz. Cuando la turbina es pequeña la respuesta es más rápida y el rendimiento es mejor a menor cantidad de vueltas (turbo de baja), mientras que si la turbina es más grande el rendimiento será mejor a mayores revoluciones (turbo de alta). Aunque lo último en tecnología de turbos es el Turbo de geometría variable que funciona en alta y en baja, ya que por su diseño le permite variar el ángulo de incidencia de los álabes de la turbina de acuerdo a los requerimientos del motor. 2.2 Diagrama de un motor con Turbo 1- Filtro de Aire 2- Admisión del compresor 3- Compresor 4- Salida del compresor hacia el intercooler 5- Intercooler 6- Salida del intercooler hacia el carburador 7- Carburador presurizado 8- Distribuidor 9- Múltiple de admisión 10- Block de cilindros del motor 11- Múltiple de escape 12- Turbina 13- Válvula de descarga 14- Escape ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

19 2.3 Válvula de descarga Waste Gate Los turbocompresores deben tener una válvula la cual limita la entrada de los gases de la turbina pues ésta si no tuviera la válvula alcanzaría altísimas velocidades de giro con lo cual la sobrepresión sería demasiado grande provocando la rotura o destrucción del motor. Esta válvula llamada Waste Gate lo que hace es regular la sobrepresión que produce el turbocompresor. Funciona desviando las presiones de los conductos de escape cuando se alcanzan valores de sobrepresión mayores a los que podría soportar el motor. Dicha válvula es accionada por una cápsula manométrica que actúa con un determinado valor de presión que es tomado en el múltiple de admisión. Cuando la velocidad del compresor se estabiliza la válvula se cierra. ESCUELA TÉCNICO PROFESIONAL. COPIAPÓ 2.4 Intercambiador de Aire (Inter-Cooler) Algunos vehículos con turbocompresor llevan un intercambiador de aire que es una especie de radiador de aire llamado intercooler aire-aire (el más usado), o también existe el intercooler aireagua (refrigerado por agua). El enfriamiento del aire después que salió del compresor tiene ventajas evidentes porque aumenta el rendimiento energético (hasta un 20%) y reduce el desgaste del motor. El aumento energético se produce por el enfriamiento de la mezcla de aire y combustible hace que ésta sea más densa, así entra más cantidad en el cilindro y produce mayor potencia. La reducción del desgaste del motor se debe a que la combustión de la mezcla es a menor temperatura con lo que hace menos probable que se quemen las válvulas y así se reduzca la temperatura del motor. Como el intercooler hace más densa la mezcla también reduce la presión de ésta en el múltiple de admisión esto es una desventaja y también una ventaja, porque al reducir la presión se consigue que el trabajo del motor una vez que entra al cilindro se reduzca y contribuye a evitar la detonación por lo que se le puede dar más presión al turbo; aunque por la reducción de presión en el múltiple de admisión produce que la presión de los gases de escape también sea menor con lo cual hay menos energía para mover la turbina, aún así el intercooler ayuda a generar más potencia. 2.5 Refrigeración por agua Otra forma de extraer el calor generado por el conjunto turbocompresor es hacer circular agua por canales que se encuentran en la carcaza del compresor para conseguir así una menor temperatura del aire, aumentando la densidad de éste dentro del cilindro. 2.6 Lubricación Otra característica importante en el diseño del turbocompresor son los cojinetes y su lubricación. La mayoría de los turbocompresores tienen cojinetes flotantes que mantienen al eje principal entre la turbina y el compresor. Los cojinetes flotantes encajan suavemente sobre el eje de la turbina y también están flojos dentro del alojamiento del turbocompresor. El aceite forzado por la bomba de aceite del motor se mete entre el cojinete y el eje, y entre el cojinete y el alojamiento de éste, por lo cual se dice que el cojinete flota y el rozamiento es casi nulo. Por este motivo se puede reducir las velocidades del cojinete a la mitad de las que gira el eje. Como la turbina gira a velocidades que superan las R.P.M es crucial una muy buena lubricación con lo cual se hace necesario contar en lo posible de radiadores de aceite, filtros y aceites de excelente calidad. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

20 Doble Turbo ACTIVIDADES PROPUESTAS. 1. Lea y analice cada párrafo del apunte entregado, resumiendo o extrayendo los antecedentes más relevantes de cada uno de ellos. 2. Confeccione un listado de términos y su respectivo significado de cada uno de los componentes y sistemas presentes en ésta guía. 3. Si se encuentra con problemas de nitidez de las imágenes expuestas, visite las páginas web citadas como fuente de información. ÁREA DE ELECTROMECÁNICA ESPECIALIDAD DE MECÁNICA AUTOMOTRIZ

MOTOR GAS. Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B

MOTOR GAS. Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B MOTOR GAS Karem Peña Lina Villegas Ana María Martínez Stefanny Caicedo 10B QUÉ ES? Es un motor alternativo es una máquina de combustión interna capaz de transformar la energía desprendida en una reacción

Más detalles

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento.

