CINEMÁTICA DE LA PARTICULA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CINEMÁTICA DE LA PARTICULA"

Transcripción

1 CAPITULO I CINEMÁTICA DE LA PARTICULA "La natualeza es una esfea infinita cuyo cento está en todas pates y su cicunfeencia en ninguna" Blas Pascal Pensamientos. "No definié tiempo, espacio y movimiento ya que estos conceptos son bien conocidos po todos" Isaac Newton Pincipia (1686). "Tiempo Más tiempo Solo tiempo?" Joge Guillen Homenaje. Cuso 1999

2 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA Cuso 1999

3 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 3 CINEMÁTICA DE LA PARTICULA I-1. Intoducción La Mecánica es la ama de la Física que estudia el movimiento de los cuepos mateiales. Históicamente es la pimea de las ciencias exactas de la natualeza y po lo tanto es un paadigma de toda actividad científica. Más aún, la Tecnología modena y sus inmensas posibilidades de tansfomación del mundo esultan de la aplicación sistemática del método científico. Po esta azón, más allá del inteés que sin duda tiene el tansmiti un conjunto de conocimientos útiles paa la actividad pofesional del ingenieo, este cuso de Física, como todos los estantes, tiene el objetivo fundamental de loga que los estudiantes adquiean la capacidad de analiza y esolve los poblemas que enfenten en su actividad pofesional con esa mezcla de igo e imaginación popia de la ciencia. El pime obstáculo que debe supea toda ciencia empíica paa su desaollo es el de pone oden en nuestas sensaciones extaodinaiamente icas y fugaces. Platón fue el pimeo en obseva que nada podíamos deci aceca de las pecepciones fluidas de nuestos sentidos si no pudiéamos capta en ellas elaciones pemanentes poyectadas po nuesta azón. El pensamiento debe i eliminando factoes accesoios o accidentales y con la ayuda de objetos geométicos y matemáticos debe intenta descibi los fenómenos que ante nosotos fluyen sin cesa. Platón se limitó a enuncia el pogama de las ciencias empíicas. Había que espea hasta la llegada de la época modena, paa que hombes como Keple, Galileo y Newton lo llevaan a cabo. El pime poblema al que se ve enfentada la Física al busca una descipción pecisa del movimiento es po consiguiente el de elimina todos aquellos factoes que son accesoios y el de enconta el lenguaje matemático más apopiado. La máxima ealización de este pogama alcanzada en la antigüedad es la descipción de Ptolomeo del movimiento planetaio. Resulta natual que la pimea descipción con cieto gado de exactitud de un fenómeno se efiea al movimiento planetaio. En efecto, los datos de la obsevación son sumamente simples (debido a la distancia ente los objetos celestes y la Tiea, es fácil tata a los pimeos como objetos puntuales). Po ota pate, sus movimientos son muy egulaes y peiódicos. Basándose en las nociones de la geometía de Euclides y en la idea platónica de la pefección de la cicunfeencia, Ptolomeo llega a una descipción del movimiento planetaio en téminos de patículas puntuales que ocupan posiciones sucesivas en el espacio a medida que el tiempo tanscue. Los elementos esenciales de la descipción cinemática del movimiento de las patículas mateiales ya están pesentes en el esquema de Ptolomeo. Sólo faltaba incopoa la idea de la Relatividad del Espacio que apaeceía con Copénico y seía enunciada en foma explícita po Galileo. En efecto, paa Ptolomeo todo Cuso 1999

4 4 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA movimiento debe descibiese con efeencia a la Tiea que se encuenta en eposo en el cento del Univeso. Al mosta la enome simplificación conceptual que esultaba al efei el movimiento de los planetas en tono al Sol, Copénico estaba implícitamente mostando que el sistema de efeencia especto al cual se descibe el movimiento depende en definitiva de nuesta conveniencia y que po lo tanto no existe un sistema pivilegiado. En este Capítulo intoduciemos los elementos matemáticos básicos paa la descipción del movimiento de una patícula. La pate de una teoía física que intoduce el lenguaje necesaio paa la descipción de los fenómenos que estudia se llama la Cinemática. Todo fenómeno que se encuenta dento del ango de aplicación de la Teoía debe se expesable en dicho lenguaje. Así, la Cinemática de las Patículas Mateiales debe se capaz de descibi cualquie movimiento posible de una patícula en el espacio tidimensional. El segundo elemento básico pesente en cualquie teoía física es la Dinámica. Ella establece las leyes que obedecen los fenómenos físicos. En paticula, la Dinámica de las patículas Mateiales nos pemitiá detemina, en una situación dada, cuál de todos los movimientos cinemáticamente posibles seguiá la patícula en cuestión. Cuso 1999

5 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 5 I-. Cinemática en una dimensión. I-a. Movimiento sobe una ecta. Como hemos obsevado, los movimientos eales son muy complejos. En geneal las distintas pates de un objeto tendán movimientos difeentes, lo que puede da luga a otaciones o vibaciones intenas. En muchos casos esos movimientos intenos pueden despeciase cuando sólo inteesa detemina el movimiento pomedio del cuepo En geneal, cuando las dimensiones del objeto en cuestión son mucho menoes que las de su tayectoia, podemos considea al objeto como un punto matemático. Los objetos de este tipo se denominan patículas. Po ejemplo cuando deseamos descibi el movimiento de la Tiea alededo del Sol podemos despecia los movimientos intenos de la atmósfea y los maes e incluso su movimientos de otación y tatalo como un objeto puntual. Cómo podemos descibi el movimiento de una patícula que se mueve sobe una ecta? FIG. 1 Una pimea descipción es establece la hoa en la cual la patícula pasa po cada uno de los puntos. Tiempo Posición Día 9/7/89 14 h. 7 m. 3 s. A " " 14 h. 7 m. 34 s. B " " 14 h. 8 m. 36 s. C " " 14 h. 8 m. 38 s. D Tabla 1 En esta pimea descipción sólo hemos podido asigna un valo numéico al tiempo, mientas que nos hemos limitado a distingui las distintas posiciones con una leta. Paa asigna Cuso 1999

6 6 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA valoes numéicos es necesaio un oigen, ya que solo somos capaces de medi intevalos, no posiciones o tiempos absolutos. Como existe un oigen convencional de tiempo hemos podido asigna valoes numéicos a dichas vaiables. Si deseamos hace lo mismo con el espacio es necesaio defini un oigen. FIG. Constuyamos ahoa un sistema coodenado oientando la ecta. A cualquie punto de la ecta le asignaemos un númeo x que indique su distancia al oigen. El valo x es la posición con especto a O. Seá positivo si el punto sigue a O y negativo si lo pecede. Podemos entonces descibi el movimiento po Tiempo Posición s. -4 m. 4 s. 8 m. 6 s. 1 m. 8 s. 4 m. donde hemos tomado el oigen de tiempos en el instante en que la patícula pasaba po A. Tabla Si epesentamos este movimiento gáficamente poniendo en la abscisa los tiempos y en las odenadas la posición esulta Cuso 1999