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento. Las máquinas térmicas -Todos los combustibles, tanto los renovables como los no renovables, proporcionan energía térmica, y esta es susceptible de transformarse en energía mecánica (movimiento) a través

Más detalles

Cuando la gente habla de coches de mucha potencia o coches de carreras, es casi seguro que el turbo este de por medio.

Cuando la gente habla de coches de mucha potencia o coches de carreras, es casi seguro que el turbo este de por medio. Cuando la gente habla de coches de mucha potencia o coches de carreras, es casi seguro que el turbo este de por medio. Ultimamente se estan introduciendo mucho en los coches diesel y tal es asi que los

Más detalles

EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE

EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE EL SISTEMA DE COMBUSTIBLE DE LOS MOTORES DE COMBUSTIÓN INTERNA Dirección de Transporte CONAE El combustible es el elemento necesario para producir la potencia necesaria que mueve a un vehículo. En la actualidad

Más detalles

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos

Más detalles

PRODUCCIÓN Y ALMACENAMIENTO DEL AIRE COMPRIMIDO

PRODUCCIÓN Y ALMACENAMIENTO DEL AIRE COMPRIMIDO 2.1 PRODUCCIÓN Y ALMACENAMIENTO DEL AIRE COMPRIMIDO 1. - EL COMPRESOR El Compresor es el mecanismo que transforma una energía exterior, generalmente eléctrica o termodinámica, en energía neumática. En

Más detalles

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles.

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles. 1. Hidráulica. En los modernos centros de producción y fabricación, se emplean los sistemas hidráulicos, estos producen fuerzas y movimientos mediante fluidos sometidos a presión. La gran cantidad de campos

Más detalles

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS Patricio León Alvarado 1, Eduardo León Castro 2 1 Ingeniero Eléctrico en Potencia 2000 2 Director de Tesis. Postgrado en Ingeniería Eléctrica

Más detalles

D E S C R I P C I O N

D E S C R I P C I O N SISTEMA DE REFRIGERACIÓN CON CO 2 COMO FLUIDO SECUNDARIO D E S C R I P C I O N OBJETO DE LA INVENCIÓN La presente invención se refiere a un sistema de refrigeración con CO 2 como fluido secundario que

Más detalles

UNIDAD 6.- NEUMÁTICA.

UNIDAD 6.- NEUMÁTICA. UNIDAD 6.- NEUMÁTICA. 1.-ELEMENTOS DE UN CIRCUITO NEUMÁTICO. El aire comprimido se puede utilizar de dos maneras distintas: Como elemento de mando y control: permitiendo que se abran o cierren determinadas

Más detalles

Tema : MOTORES TÉRMICOS:

Tema : MOTORES TÉRMICOS: Tema : MOTORES TÉRMICOS: 1.1CARACTERÍSTICAS DE LOS MOTORES Se llama motor a toda máquina que transforma cualquier tipo de energía en energía mecánica. Según sea el elemento que suministra la energía tenemos

Más detalles

COGENERACIÓN. Santiago Quinchiguango

COGENERACIÓN. Santiago Quinchiguango COGENERACIÓN Santiago Quinchiguango Noviembre de 2014 8.3 Selección del motor térmico. 8.3 Selección del motor térmico. MOTORES TÉRMICOS INTRODUCCIÓN Los motores térmicos son dispositivos que transforman

Más detalles

Turbocompresores Holset

Turbocompresores Holset Turbocompresores Holset Turbocompresores Holset Los turbocompresores Holset son sinónimo de excelencia en gestión de máquinas con turbocompresores y sistemas de manejo de aire en todo el mundo. Diseñados

Más detalles

Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV)

Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV) POTENCIA Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. Potencia teórica o térmica W F e P = = = F v t t 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV) Se denomina

Más detalles

TÍTULO: Motor Diesel y Gasolina para bombas hidráulicas de riego AUTOR: Cristina Gil Carazo

TÍTULO: Motor Diesel y Gasolina para bombas hidráulicas de riego AUTOR: Cristina Gil Carazo TÍTULO: Motor Diesel y Gasolina para bombas hidráulicas de riego AUTOR: Cristina Gil Carazo ÍNDICE: -Introducción...1. -Motor diesel...2,3,4,5. -motor de gasolina...6,7. -Bibliografía...8. INTRODUCCIÓN:

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

Neumática Ángel Mao Goyanes, 24 de Noviembre de 2013

Neumática Ángel Mao Goyanes, 24 de Noviembre de 2013 Neumática Ángel Mao Goyanes, 24 de Noviembre de 2013 Índice 1. Definición 2. Ventajas e inconvenientes 3. Circuito neumático a. Compresor b. Depósito c. Unidad de mantenimiento d. Elementos de distribución

Más detalles

Qué es PRESS-SYSTEM?

Qué es PRESS-SYSTEM? Qué es PRESS-SYSTEM? Es un sistema novedoso desarrollado e implementado por Efinétika que consigue mejoras sobre el rendimiento de los sistemas de bombeo de fluidos, aportando grandes ahorros energéticos

Más detalles

3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ).

3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ). 3.- BANCOS PARA OBTENCION DE LA POTENCIA. Por Carlos Nuñez ( Carlosn ). Para evaluar la potencia de un motor termico o de un vehiculo, la forma mas habitual que emplean los fabricantes, es utilizar un

Más detalles

RECAMBIOS PARA VEHÍCULO INDUSTRIAL CON CALIDAD DE PRIMER EQUIPO.

RECAMBIOS PARA VEHÍCULO INDUSTRIAL CON CALIDAD DE PRIMER EQUIPO. RECAMBIOS PARA VEHÍCULO INDUSTRIAL CON CALIDAD DE PRIMER EQUIPO. www.behrhellaservice.com Refrigeración del motor al más alto nivel tecnológico. Antes sólo existía la refrigeración del motor hoy en día,

Más detalles

Preguntas y respuestas técnicas sobre motores eléctricos traccionarios.

Preguntas y respuestas técnicas sobre motores eléctricos traccionarios. Preguntas y respuestas técnicas sobre motores eléctricos traccionarios. Organización Autolibre. Cómo funciona un motor Eléctrico? Un motor eléctrico es un dispositivo que puede producir una fuerza cuando

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS Pedro Fernández Díez I.- TURBINA DE GAS CICLOS TERMODINÁMICOS IDEALES I.1.- CARACTERISTICAS TÉCNICAS Y EMPLEO

Más detalles

Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas.

Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas. Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas. Son equipos que proveen de energía eléctrica en forma autónoma ante interrupciones prolongadas y

Más detalles

CUADERNILLO DE PRACTICA-5: Trenes de engranajes ordinarios. Análisis de una caja de velocidad:

CUADERNILLO DE PRACTICA-5: Trenes de engranajes ordinarios. Análisis de una caja de velocidad: CUADERNILLO DE PRACTICA-5: Trenes de engranajes ordinarios. Análisis de una caja de velocidad: Alumno:.. DNI:.. Fecha:... Por el profesor de la práctica.-rafael Sánchez Sánchez NOTA: Este cuadernillo debrá

Más detalles

7. REFRIGERACIÓN DE MOTOR

7. REFRIGERACIÓN DE MOTOR 7.1 Introducción 7.2 Técnica Modular de Refrigeración 7.3 Gestión Térmica Inteligente 7.4 Diseño de Sistema de Refrigeración: Metodología de Análisis 7.5 Refrigeración en Vehículos Eléctricos 2 7. REFRIGERACIÓN

Más detalles

SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: EL PORQUE DE LA SONDA LAMBDA DE BANDA ANCHA SONDA LAMBDA CONVENCIONAL

SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: EL PORQUE DE LA SONDA LAMBDA DE BANDA ANCHA SONDA LAMBDA CONVENCIONAL SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: Este articulo es sobre pruebas que se han realizado en dos tipos de sondas lambdas de banda ancha, tipo BOSCH y tipo NTK.

Más detalles

Motores térmicos de ciclo diesel de cuatro tiempos

Motores térmicos de ciclo diesel de cuatro tiempos Motores térmicos de ciclo diesel de cuatro tiempos 1_ Introducción: En este tipo de motores durante la admisión entra en el cilindro solamente aire, en la carrera de compresión el aire eleva su temperatura

Más detalles

Eficiencia y Rendimiento juntos. MAN TGX con nuevos motores D38.

Eficiencia y Rendimiento juntos. MAN TGX con nuevos motores D38. Eficiencia y Rendimiento juntos. MAN TGX con nuevos motores D38. Una nueva dimensión del rendimiento. En el presente folleto se representan algunos equipamientos que no forman parte del equipamiento de

Más detalles

Distribuidores de NTN Y SNR

Distribuidores de NTN Y SNR Distribuidores de NTN Y SNR RODAMIENTOS 1 / 14 Distribuidor de NTN y SNR Disponemos de rodamientos de: - Rigidos de bolas - Contacto angular - Axiales de bolas, rodillos y agujas - Conicos de bolas y rodillos

Más detalles

Al aplicar las técnicas de ahorro de combustible permite obtener los siguientes beneficios:

Al aplicar las técnicas de ahorro de combustible permite obtener los siguientes beneficios: MANUAL DE CAPACITACIÓN EN CONDUCCIÓN EFICIENTE INTRODUCCIÓN Señor Conductor: Este manual esta dedicado a usted CONDUCTOR PROFESIONAL!, en cuyas capaces y hábiles manos descansa la responsabilidad final