7 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 7 FIG. 3 La descipción que hemos obtenido del movimiento es sin duda incompleta ya que obviamente no nos da infomación alguna sobe qué posiciones ocupa la patícula paa otos valoes del tiempo. Nuesta descipción mejoa po consiguiente en la medida que disminuyen los intevalos de tiempo paa los cuales se detemina la posición. Una descipción completa del movimiento en una dimensión consistiá entonces en dase una función x( t) que asigne a cada valo del tiempo la coespondiente posición de la patícula. Toda la infomación elacionada con el movimiento de la patícula está contenida en la función x ( t) llamada ley hoaia. Sin embago aunque la posición en función del tiempo contiene toda la infomación elevante no la contiene en la foma más útil. La infomación FIG. 4 del velocímeto de un auto es edundante si este último tiene cuenta kilómetos y eloj, peo pocos discutiían su utilidad. Ello se debe a que las leyes de la dinámica involucan los conceptos de aceleación y velocidad y no a la posición diectamente. Pasemos a defini estos conceptos. Cuso 1999

8 8 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA Supongamos que una patícula se encuenta en la posición x 1 en un instante t 1 y en x en el instante t. La vaiación de la posición de la patícula se denomina desplazamiento. x x x1 Se define la velocidad media de la patícula v m en el intevalo de tiempo t1, t po x x x1 vm t t t1 Consideemos po ejemplo el movimiento definido po la tabla y gaficado en la figua 3. Del mismo esulta la siguiente tabla de velocidades medias y el gáfico v m Intevalos [ s.,4 s.] 3 m/s [4 s.,6 s.] m/s [6 s.,8 s.] -4 m/s Tabla 3 FIG. 5 El desplazamiento y la velocidad pueden se positivos o negativos, un valo positivo indica un desplazamiento en el sentido del eje de coodenadas y uno negativo en el sentido Cuso 1999

9 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 9 opuesto. Obsévese que la velocidad media se puede lee diectamente del gáfico del movimiento (fig. 3) calculando la pendiente de la ecta que une dos puntos sucesivos en el movimiento. Si se tiene una descipción del movimiento más detallada que incluya las posiciones paa instantes intemedios de tiempo, se podá constui una tabla de velocidades donde cada velocidad media coespondeía a intevalos más pequeños. En el límite tendemos una descipción completa x () t y una velocidad asociada al instante t x d x v() t lim t t La velocidad instantánea v () t es, po consiguiente, la deivada de la posición. Gáficamente estaá dada po la pendiente de la cuva x ( t) en el instante t. Pasemos ahoa al cálculo de la aceleación, concepto fundamental que está elacionado diectamente con las fuezas que actúan sobe la patícula, como veemos en capítulos subsiguientes. Cuando la velocidad instantánea de una patícula esté vaiando con el tiempo, se dice que la patícula se está aceleando. La aceleación media poducida en el intevalo t t t1 define como el cociente v a m t donde v es la vaiación de la velocidad instantánea en dicho intevalo. La aceleación instantánea es el límite de la aceleación media cuando el intevalo tiende a ceo v dv d x a() t lim t t Como la velocidad es a su vez la deivada de la posición especto del tiempo, la aceleación esulta se la deivada segunda de la posición especto del tiempo. Como habíamos señalado al comienzo, una vez deteminada la posición en función del tiempo se posee toda la infomación elevante paa la evaluación de cualquie ota magnitud cinemática. Usualmente el poblema más inteesante es el poblema inveso: dada la aceleación instantánea a () t, detemina la posición de la patícula en función del tiempo x ( t). En efecto la aceleación es la magnitud que apaece en la ecuación de Newton y po lo tanto cuando las fuezas dependen explícitamente del tiempo, se puede detemina diectamente. Paa calcula la posición Cuso 1999

10 1 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA debemos inveti el poceso anteio pasando de la aceleación a la velocidad y de ésta a la posición. Obviamente dada a () t la velocidad seá una función tal que su deivada es igual a la v seá po lo tanto una pimitiva de a ( t). da () () ( t) v t A t + C, a(). t aceleación: () t Po consiguiente dada la aceleación, la función velocidad queda deteminada a menos de una constante. En otas palabas, la aceleación no tiene infomación suficiente paa detemina a la velocidad en foma única. Sin embago veemos que basta conoce la velocidad en cualquie v t. Supongamos que en t t instante de tiempo paa elimina toda ambigüedad en la función ( ) la velocidad es v entonces y ( t ) v ( t ) C v + v A ( t ) v C A + () t v + A( t) ( t ) A lo que detemina completamente a v () t. Recodando el Teoema Fundamental del Cálculo Integal esulta y po lo tanto A () t A( t ) a() t t t v v + a() t t t Cuso 1999

11 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 11 Ejemplo: v Sea () t tm / s m/ s. 3 a. Detemina ( t) v v sabiendo que en t s la velocidad vale ( t) t C v C () t ( t 7) m / s. Una vez que ha sido deteminado v ( t), el poblema de calcula ( t) foma totalmente análoga dv x () t V () t + C', v() t x se esuelve en donde la constante C' se detemina a pati de la posición de la patícula en algún instante t y ( t ) x ( t ) ' x + x V C () t x v() t. t + t Podemos conclui po lo tanto que la aceleación instantánea pemite econstui la ley hoaia x () t a menos de constantes. Gáficamente, dada la cuva de velocidades, el desplazamiento poducido en el intevalo t, t x x 1 ( t ) x( t ) v( t) 1 t t 1 es igual al áea enceada bajo la cuva de velocidades. Análogamente, el áea enceada bajo la cuva de aceleaciones a () t es igual a la vaiación total de velocidad a lo lago del intevalo de tiempo consideado. FIG. 6 Cuso 1999

12 1 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA Concluiemos esta sección consideando el ejemplo del movimiento con aceleación constante, supongamos conocida la velocidad y la posición en t. a t x v () a t + () t v a() t v + at t () t x + ( v + at) at x + vt+ Un caso paticula impotante de este tipo de movimientos es la caída libe de una patícula en pesencia del campo gavitacional en las poximidades de la supeficie teeste. Si oientamos el eje de coodenadas según la vetical ascendente y nos limitamos al estudio de la caída vetical de una patícula, se cumple: a g, donde g epesenta el valo de la aceleación de la gavedad que es apoximadamente igual a 9, 8m/ s. Cuso 1999