Más detalles

Tema Quemadores de gas atmosféricos

Tema Quemadores de gas atmosféricos Tema Quemadores de gas atmosféricos 1. TIPOS DE QUEMADORES ATMOSFERICOS PARA GASES. Los quemadores para combustibles gaseosos suelen ser mas sencillos que los de combustibles líquidos debido fundamentalmente

Más detalles

Sistemas de sobrealimentación

Sistemas de sobrealimentación u n i d a d 9 Sistemas de sobrealimentación SUMARIO Turbocompresores Compresores volumétricos Sistemas biturbo Mantenimiento del turbo OBJETIVOS Conocer el concepto de la sobrealimentación. Conocer los

Más detalles

Guía Nº 1 de Mecánica Automotriz. (Fuente de información: http://www.vochoweb.com/vochow/tips/red/motor/default.htm)

Guía Nº 1 de Mecánica Automotriz. (Fuente de información: http://www.vochoweb.com/vochow/tips/red/motor/default.htm) Fundación Universidad de Atacama Escuela Técnico Profesional Área de Electromecánica Profesor: Sr. Jorge Hernández Valencia Módulo: Mantenimiento de Motores. Objetivo: Guía Nº 1 de Mecánica Automotriz.

Más detalles

Todo sobre las bujias

Todo sobre las bujias Las Bujías utilizadas en el modelismo son denominada en ingles "Glow Plugs". Estas Bujías en el transcurso del tiempo han sido rediseñadas y modificadas para trabajar según las características del motor,

Más detalles

BUJÍAS y CALENTADORES Una historia basada en hechos reales

BUJÍAS y CALENTADORES Una historia basada en hechos reales Descubre a los protagonistas de presenta BUJÍAS y CALENTADORES Una historia basada en hechos reales BUJÍAS, LA CHISPA DE LA VIDA DE TU VEHÍCULO Los conductores tienen la palabra Usuario muy activo Registrado:

Más detalles

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR A/ INSTALACION. Para una óptima instalación del dispositivo Eco-car se deben observar las siguientes pautas: 1.- El dispositivo debe estar

Más detalles

Física y Tecnología Energética. 8 - Máquinas térmicas. Motores de Otto y Diesel.

Física y Tecnología Energética. 8 - Máquinas térmicas. Motores de Otto y Diesel. Física y Tecnología Energética 8 - Máquinas térmicas. Motores de Otto y Diesel. Máquinas térmicas y motores Convierten calor en trabajo. Eficiencia limitada por el 2º principio a

Más detalles

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t CONCEPTOS BÁSICOS FUERZA Definición Es toda causa capaz de producir o modificar el estado de reposo o de movimiento de un cuerpo o de provocarle una deformación Unidad de medida La unidad de medida en

Más detalles

El motor de reluctancia conmutado - Un motor eléctrico con gran par motor y poco volumen

El motor de reluctancia conmutado - Un motor eléctrico con gran par motor y poco volumen El motor de reluctancia conmutado - Un motor eléctrico con gran par motor y poco volumen J. Wolff, G. Gómez Funcionamiento El principio de funcionamiento del motor de reluctancia conmutado, que en muchas

Más detalles

Sobrealimentación en motores

Sobrealimentación en motores Universidad Nacional de La Plata Facultad de Ingeniería Área Departamental Mecánica Proyecto de Motores Curso 2011 Sobrealimentación en motores Integrantes Comisión: Barone Sebastián Ingeniería Mecánica

Más detalles

Acondicionadores de aire

Acondicionadores de aire Acondicionadores de aire 1. Tipos de Equipos Existen equipos acondicionadores condensados por aire y condensados por agua. En esta descripción se incluyen únicamente los condensados por aire, dada su fácil

Más detalles

Control Estadístico de Procesos

Control Estadístico de Procesos Control Estadístico de Procesos Gráficos de Control Los gráficos de control o cartas de control son una importante herramienta utilizada en control de calidad de procesos. Básicamente, una Carta de Control

Más detalles

CURSO OPERADOR DE VEHICULO

CURSO OPERADOR DE VEHICULO CURSO OPERADOR DE VEHICULO EQUIPADO MODULO 1- ELEMENTOS DEL TREN MOTRIZ 2010 Ing. Federico Lluberas Elementos del tren motriz 2 Objetivos Identificar los componentes básicos del tren motriz de los vehículos

Más detalles

Material estudio Examen Teórico para licencia profesional

Material estudio Examen Teórico para licencia profesional Material estudio Examen Teórico para licencia profesional 1. - Cuales son las piezas principales que componen el motor? Resp: El block, tapa de block, Carter, Cilindros, Pistones con sus aros, Pernos,