13 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 13 I-3. Cinemática en 3 dimensiones. I-3a. Movimiento geneal de una patícula en 3 dimensiones En el caso unidimensional ea necesaio paa descibi el movimiento en foma única fija un oigen y una oientación de la ecta. En el caso geneal, la posición de una patícula en un instante de tiempo t se descibiá po un vecto ( t ) que va del oigen de coodenadas al punto que ocupa la patícula en dicho instante. Deseamos asigna al vecto posición un conjunto de medidas que lo caacteizan únicamente. Una foma sencilla de consegui este objetivo es definiendo un sistema de ejes catesianos ectangulaes Oxyz. FIG. 8 Sean i, j, k los vectoes de la base otonomal diecta 1 asociada a dichos ejes. Es deci que se veifica que: La base es nomal, po lo que está fomada po vesoes: i j k 1. Son otogonales ente sí: i j i k i j. Y la base es diecta poque: i j k; j k i ; k i j. El vecto posición puede descibise pos sus componentes en dicha base, que de acuedo a la egla de suma vectoial cumpliá: x i + y j + z k Analizando el poblema en foma totalmente análoga al caso unidimensional concluiemos que una descipción completa del movimiento estaá dada po su ley hoaia 1 - Po algunos detalles adicionales ve la Sección.3.b.ii en el Capítulo Intoducción y Conceptos Peliminaes. Cuso 1999

14 14 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA ( t) x( t) i + y( t) j + z( t)k Los valoes específicos de las componentes ( x, y, z) de la posición de una patícula dependeán obviamente del sistema de efeencia elegido. No existe ningún citeio absoluto paa pefei un sistema fente a oto, la elección es mateia de gusto o más bien conveniencia. Dice Newton en los Pincipia: "Peo a causa de que FIG. 9 las pates del espacio no pueden se vistas o distinguidas ente sí po nuestos sentidos, utilizamos en su luga medidas sensibles de él... y así en vez de posiciones y movimientos absolutos, los utilizamos elativos". I-3b. Desplazamiento, velocidad y aceleación Estamos ahoa en condiciones de intoduci los conceptos de desplazamiento, velocidad y aceleación en el caso de un movimiento geneal de 3 dimensiones. I-3b.i) Desplazamiento y Velocidad. El desplazamiento sufido po la patícula en el intevalo t1, t es el vecto asociado al segmento oientado que va del punto ocupado po la patícula en t 1 al punto ocupado en t Obviamente 1 FIG. 1 Se define la velocidad media de la patícula en el intevalo ( t,t 1 ) como el cociente del vecto desplazamiento y el intevalo t t t 1 Cuso 1999

15 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 15 v m t La velocidad media no es po lo geneal una magnitud inteesante ya que el módulo del vecto desplazamiento no es en geneal igual a la distancia ecoida sobe la cuva. Sin embago si consideamos intevalos de tiempo cada vez más pequeños, el módulo del desplazamiento se apoxima a la distancia ecoida po la patícula y su diección tiende a coincidi con la diección del vecto tangente a la cuva en el punto P 1 ocupado po la patícula en el tiempo t 1. Se define el vecto velocidad instantánea como el límite de la velocidad media cuando el intevalo de tiempo t tiende a ceo d v lim, t t dicho límite es la deivada del vecto P especto de t. Paa calcula las componentes de la velocidad consideemos t x t i + y t j + () () ( ) z( t) k. FIG. 11 Si pasamos de t a t + t t+ t ( ) x( t+ t) i + y( t+ t) j + z( t+ t) k. El desplazamiento que se podujo en el intevalo [ t, t+ t] es ( t+ t) ( t) [ x( t+ t ) x( t) ] i + [ y( t+ t ) y( t) ] j + [ z( t+ t) z( t) ] k y po consiguiente xi + y j + zk x y z v lim lim i + j + k t t t t t t Cuso 1999

16 16 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA d x d y d z d i + j + k que nos dice que las componentes de la deivada de un vecto son las deivadas de las componentes. I-3b.ii) Popiedades de la Deivada de un Vecto. La demostación anteio ealizada paa la deivada del vecto posición vale paa cualquie oto vecto, y po consiguiente dado A t A i + A j + A () k x y z su deivada es d A A t lim t ( + t) A( t) t d A da x y i + da z j + k Usando la popiedad que acabamos de establece, las siguientes expesiones, que nos dan las deivadas de opeaciones con vectoes, son de fácil demostación: d d A d B [ A() t + B() t ] () t + () t d( A. B) d A d B. B+ A. d( A B) d A d B B+ A d dλ [ () ()] ( t) d A λ t A t A+λ() t donde A, B son funciones vectoiales de t, y λ es una función escala odinaia de t. - Como veemos en beve, ésta es en ealidad la deivada de un vecto especto al sistema de efeencia elegido, dado po la base i, j, k. En este sistema de efeencia esos vectoes deben considease fijos, es deci, los mismos no dependen del tiempo, y sus deivadas son nulas. De lo contaio, había que deivalos como si fuesen ellos mismos vectoes dependientes del tiempo. Cuso 1999

17 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 17 Las popiedades anteioes nos esultaán de gan utilidad y de aplicación muy fecuente en el esto del cuso. I-3b.iii) Aceleación. Pasemos ahoa a la definición de la aceleación instantánea. El vecto aceleación instantánea se define como la deivada del vecto velocidad instantánea especto del tiempo v dv a lim t o t en componentes dv dv y dv x z a i + j + k d x d y d z i + j + k I-3b.iv: Notación paa la Deivada Tempoal. Como vemos, en la definición de las cantidades Cinemáticas Velocidad y Aceleación, el concepto de deivada especto al tiempo es de suma impotancia. Es po eso, y po lo fecuente del uso que les daemos, que intoduciemos ahoa una notación que nos simplificaá mucho las expesiones que usaemos todo a lo lago de este cuso. Utilizaemos puntos paa indica la deivación especto al tiempo, escibiendo el punto encima de la función que debe se deivada, y el númeo de puntos indica del númeo de veces que estamos deivando, o sea, si se tata de una deivada pimea, segunda, etc. Así: da & d A d A da x y A i + x A& x da z j + k A& x i + A& y j + A& z k. Aplicándolas a las cantidades de nuesto inteés tenemos: Cuso 1999

18 18 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA v & xi & + y& j zk a v& v& i v& j v& k & + & + + && xi + && y j + && zk x y z Estas expesiones son paticulamente útiles paa el cálculo diecto de la velocidad y la aceleación. Ejemplo: Sea donde R y ω son dos constantes, () t FIG. 1 Rcos ωt i + Rsenωt j descibe el movimiento de una patícula en el plano Oxy. Como x ( t) + y ( t) R la patícula se mueve en una cicunfeencia. Entonces v Rωsen ωt i + Rωcosωt j y a ω Rcosωt i ω Rsenωt j Obsévese que v Rω es constante y su diección es tangente a la cicunfeencia, mientas que a ω tiene la diección del adio. I-3b.v: Tayectoia. Ley Hoaia e Integación de Ecuaciones. Al luga geomético de los puntos ocupados po una patícula en su evolución tempoal lo llamamos tayectoia. En el ejemplo pecedente la tayectoia de la patícula es una cicunfeencia de adio R. Siempe es posible detemina a pati de la ley hoaia ( t) la tayectoia de la patícula. En efecto las componentes del vecto posición ( x ( t), y( t), z( t) ) son po sí mismos una descipción paamética de la cuva seguida po la patícula. Cuso 1999