Más detalles

RENDIMIENTO ENERGÉTICO

RENDIMIENTO ENERGÉTICO ÁMBITO CIENTÍFICO-TECNOLÓGICOTECNOLÓGICO Introducción RENDIMIENTO ENERGÉTICO Cuando Belén echa gasoil a su todoterreno, crees que toda la energía química almacenada en gasoil se convierte en energía cinética,

Más detalles

TEMA 8: MOTORES TÉRMICOS

TEMA 8: MOTORES TÉRMICOS TEMA 8: MOTORES TÉRMICOS Son máquinas cuya misión es transformar la energía térmica en energía mecánica que sea directamente utilizable para producir trabajo. Las fuentes de energía térmica pueden ser:

Más detalles

VI Congreso Nacional

VI Congreso Nacional VI Congreso Nacional Actualización de Plantas Desaladoras en la Isla de Ibiza. Nuevo diseño del Proceso Por: Miguel Torres Corral (CEDEX). Bartolomé Reus Cañellas (l Agéncia Balear de l Aigua i de la Qualitat

Más detalles

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas Mantenimiento y uso calderas Daniel Solé Joan Ribas Se pueden identificar como handicaps principales en el uso de calderas, los siguientes: Posibles bloqueos y otras incidencias en los sistemas de transporte

Más detalles

MECÁNICA AUTOMOTRIZ. mezcla. Válvula de escape cerrada. Válvula de admisión cerrada.

MECÁNICA AUTOMOTRIZ. mezcla. Válvula de escape cerrada. Válvula de admisión cerrada. MECÁNICA AUTOMOTRIZ Principio de funcionamiento La bujía inflama la mezcla. Válvula de escape cerrada. Válvula de admisión cerrada. El pistón es impulsado hacia abajo ante la expansión producida por la

Más detalles

SISTEMAS DE PRODUCCIÓN

SISTEMAS DE PRODUCCIÓN SISTEMAS DE PRODUCCIÓN La producción es el proceso mediante el cual la empresa transforma un conjunto de factores de producción en un producto cuyo valor debe ser mayor que la suma de los valores de los

Más detalles

FUENTES DE ALIMENTACION

FUENTES DE ALIMENTACION FUENTES DE ALIMENTACION INTRODUCCIÓN Podemos definir fuente de alimentación como aparato electrónico modificador de la electricidad que convierte la tensión alterna en una tensión continua. Remontándonos

Más detalles

Mayor fiabilidad en operaciones de tronzado más profundo

Mayor fiabilidad en operaciones de tronzado más profundo Mayor fiabilidad en operaciones de tronzado más profundo La prioridad de los requisitos del usuario... en las operaciones de tronzado más profundo se tuvo en cuenta en la fase inicial del desarrollo de

Más detalles

Atlas Copco. Compresores de pistón Serie Automan (0,75-8,1 kw / 1-11 CV)

Atlas Copco. Compresores de pistón Serie Automan (0,75-8,1 kw / 1-11 CV) Atlas Copco Compresores de pistón Serie Automan (0,75-8,1 kw / 1-11 CV) Serie AH de accionamiento directo: pequeño, práctico y exento de aceite Los compresores exentos de aceite de la serie AH están diseñados

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

El consumo de combustible. La emisión de contaminantes.

El consumo de combustible. La emisión de contaminantes. 4. OBJETIVOS. El objetivo inicial que ha determinado la realización de esta Tesis Doctoral ha sido el desarrollo de un Sistema de Inyección no Cartográfico y Secuencial con realimentación por sonda Lambda

Más detalles

Conceptos sobre presión y caudal de aceite en un motor

Conceptos sobre presión y caudal de aceite en un motor Conceptos sobre presión y caudal de aceite en un motor Este es uno de los temas inevitables al hablar de lubricación en mantenimiento de maquinaria. Es indudable que muchas de las personas que trabajan

Más detalles

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos.

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos. SERVOMOTORES Un servomotor (también llamado Servo) es un dispositivo similar a un motor DC, que tiene la capacidad de ubicarse en cualquier posición dentro de su rango de operación y mantenerse estable

Más detalles

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones

Más detalles

PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE. Duración: 2 horas pedagógicas. Prevenimos la contaminación vehicular

PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE. Duración: 2 horas pedagógicas. Prevenimos la contaminación vehicular PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE Grado: Tercero I. TÍTULO DE LA SESIÓN Duración: 2 horas pedagógicas Prevenimos la contaminación vehicular UNIDAD 3 NÚMERO DE SESIÓN 5/9 II. APRENDIZAJES ESPERADOS

Más detalles

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos.