19 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 19 Consideemos ahoa el poblema inveso. Dado el vecto aceleación ( t) poponemos detemina el vecto posición ( t) llamado ley hoaia. Sea a () t a () t i + a ( t) j + a ( t)k x a nos en función del tiempo, es deci, lo que hemoa Las componentes de la velocidad v ( t) deben se tales que sus deivadas coincidan con las componentes espectivas de la aceleación. Es deci con v () t v () t i + v ( t) j + v ( t)k x y y z z y po lo tanto dv dv x y dvz ax, ay, az x ( t) A x ( t) + Cx, vy ( t) A y ( t) + C y, vz ( t) A z ( t) Cz v + donde A x,a y, A z son espectivamente pimitivas de a x, a y, az ; y C x, Cy, Cz, son tes constantes. En notación vectoial podemos escibi con: A v () t a() t A () t () t A ( t) + C ( ) i + ( A ( t) ) j ( A ( t) ) k x y + Si se conoce el valo de la velocidad en algún instante de tiempo t. se puede detemina el vecto constante C : po lo tanto: v ( t ) v A ( ) + C t z Cuso 1999

20 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA v + () t v + A() t A( ) v a() t t Po consiguiente, dada la aceleación en función del tiempo y la velocidad inicial v( t ) v, hemos podido detemina la velocidad en función del tiempo; es deci, la velocidad paa cualquie instante t. Un azonamiento análogo nos pemite detemina la posición ( t) velocidad v () t, y la posición inicial ( ) donde () t v() t t t t () t + V() t ( t ) v() t V v V es una pimitiva de la velocidad. t v + t, una vez conocida la Ejemplo: (caso con aceleación constante) Sea a ak con a constante, y donde hemos elegido los ejes de modo que el vecto aceleación solo tenga componente según Oz. Se desea detemina la posición sabiendo que en t, v v i + v k y z k + x. y po lo tanto Una pimitiva de la aceleación es v ox oz, i () t v + atk A a ( t) tk A su vez, una pimitiva de la velocidad es v i + ( v + at )k ox oz Cuso 1999

21 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 1 y po consiguiente V at () t v t k + at () t + v t k + () t ( x + v t) i + z + v t+ k ox oz at Obsevamos que la patícula en su movimiento pemanece en el plano Oxz. I-3c. Movimiento de un poyectil FIG. 14 Un ejemplo de movimiento con aceleación constante es el de un poyectil lanzado ceca de la supeficie de la Tiea cuando puede despeciase el ozamiento del aie. En ese caso, el poyectil posee una aceleación constante diigida veticalmente hacia abajo. Si escogemos el eje Oz vetical y con su sentido positivo hacia aiba, el eje Ox hoizontal en el sentido de la componente hoizontal de la velocidad cumpliá: a gk v vcos θ i + ( vsenθ gt)k ( x + v cos θ t) i + z + v senθ t gt k La tayectoia del poyectil es una paábola con concavidad negativa. Paa pobalo, calculemos z en función de x. 1 Cuso 1999

22 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA v z z + v oz ox x x t v ox ( x x ) ( x x ) Supongamos que el poyectil se lanza desde un punto de la supeficie teeste que hacemos coincidi con el oigen de coodenadas. En ese caso la tayectoia del poyectil estaá dada po: voz g z x. v v x ox El alcance D del poyectil estaá dado po la intesección de la tayectoia con la supeficie teeste. En otas palabas, seá el valo de x paa el cual z vuelve a anulase. g v ox ox FIG. 14 alcance máximo se obtiene paa dicho ángulo y vale ox v vz v senθ D g g Como el máximo valo de sen θ o es 1 paa θ 9 o sea θ 45 o, el Conviene ecoda que paa obtene este esultado, hemos despeciado una seie de fenómenos que intevienen en el movimiento eal de poyectiles: v 1) No hemos tomado en cuenta la esistencia del aie, que ejece una fueza opuesta al movimiento, dependiente de la velocidad y de la densidad del aie. ) Hemos ignoado las vaiaciones de la gavedad con la altua, debidas a la dependencia de la fueza de gavitación del cuadado de la distancia al cento de la Tiea. 3) Hemos ignoado el movimiento de la Tiea que hace que la tayectoia se desvíe levemente del plano Oxz, debido a las fuezas de Coiolis que analizaemos más adelante. g. Cuso 1999

23 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 3 Esta situación es típica de toda descipción física de un fenómeno: uno modela el fenómeno teniendo en cuenta únicamente los elementos que paecen se más elevantes y si desea gana en pecisión se incluyen nuevos factoes en el modelo. El oden en que debemos inclui cada uno de los efectos dependeá de la impotancia elativa que cada uno tenga, y la intoducción sucesiva de los mismos nos iá dando esultados más pecisión. Hasta donde conviene complica el modelo dependeá de con cuanto eo queamos estima el esultado. Ejecicio: Discuta, a pioi 3, la impotancia elativa de los factoes antes mencionados, y en qué oden debeían se intoducidos en un modelo según estemos descibiendo el movimiento de los siguientes poyectiles, y en qué casos no tendía sentido intoduci alguno de los efectos: 1) Un poyectil o cohete lanzado en diección vetical intentando queda en óbita. ) Una pelota de papel que es lanzada desde la ventana de un edificio. 3) Un misil intecontinental que es lanzado en foma asante a la supeficie teeste. 4) Una pieda luna que un astonauta lanza a oto mientas exploan la supeficie de la Luna I-3d. Sistemas de coodenadas Aunque el método más simple paa localiza una patícula en el espacio es dase las componentes catesianas del vecto posición, existen muchos poblemas en que esulta conveniente tabaja con sistemas de coodenadas no catesianas. Estudiaemos algunos de los sistemas de coodenadas más usados, evaluando en cada caso las vaiables cinemáticas, posición, velocidad y aceleación. I-3d.i) Coodenadas polaes planas. 3 - Es deci, sin intenta modela matemáticamente los mismos. La esolución en foma exacta de uno u oto poblema seía un inteesante ejecicio paa plantease en el póximo capítulo. Cuso 1999

24 4 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA Consideemos una patícula obligada a movese en un plano. Sea Oxy dicho plano, las componentes catesianas de la posición, velocidad y aceleación se obtienen imponiendo la condición z. Po ejemplo: xi + y j Las coodenadas polaes, θ están elacionadas con x, y po las siguientes ecuaciones ó x cosθ y senθ y x + y θ A tg x Al vecto unitaio en la diección definida al incementa dejando θ fijo, le llamaemos e FIG. 15 y al vecto unitaio de la diección definida al incementa θ dejando fijo, le llamaemos e θ. Dichos vectoes se pueden expesa en la base catesiana po: e cos θi + senθ j eθ senθi + cosθ j Obsévese que la diección de estos vectoes cambia con θ, en paticula de senθi + cosθ j eθ dθ de θ cos θi senθ j e dθ En coodenadas polaes, el vecto posición del punto P está dado po e Paa descibi el movimiento de una patícula en coodenadas polaes habá que da () t y θ () t lo que pemite detemina Cuso 1999

25 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 5 θ () t ( t) e ( ( t) ) El vecto velocidad esulta se d d de dθ v e + e & + θ& e dθ Po consiguiente la velocidad tendá en geneal, componentes según v & v θ &, θ El vecto aceleación es dv de dθ deθ dθ a && e + & + && θe + && θe θ θ + θ& dθ dθ θ& & e + && θ+ && θ e ( ) ( ) θ y po lo tanto sus componentes según e y e θ son θ& a && & a θ+ && θ θ θ. e y e θ dadas po Ejemplo: Sin duda la aplicación más simple de estas coodenadas es al estudio del movimiento cicula. En ese caso () t R y po consiguiente v Rθ& eθ. La velocidad está diigida según la tangente a la cicunfeencia. Po ota pate: a Rθ& e + R&& θe θ El centípeta y R θ & se denomina aceleación témino R & θ la aceleación tangencial. FIG. 16 Cuso 1999

26 6 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA dθ La cantidad ω se denomina la velocidad angula, se mide en adianes po segundo (ad/s ) o simplemente, s 1. Cuando la velocidad angula es constante ω cicula unifome: t R, θ & ω La velocidad v Rωe tiene componente centípeta ya que ω θ θ () ω, se dice que el movimiento es tiene módulo constante y la aceleación. a Rω e sólo θ tiempo. La aceleación centípeta se debe al cambio de diección del vecto velocidad en el El movimiento cicula unifome es un ejemplo de movimiento peiódico, la patícula pasa po cada punto de la cicunfeencia a intevalos iguales de tiempo. En efecto θ & ω o sea θωt+ C. Si en t,, θ θ esulta que C θ θ( t) ω t+. y θ y El peíodo T es el tiempo equeido paa da una vuelta completa, es deci θ( t + T ) θ( t) + π, o sea ω. ( t + T ) ωt+ π T π ω La fecuencia ν es el númeo de vueltas que da la patícula en una cantidad de tiempo 1 ν. T Cuando el peíodo se expesa en segundos, la fecuencia debe expesase en s 1, también llamados Hetz (Hz). Cuso 1999

27 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 7 La velocidad angula, el peíodo y la fecuencia están elacionados po π ω π v. T I-3d.ii) Coodenadas cilíndicas. y ϕ actg x z z, Las coodenadas cilíndicas ρ,ϕ, z están definidas po las ecuaciones: ( ) o a la invesa x ρcosϕ, y ρsenϕ, ρ z z, Como en el caso de las coodenadas polaes planas definimos e ρ dejando z y ϕ fijos; FIG. 17 y ϕ fijos. Los vectoes e ρ, catesianas son: e ϕ incementando ϕ y dejando ρ y z fijos; e ϕ, e z e z x + y incementando ρ y incementando z y dejando ρ foman una base otonomal diecta. Sus componentes eρ cos ϕi + senϕ j eϕ sen ϕi + cosϕ j k El vecto posición de un punto P en coodenadas cilíndicas se expesa e z ρe + ze z ρ Cuso 1999

28 8 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA El movimiento queda deteminado al dase ( t),ϕ( t) y z( t) ρ. En paticula la velocidad d deρ v ρ& e & ρ +ρ ϕ+ ze & z dϕ ρ& e & ρ +ρϕ eϕ+ ze & z y la aceleación dv deρ deϕ a ρ&& e & & & & e && e & ρ +ρ ϕ+ρϕ ϕ +ρϕ ϕ +ρϕ + && ze z dϕ dϕ & ρ ρϕ& e + ρϕ&& + & ρ & ϕ e + && ze ( ) ρ ( ) z ϕ Cuando el movimiento está estingido al plano z la pesente descipción coincide exactamente con la obtenida en coodenadas polaes planas. Po ota pate, si la patícula se mueve sobe la supeficie de un cilindo de adio R. a ( t ) R ρ v Rϕ& eϕ + z& e z Rϕ& e + Rϕ&& e + && z e z ρ ϕ I-3d.iii) Coodenadas polaes esféicas Las coodenadas polaes esféicas (,θ,ϕ) están definidas po las siguientes ecuaciones x senθcosϕ y senθsenϕ z cosθ FIG. 18 ρ Las coodenadas x e y se obtienen obsevando que la poyección de OP sobe el plano Oxy es OP ' senθ. Cuso 1999

29 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 9 Los vectoes unitaios e, e θ, eϕ están definidos, como en los casos anteioes, incementando espectivamente, θ y ϕ. Esa tíada así odenada foma una base otonomal diecta 4. Sus expesiones en coodenadas catesianas seán: e sen θcosϕi + senθsenϕ j + cosθk eθ cos θcosϕi + cosθsenϕ j senθk e sen ϕi + cos ϕ j ϕ Se pueden obtene estas expesiones poyectando los vectoes e, e θ y eϕ sobe los ejes catesianos a pati de la figua 18; haciendo uso del vecto auxilia e ρ de coodenadas esféicas, obsevando que: e senθeρ + cosθk eθ cosθeρ senθk y usando las expesiones de coodenadas cilíndicas. Sin embago existe un método sistemático paa obtene esta descomposición en cualquie sistema de coodenadas. Se comienza expesando el vecto posición en la base catesiana. senθcosϕi + senθsenϕ j + cosθk. Los vectoes unitaios se obtienen deivando especto a la coodenada que es incementada y luego nomalizando el esultado. Es deci senθcosϕi + senθsenϕ j + cosθk. Como 1, entonces 4 - Es impotante acota que paa que esto sea así, el ángulo θ debe esta oientado como en la Figua, de manea que baemos todo el espacio cuando θ va de a π, asumiendo que ϕ va de a π. Es usual defini θ de foma que se mida a pati del plano Oxy, y en sentido contaio al de la Figua. En este θ vaía de - π/ π/ y e θ queda oientado en sentido contaio, po lo que la tena e, e θ, e ϕ es otonomal indiecta, y debemos intecambia e θ con e ϕ paa que se tone diecta. Cuso 1999

30 3 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA Finalmente e senθcosϕi + senθsenϕ j + cosθk. cos θcosϕi + cosθsenϕ j senθk θ, entonces θ 1 eθ cosθcosϕi + cosθsenϕ j senθk θ sen θsenϕi + senθcosϕ j ϕ senθ, entonces ϕ e sen ϕi + cosϕ j ϕ Paa calcula la velocidad y la aceleación de una patícula es necesaio toma en cuenta que los vectoes unitaios vaían con el tiempo y po consiguiente nos esultaá útil evalua. e e e θ e ϕ senθ θ ϕ e θ eθ e eϕ cosθ θ ϕ e ϕ eϕ e senθ eθ cosθ θ ϕ y que, θ, Tomando en cuenta que el vecto posición se expesa e ( θ, ϕ) ϕ son funciones del tiempo, esulta que Cuso 1999