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos. MECANISMOS A. Introducción. Un mecanismo es un dispositivo que transforma el movimiento producido por un elemento motriz (fuerza de entrada) en un movimiento deseado de salida (fuerza de salida) llamado

Más detalles

Tecnología y Servicios Industriales 2

Tecnología y Servicios Industriales 2 La función del compresor en el ciclo de Refrigeración es elevar la presión del gas Refrigerante desde la presión de salida del Evaporador hasta la presión del Condensador. Clasificación: a) Reciprocantes

Más detalles

Prototipo de motor de combustión

Prototipo de motor de combustión Asociación Española de Ingeniería Mecánica XVIII CONGRESO NACIONAL DE INGENIERÍA MECÁNICA Prototipo de motor de combustión A. de Andrés, E. García Dpto. Ingeniería Mecánica, Universidad Pontificia Comillas

Más detalles

FICHA TÉCNICA ADITIVO CON GRAFITO

FICHA TÉCNICA ADITIVO CON GRAFITO FICHA TÉCNICA ADITIVO CON GRAFITO GRAPHITE HI-TECH MICRON ADDITIVE WITH GRAPHITE INFORME TÉCNICO INDICE FICHA TÉCNICA 1. La Técnologia de Marly 2. Por qué utilizar Marly - Diesel? 3. Qué es Marly - Diesel?

Más detalles

ALTA TECNOLOGÍA SUIZA en el mundo del automóvil para el MAÑANA

ALTA TECNOLOGÍA SUIZA en el mundo del automóvil para el MAÑANA ALTA TECNOLOGÍA SUIZA en el mundo del automóvil para el MAÑANA Suiza, tierra de montañas, relojes, chocolates y coches! Los automóviles no pueden ser producidos en serie allí, pero pocos o ninguno de los

Más detalles

La apertura de las electroválvulas se realiza de forma intermitente una vez cada vuelta de motor.

La apertura de las electroválvulas se realiza de forma intermitente una vez cada vuelta de motor. Funcionamiento del sistema de inyección Bosch L - Jetronic El sistema de inyección multipunto Bosch L - Jetronic es uno de los primeros equipos electrónicos que se montaron en vehículos de serie, una vez

Más detalles

ES 1 097 480 U ESPAÑA 11. Número de publicación: 1 097 480. Número de solicitud: 201331388 A47G 29/00 (2006.01) 03.12.2013

ES 1 097 480 U ESPAÑA 11. Número de publicación: 1 097 480. Número de solicitud: 201331388 A47G 29/00 (2006.01) 03.12.2013 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 1 097 480 Número de solicitud: 1331388 1 Int. CI.: A47G 29/00 (06.01) 12 SOLICITUD DE MODELO DE UTILIDAD U 22 Fecha de presentación:

Más detalles

Catalizadores. Posible relación con el incendio de vehículos. calor generado en su interior.

Catalizadores. Posible relación con el incendio de vehículos. calor generado en su interior. J. A. Rodrigo Catalizadores En general, los fabricantes de automóviles y de catalizadores suelen aconsejar o recomendar a los usuarios a través del Manual de Instrucciones del vehículo, advertencias como:

Más detalles

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN 1 Introducción En un robot autónomo la gestión de la alimentación es fundamental, desde la generación de energía hasta su consumo, ya que el robot será más autónomo

Más detalles

SISTEMAS DE LUBRICACIÓN CENTRALIZADA PARA LA INDUSTRIA ALIMENTARIA Y DE LAS BEBIDAS. Soluciones para:

SISTEMAS DE LUBRICACIÓN CENTRALIZADA PARA LA INDUSTRIA ALIMENTARIA Y DE LAS BEBIDAS. Soluciones para: SISTEMAS DE LUBRICACIÓN CENTRALIZADA PARA LA INDUSTRIA ALIMENTARIA Y DE LAS BEBIDAS para una mayor productividad Soluciones para: Máquinas transportadoras Máquinas para el llenado de vidrio Máquinas para

Más detalles

Envasado gravimétrico de alta precisión y velocidad para líquidos y gases mediante sistemas de medición basados en el efecto de Coriolis

Envasado gravimétrico de alta precisión y velocidad para líquidos y gases mediante sistemas de medición basados en el efecto de Coriolis Envasado gravimétrico de alta precisión y velocidad para líquidos y gases mediante sistemas de medición basados en el efecto de Coriolis La medición directa del caudal másico permite la determinación exacta

Más detalles

Una caldera de vapor para cada necesidad Generador de vapor rápido o caldera pirotubular

Una caldera de vapor para cada necesidad Generador de vapor rápido o caldera pirotubular Una caldera de vapor para cada necesidad Generador de vapor rápido o caldera pirotubular Al adquirir calderas de vapor nos preguntamos a qué principio constructivo debemos dar la preferencia. En este artículo

Más detalles

Funcionamiento y control de los componentes electro-mecánicos más importantes, montados en el Renault Laguna II.