31 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 31 d e & + θ+ & e v e ϕ& θ ϕ & e + θ& e + ϕ& sen θe θ ϕ y que + dv e && + & θ+ & e a e & ϕ& θ ϕ ( θ+ && θ) + θ& eθ θ θ+ & θ& e && e ϕ& θ ϕ + θ ( ϕ θ+ ϕ θ+ ϕθ& eϕ & & sen && sen & cosθ) e + ϕ& senθ θ& e + ϕ& sen θ ϕ ϕ& ϕ ϕ θ Sustituyendo las deivadas de los vectoes unitaios obtenemos a ( θ& && ϕ& sen θ) e + + ( & θ+ & θ & ϕ& senθcosθ) eθ + + ϕ& senθ+ & ϕ& senθ+ ϕθ & & cosθ e ( ). Cuando el movimiento está estingido al plano Oxy se cumple π θ, θθ & & y se ecupean una vez más las expesiones de la velocidad y la aceleación en coodenadas polaes planas. ϕ I-3d.iv: Coodenadas Cuvilíneas o Intínsecas Oto sistema de coodenadas que nos seá de gan utilidad duante el cuso, seá el sistema de coodenadas intínsecas. El mismo descibe el movimiento de una patícula a tavés de una única coodenada, llamada abscisa cuvilínea y que la notaemos con la leta s; y una base otonomal diecta denominada el tiedo de Fenet, fomada po los vesoes tangencial t, Cuso 1999

32 3 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA nomal n y binomal b. Esta descipción es altamente conveniente cuando, po alguna azón, se conoce a pioi, la tayectoia específica que sigue la patícula en estudio. Efectivamente, en muchos poblemas a estudia, la patícula estaá obligada a movese sobe una cuva pedeteminada, sea poque se tata de una agolla andando po un alambe con una foma dada, un cao en una montaña usa, o un poducto manufactuado moviéndose sobe una cinta tanspotadoa. En uno u oto caso existe cieta imposición al movimiento del cuepo en estudio que es lo que llamaemos vínculos. A continuación pasaemos a defini cada uno de los elementos antes mencionados y deci cómo quedan escitas las cantidades cinemática velocidad y aceleación, en estas coodenadas. Abscisa Cuvilínea. Como dijimos anteiomente, la ley hoaia () t tes ecuaciones escalaes x x() t, y y( t), z z( t), que en coodenadas catesianas es equivalente a da, nos da la tayectoia de la patícula. Efectivamente, estas ecuaciones dan la posición de una patícula en función del tiempo y a medida que vaía el tiempo ián descibiendo una cuva en el espacio. En foma genéica, no es necesaio que t FIG. 19 sea el tiempo, sino que la cuva puede se descita en función de un paámeto abitaio ξ; es deci, en coodenadas catesianas una cuva viene deteminada dando tes funciones escala x x( ξ), y y( ξ), z z( ξ). Un paámeto usual conveniente es la longitud de la cuva medida a pati de algún oigen O. Esta es la coodenada intínseca s. La misma está definida consideando un incemento difeencial en el paámeto ξ que desciba la cuva, de foma que: x y z d d ξ ξ ξ ( dx) i + ( dy) j + ( dz) k i + j + k ξ La distancia ecoida po el punto (difeencial de longitud de aco) es: 5 x y z ds d d ξ ξ ξ ( d ) ( dx) + ( dy) + ( dz) + + ξ 5 - Hay un pequeño detalle de que s puede cece en el mismo sentido de ξ o en sentido inveso. En el caso que oientemos s en sentido debeíamos agega un signo de menos ( ) antes de la aíz. O b s n P t Cuso 1999

33 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 33 po lo que la distancia total, o longitud de aco, ecoida desde el punto O (siendo que este coesponde a la posición en la cuva en que el paámeto ξ ξ ) es: s ξ ( ξ) ξ dξ x ξ y + ξ z + ξ, entonces tendemos que, si la patícula pasa po el punto O en el instante t. En el caso paticula que tengamos las leyes hoaias x x( t), y y( t), z z( t) s t () t x& + y& + z& v() t t donde v () t x& + y& + z& es el módulo de la velocidad de la patícula. De esta manea podemos ubica la patícula en su movimiento sobe la cuva, ya que ella se encontaá a una distancia s(t) del punto O. Obsevemos que con la definición anteio s(t), siempe cece con el tiempo; o sea, así s(t) es la distancia ecoida po la patícula sobe la cuva. Sin embago, en algunas aplicaciones, puede se inteesante considea a la coodenada cuvilínea s como una distancia con signo, medida sobe la cuva que ecoe la patícula, desde un punto O de la cuva. El signo tendía elevancia paa decinos si la patícula se encuenta a un lado u oto de O. Paa tene en cuenta esto, en la definición anteio de s en función del tiempo, alcanzaía que estemos atentos a cuándo la velocidad cambia de signo 6 ; y cuando lo haga, cambiemos el signo de la aíz, ya que el movimiento seía en sentido contaio. Es deci, consideaíamos el módulo de la velocidad v () t con signo: v () t ± x& + y& + z& según la patícula se mueva en un sentido u oto sobe la t t 6 - Paa tene en cuenta esto debemos estudia los cuces po ceo de la velocidad, ya que nosotos consideaemos solo funciones continuas de velocidad y posición. No consideaemos casos en que la velocidad o la posición pesenten discontinuidades. Cuando la velocidad cambia buscamente y tiene una discontinuidad se dice que el movimiento es impulsivo, y no lo estudiaemos en este cuso. Si la posición cambiase buscamente de valo y pesentase una discontinuidad, estaíamos en pesencia de velocidad infinitas, que no son aceptables físicamente. Recodemos que paa velocidades cecanas a la velocidad de la luz la Mecánica Newtoniana deja de se conveniente paa el estudio de los fenómenos involucados en el poblema. Cuso 1999

34 34 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA cuva. 7 La conveniencia de una u ota definición vendá dada po el poblema paticula en estudio. Vecto Tangente y Velocidad. Ya dijimos en la sección I-3b, que a medida que el incemento de tiempo ente dos instantes se tona infinitesimal, el desplazamiento coespondiente tiende a se tangente a la cuva, como muesta la Figua 11. Así que podemos defini el siguiente vecto que es tangente a la cuva: d t lim ds s s Es fácil ve que, po la definición de coodenada cuvilínea s, este vecto tangente es un veso o vecto unitaio, ya que: t d ds ( d ) ( ds) ( ds) ( ds) 1 Es inmediata la demostación de que la velocidad siempe está diigida según la tangente: d d ds v & st & ds ds Obseva que esto es coheente con que s & v() t sea el módulo con signo de la velocidad. El signo dependeá de cómo oientemos el veso tangente t. Nomal, Binomal y Aceleación. Ahoa obsevemos que este veso tangente, si bien siempe mantiene su módulo constante e igual a uno, cambia de diección con el tiempo, a medida que la patícula va 7 - Esta discusión suge debido a que, paa una descipción conveniente paa una cuva en el espacio en la foma x x( ξ), y y( ξ), z z( ξ), el paámeto ξ debe detemina unívocamente un punto sobe la cuva. Mientas que en la descipción a tavés del tiempo t, la patícula puede pasa po el mismo punto paa difeentes instantes. Cuso 1999

35 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 35 ecoiendo la cuva (salvo que esta sea una ecta, caso paticula que no nos inteesa estudia po este método). Po lo tanto podemos intenta deiva especto al tiempo la siguiente igualdad: t t t 1 o sea: ( t ) t t + t t t t t t & & & Esta es una popiedad geneal de los vesoes que vaían en el tiempo, su deivada especto al tiempo es pependicula al popio vecto. En este caso en paticula se cumpliá también que: t & ds ds s& ds po lo que como t & es paalelo a, y este vecto es también pependicula al vecto tangente. ds Definiemos un veso que tenga la diección de este último, y, como es pependicula a la tangente le llamaemos veso nomal: n ρ ds siendo ρ ds 1 paa que n sea veso. A ρ se le llama adio de cuvatua de la tayectoia, y la diección de n la elegiemos de foma que ρ sea siempe positivo. Esto haá que po convención, n esté diigido hacia el inteio de la cuva, o sea, en la diección en que ella se dobla. El adio de cuvatua seá mayo cuanto más chico el módulo de la deivada ds t d, es deci cuanto meno el cambio en la tangente especto a la longitud de la cuva, o sea, más abieta sea la cuva. En el caso extemo de que, el adio de cuvatua ρ tendeá a infinito y la nomal ds no estaá definida. Salvo en algún punto singula de poco inteés paa nosotos, esto solo ocue en el caso de una ecta, en la que obviamente todas las diecciones pependiculaes a la tangente pueden definise como vesoes nomales sin pede genealidad. & Cuso 1999

36 36 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA Finalmente, paa detemina completamente el tiedo de Fenet, definiemos oto veso, también nomal a la cuva peo al que llamaemos binomal, poque a pati de su definición, seá pependicula tanto a la tangente como a la diección hacia la que se dobla la cuva: b t n Y con este veso binomal, b, la tíada t, n, b seá una base otonomal diecta. Finalmente, veemos como queda la aceleación de una patícula en este sistema de coodenadas: o sea: a v& ( st & ) ds && st + st & & && st + s& && st + s& ds n s& a && st + ρ Como vimos antes, la expesión de velocidad de una patícula escita en coodenadas intínsecas, nos dice que la misma es tangente a la cuva. Ahoa vemos que su aceleación tiene una componente tangencial, que depende de la apidez con que aumenta el módulo de la velocidad & s () s&, y ota componente según la nomal, que es popocional al módulo de la velocidad al cuadado y al inveso del adio de cuvatua ρ. La aceleación no tiene componente según la binomal. n ρ Cuso 1999

37 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 37 Ejecicio: Demosta que en una cuva plana cualquiea x x( ξ), y y( ξ), z contenida en el plano Oxy, la tangente y la nomal están contenidas en dicho plano mientas que la binomal es b ± k. pependicula al mismo ( ) Ejemplo: Consideemos nuevamente el ejemplo del movimiento cicula estudiado anteiomente. Como vimos, paa el mismo se cumple que: j k i y R e t ϕ n ϕ(t) R ( t) e o sea, en coodenadas cilíndicas: ( t) R ϕ() t ϕ() t, que en catesianas es: () z t x( t) R cos( ϕ( t) ) y() t R sen( ϕ() t ). () z t Donde la velocidad es: v Rϕ& sen cos lo que vimos es: v Rϕ& e ( ϕ( t) ) i + Rϕ& ( ϕ( t) ) j FIG. Queemos el tiedo de Fenet y la coodenada cuvilínea s en función de ϕ(t). Tendemos que, asumiendo que ϕ(t ), y medimos s desde el punto Ri, debemos hace: s e n t () t x& + t x y& ϕ Cuso 1999

38 38 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA donde x& e y& son las coodenadas catesianas de la velocidad, que nos dan: s t () t R ( ϕ& cos ( ϕ() t )) + ( ϕ& sen( ϕ( t) )) t Si le damos a s&, que es el integando de la ecuación anteio, el mismo signo que a ϕ&, de manea que s y ϕ cezcan en el mismo sentido: s t () t ϕ& R ( cos ( ϕ() t )) + ( sen( ϕ( t) )) R ϕ & R dϕ Rϕ t t ϕ esultado que ya es bien conocido de geometía que es que la longitud de aco de la cicunfeencia es el ángulo del mismo po el adio. Luego, como ya sabemos: v Rϕ& e ϕ st & po lo que también deducimos que t eϕ. Usando lo que ya sabemos de las coodenadas cilíndicas el veso nomal vendá deteminada po: n de donde deducimos que: t & 1 ρ ρ ρ ρ e& ds ds s& s& ϕ ρ ϕ& e s& n ρ R. e t ρ ϕ& e Rϕ& ϕ ( t ) ρ e R Obseva que el veso nomal es según e y no según e poque debe se entante y no saliente, po aquello de que se diige hacia donde la cuva se ciea, paa que el adio de cuvatua así definido sea positivo. Finalmente paa tene el tiedo de Fenet completo debemos halla la binomal, que viene definida po: Cuso 1999

39 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 39 Cuso 1999 ( ) k e e e e n t b ϕ ϕ po lo que el tiedo de Fenet es la base k e e,, ϕ, y la aceleación se escibe como: ( ) ( ) e R e R e R R e R n s st a & && & && & && ϕ ϕ ϕ + ϕ ρ + ϕ ϕ o sea, el mismo esultado que teníamos paa coodenadas polaes.

40 4 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA I-4. Movimiento Relativo "Así, supongamos el conjunto de piezas que pemanecen sobe los cuados de un tableo de ajedez. Decimos que están en el mismo luga, que no se han movido, aunque quizás el tableo haya sido movido, entetanto, de una habitación a ota." Jhon Locke Ensayos sobe el entendimiento humano. I-4a Intoducción. En el numeal anteio obsevamos que esulta imposible detemina las posiciones absolutas de los objetos y sólo podemos medi distancias o intevalos ente puntos. Efectivamente, cada vez que nos efeimos a la posición de un punto P, la expesamos en una deteminado sistema de coodenadas a tavés de un vecto posición: P. Este vecto da la posición elativa del punto especto al oigen O del sistema de coodenadas, lo que es clao si hacemos uso de la notación de un vecto como difeencia ente dos puntos: P O 8. El vecto al que hacemos P PO FIG. 1 efeencia nos daá la posición del punto P, si medimos el mismo a pati del oigen de coodenadas O. Como veemos en las secciones siguientes, el movimiento del punto P no seía el mismo, si consideásemos que el punto O está fijo que si está en movimiento especto a oto punto; o la descipción en coodenadas no seía la misma si la base i, j, k está fija que si se está moviendo. Es más, anteiomente ya vimos difeentes sistemas de coodenadas, en algunos casos los vesoes que fomaban la base de los mismos ean fijos, en otos ean móviles. Uno puede pensa entonces x z O P P y 8 - Ve Sección.4.a.ii en Capítulo. Cuso 1999