Funcionamiento y control de los componentes electro-mecánicos más importantes, montados en el Renault Laguna II. Funcionamiento y control de los componentes electro-mecánicos más importantes, montados en el Renault Laguna II. Para: ClubLaguna2 (joseramon) ÍNDICE INYECTOR...2 CAUDALÍMETRO (Medidor del flujo de la

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

ANÁLISIS TERMODINÁMICO DE LA CONVERSIÓN DE GRUPOS DIESEL AL GAS NATURAL

ANÁLISIS TERMODINÁMICO DE LA CONVERSIÓN DE GRUPOS DIESEL AL GAS NATURAL ANÁLISIS TERMODINÁMICO DE LA CONVERSIÓN DE GRUPOS DIESEL AL GAS NATURAL Ing. Percy Castillo Neira PRESENTACIÓN La conversión de la energía química almacenada por la naturaleza en los combustibles fósiles

Más detalles

TECNOLÓGICO DE ESTUDIO SUPERIORES DE TIANGUISTENCO. NOMBRE DE LA ASIGNATURA: Automatización industrial

TECNOLÓGICO DE ESTUDIO SUPERIORES DE TIANGUISTENCO. NOMBRE DE LA ASIGNATURA: Automatización industrial TECNOLÓGICO DE ESTUDIO SUPERIORES DE TIANGUISTENCO NOMBRE DE LA ASIGNATURA: Automatización industrial NOMBRE DEL ALUMNO: Hinojosa Berriozábal Jani Dafne NOMBRE DE LA ACTIVIDAD: Investigación diferentes

Más detalles

Transferencia de calor Intercambiadores de calor

Transferencia de calor Intercambiadores de calor Transferencia de calor Intercambiadores de calor Construcción de los intercambiadores de calor La construcción general de los intercambiadores de carcasa y tubos consiste en un haz de tubos paralelos dentro

Más detalles

1El fuego y el calor. S u m a r i o. 1.1. El tetraedro del fuego. 1.2. Reacciones químicas. 1.3. Transmisión del calor

1El fuego y el calor. S u m a r i o. 1.1. El tetraedro del fuego. 1.2. Reacciones químicas. 1.3. Transmisión del calor 1El fuego y el calor S u m a r i o 1.1. El tetraedro del fuego 1.2. Reacciones químicas 1.3. Transmisión del calor INVESTIGACIÓN DE INCENDIOS EN VEHÍCULOS 5 Capítulo 1 Desde el punto de vista de la investigación

Más detalles

PROGRAMA DE CAPACITACIÓN CURSO PARA VALUACIÓN DE SINIESTROS

PROGRAMA DE CAPACITACIÓN CURSO PARA VALUACIÓN DE SINIESTROS OBJETIVOS: En este curso los participantes recibirán, -Información de la empresa, productos y servicios. -Conocimientos básicos para la valuación en daños por siniestro. -Información técnica actualizada

Más detalles

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones CAPÍTULO 4 37 CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN Para diseñar el SGE, lo primero que se necesita es plantear diferentes formas en las que se pueda resolver el problema para finalmente decidir

Más detalles

FABRICACIÓN N ASISTIDA POR ORDENADOR

FABRICACIÓN N ASISTIDA POR ORDENADOR FABRICACIÓN N ASISTIDA POR ORDENADOR TEMA 11: GENERACIÓN N Y DISTRIBUCIÓN N DE AIRE COMPRIMIDO Índice 1.- Introducción 2.- Compresores 3.- Acumulador 4.- Secadores de aire 5.- Distribución del aire comprimido

Más detalles

CALENTAMIENTO DE AGUA CALIENTE SANITARIA

CALENTAMIENTO DE AGUA CALIENTE SANITARIA CALENTAMIENTO DE AGUA CALIENTE SANITARIA De todas las formas de captación térmica de la energía solar, las que han adquirido un desarrollo comercial en España han sido los sistemas para su utilización

Más detalles

GASOLINA DESEMPEÑO SUPERIOR

GASOLINA DESEMPEÑO SUPERIOR Automotriz GASOLINA DESEMPEÑO SUPERIOR Para qué sirve el Lubricante en el vehículo y cómo funciona? Las condiciones de operación de un motor son severas ya que involucran contaminación, para afrontarlas

Más detalles

INSTALACIONES DE AIRE ACONDICIONADO

INSTALACIONES DE AIRE ACONDICIONADO INSTALACIONES DE AIRE ACONDICIONADO 1.- Introducción Existen multitud de tipos de instalaciones de aire acondicionado que intentan controlar la temperatura, humedad y calidad del aire. Cada una de ellas

Más detalles

DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO

DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO DEFINICIÓN DE CONCEPTOS PARA AIRE ACONDICIONADO Glosario. (Del lat. glossarĭum). 1. m. Catálogo de palabras oscuras o desusadas, con definición o explicación de cada una de ellas. 2. m. Catálogo de palabras

Más detalles

Circuito de Encendido. Encendido básico

Circuito de Encendido. Encendido básico Circuito de Encendido Encendido básico Objetivos del Circuito de Encendido 1º Generar una chispa muy intensa entre los electrodos de las bujías para iniciar la combustión de la mezcla Objetivos del Circuito

Más detalles

ESTUDIO DEL CICLO DE RANKINE

ESTUDIO DEL CICLO DE RANKINE ESTUDIO DEL CICLO DE RANKINE 1. INTRODUCCIÓN El ciclo de Rankine es el ciclo ideal que sirve de base al funcionamiento de las centrales térmicas con turbinas de vapor, las cuales producen actualmente la

Más detalles

En la segunda manera, se crea un vacío suficientemente elevado y se observa si el manómetro mantiene constante el valor de vacío alcanzado.

En la segunda manera, se crea un vacío suficientemente elevado y se observa si el manómetro mantiene constante el valor de vacío alcanzado. PROCEDIMIENTO PARA CARGAR CON GAS UNA INSTALACiÓN FRIGORíFICA Y PONERLA EN MARCHA. CONTROL DE LA ESTANQUIDAD DE LA INSTALACiÓN. La primera operación que deberá realizarse es la verificación de la estanquidad

Más detalles

Posee un limitador de velocidad en el pedal del gas, reportando toda una garantía de seguridad durante el periodo de iniciación.

Posee un limitador de velocidad en el pedal del gas, reportando toda una garantía de seguridad durante el periodo de iniciación. ROADCROSSKART MANUAL DE INSTRUCCIONES FL-30 WEB: http://www.tamcocars.com EMAIL: info@tamcocars.com El FL-30 es un vehículo concebido y desarrollado para los más jóvenes, a partir de 14 años, que quieran

Más detalles

TRANSMISIONES DEL TRACTOR

TRANSMISIONES DEL TRACTOR TRANSMISIONES DEL TRACTOR En el tractor encontramos: Embrague. Convertidor de par. Doble embrague. Embrague hidráulico Caja de cambio Alta y Baja constante Mecánica Clásica En toma Sincronizada Automática

Más detalles

Aire acondicionado y refrigeración

Aire acondicionado y refrigeración Aire acondicionado y refrigeración CONCEPTO: El acondicionamiento del aire es el proceso que enfría, limpia y circula el aire, controlando, además, su contenido de humedad. En condiciones ideales logra

Más detalles

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La instalación de aerogeneradores en entornos urbanos requiere la implementación de importantes medidas

Más detalles

Proyecto energías limpias. Auto solar Planteamiento del problema.

Proyecto energías limpias. Auto solar Planteamiento del problema. Proyecto energías limpias. Auto solar Planteamiento del problema. #40 En la ciudad de México existe un gran problema, que es la contaminación ambiental. México (DF), la capital de la Republica de México

Más detalles

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN Un coche de 50 kg (con el conductor incluido) que funciona con gasolina está situado en una carretera horizontal, arranca y acelerando uniformemente, alcanza

Más detalles

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 Por Guillermo Martín Díaz Alumno de: 1º Ingeniería Informática Curso 2005/2006 ËQGLFH Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 2 0RWRUHVGH&RUULHQWHFRQWLQXD Son los mas

Más detalles

NEUMÁTICA E HIDRÁULICA

NEUMÁTICA E HIDRÁULICA NEUMÁTICA E HIDRÁULICA Producción de aire comprimido. Comprimen el aire aumentando su presión y reduciendo su volumen, por lo que se les llama compresores. Pueden emplear motores eléctricos o de combustión

Más detalles

RODAMIENTO (también denominado rulemán o cojinete)

RODAMIENTO (también denominado rulemán o cojinete) RODAMIENTO (también denominado rulemán o cojinete) Es un elemento mecánico que reduce la fricción entre un eje y las piezas conectadas a éste, que le sirve de apoyo y facilita su desplazamiento. En busca

Más detalles

EL CICLO DE COMPRESIÓN EN UNA MÁQUINA RECIPROCANTE

EL CICLO DE COMPRESIÓN EN UNA MÁQUINA RECIPROCANTE EL CICLO DE COMPRESIÓN EN UNA MÁQUINA RECIPROCANTE En la anterior entrega hicimos mención a estudiar en el plano p v (presión volumen) el ciclo de compresión de una máquina reciprocante con el objetivo

Más detalles

INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes

INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes Departamento de Física Universidad de Jaén INTRODUCCIÓN A LAS MÁQUINAS SIMPLES Y COMPUESTAS Aplicación a la Ingeniería de los capítulos del temario de la asignatura FUNDAMENTOS FÍSICOS I (I.T.MINAS): Tema

Más detalles

Contenidos Didácticos

Contenidos Didácticos INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7

Más detalles