41 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 41 que pensa en sistemas de coodenadas moviéndose ente sí suge natualmente de nuesto estudio anteio de los sistemas de coodenadas. Esto lleva a un concepto más amplio que es el de Sistema de Refeencia. 9 Po esta azón el movimiento es un concepto elativo y depende siempe del sistema de efeencia escogido. Como es posible escoge difeentes sistemas de efeencia, es impotante detemina como están elacionadas las descipciones hechas desde difeentes sistemas. Po ejemplo compaemos obsevaciones del movimiento de la Luna hechas desde dos sistemas, uno situado en el Sol, al que llamaemos sistema S, y oto situado en la Tiea, al que llamaemos T. El obsevado teeste que usa el sistema T obsevaá que la Luna sigue una tayectoia apoximadamente cicula alededo de la Tiea, mientas que vista desde el sistema S, la óbita de la Luna apaeceá como una línea ondulada muy póxima a la tayectoia elíptica de la Tiea. Resulta obvio que ambos movimientos están elacionados y que seía posible pasa de uno al oto si tomáamos en cuenta el movimiento de la Tiea en tono al Sol; o sea, el movimiento de T especto de S. Como ya indicamos anteiomente la elección del sistema de efeencia es cuestión de conveniencia.se escoge el sistema de modo que la descipción del movimiento esulte más sencilla. El movimiento de la Luna po ejemplo se descibiá más fácilmente especto a la Tiea y el del Sol especto al cento de la Galaxia. I-4b Sistemas de efeencia con movimiento de taslación elativa. Consideemos dos sistemas de efeencia S Oxyz y S O'x'y'z' cuyos ejes tienen la misma oientación peo tales que el oigen O' del segundo tiene un movimiento dado especto de O del pimeo. Nos inteesa compaa las descipciones del movimiento de cieto objeto A vistas desde ambos sistemas. En el ejemplo anteio, A seía la Luna, S un sistema situado en el Sol y S' un sistema situado en la Tiea. 9 - La natualeza e impotancia de los sistemas de efeencia quedaá claa en el póximo Capítulo de Dinámica de la Patícula. Po ahoa aclaemos que un sistema de efeencia es algo más que simplemente da un sistema de coodenadas, como lo haemos a lo lago de este Capítulo. Po ejemplo, en la Figua, si el punto O no se moviese especto a O, entonces el movimiento de cualquie patícula seía el mismo especto a los sistemas S y S. Ambos sistemas S y S seían equivalentes desde este punto de vista, y peteneceían al mismo sistema de efeencia, aunque aún seguiían siendo difeentes como sistemas de coodenadas. El concepto de sistemas de efeencia está asociado también al de movimiento de cuepo ígido, que estudiaemos en la segunda pate del cuso. Si quisiésemos una definición esticta de sistemas de efeencia, po ahoa podíamos deci que un sistema de efeencia es una clase de equivalencia de todos los sistemas de coodenadas que no están en movimiento especto a los demás sistemas de la clase. Cuso 1999

42 4 INSTITUTO DE FÍSICA FACULTAD DE INGENIERÍA S Los vectoes posición del punto A vistos desde O y O' están elacionados po ( t) oo '( t) + '( t) S donde paa simplifica la notación le hemos A llamado al vecto OA A O y al vecto O A A O, peo mantenemos explícita la notación paa el vecto O O O O, que es la posición del oigen de coodenadas del sistema S especto al S. Supondemos que el tiempo usado en ambos sistemas paa descibi el movimiento es el FIG. mismo. Este es un postulado básico de la Mecánica Newtoniana que implica, en otas palabas, que las mediciones del tiempo no dependen del movimiento del obsevado y que dos elojes situados en O y O' una vez sinconizados seguián macando lo mismo. Como ya hemos obsevado esto es cieto sólo si las velocidades involucadas en el poblema son mucho menoes que la de la luz. La velocidad v de A especto al sistema S se define d d x d y d z v i + j + k y la velocidad de A especto de S' es d ' d x' d y' d z' v' i + j + k. Hacemos nota que paa ambos sistemas la base i, j, k que detemina los ejes de los sistemas, es la misma, y como hicimos anteiomente podemos consideala fija especto a los mismos. Finalmente v d d x d y i + j oo' oo' oo' oo' + d z oo' k es la velocidad del oigen del sistema S especto de S. Cuso 1999

43 MECÁNICA NEWTONIANA - Cinemática de la Patícula. 43 Deivando especto de t la elación ente los vectoes de posición esulta v () t v ( t) + v' ( t). oo' La velocidad de una patícula especto del sistema S es igual a la velocidad especto del sistema S' más la velocidad con que el sistema S' se mueve especto de S; que es pecisamente la velocidad de su oigen de coodenadas O especto del sistema S. Deivando nuevamente esta expesión obtenemos una elación análoga paa las aceleaciones dv dvoo' dv' a() t + aoo' () t + a' (). t Po lo geneal se le suele llama al sistema S Oxyz sistema fijo, al S O'x'y'z' sistema móvil. A la velocidad v de la patícula especto al sistema llamado fijo se la denomina velocidad v ; a la velocidad v ' especto al sistema móvil se la llama velocidad absoluta, o simplemente A elativa, o v R ; y a la velocidad del sistema móvil especto del fijo v oo' se la denomina velocidad de tanspote o de aaste, y se la suele nota como v T. Los mismos nombes se aplican a las aceleaciones espectivas. Las elaciones anteioes establecen entonces que: la velocidad (aceleación) absoluta es igual a la velocidad (aceleación) elativa más la velocidad (aceleación) de tanspote. 1 Un impotante caso paticula de la última elación obtenida ocue cuando el sistema móvil se desplaza con velocidad constante especto del fijo En este caso dv oo ' y a t a' t ( ) ( ). La aceleación con especto a sistemas de efeencia con movimiento elativo de taslación unifome es la misma 1 - Obsevemos que esta nomenclatua es poco adecuada, ya que toda velocidad o aceleación es elativa a algún sistema y no conviene po lo tanto habla de velocidades o aceleaciones absolutas. Igual la utilizaemos po se muy común. Hay que tene en cuenta que estos son solo nombes, y siempe debe especificase bien especto a qué sistemas las mismas están siendo medidas, o sea, cuál es el sistema absoluto y cuál el elativo. Cuso 1999

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Tema 2. Sistemas conservativos

Tema 2. Sistemas conservativos Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

a = G m T r T + h 2 a = G r T

a = G m T r T + h 2 a = G r T www.clasesalacata.com Ley de la Gavitación Univesal 0.- Gavitación Univesal y Campo Gavitatoio Esta ley fomulada po Newton, afima que la fueza de atacción que expeimentan dos cuepos dotados de masa es

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN 19. CINEMATICA La descipción matemática del movimiento constituye el objeto de una pate de la física denominada cinemática. Tal descipción se apoya en la definición de una seie de magnitudes que son caacteísticas

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:lotizdeo@hotmail.com 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

5. Sistemas inerciales y no inerciales

5. Sistemas inerciales y no inerciales 5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

Solución a los ejercicios de vectores:

Solución a los ejercicios de vectores: Tema 0: Solución ejecicios de intoducción vectoes Solución a los ejecicios de vectoes: Nota : Estas soluciones pueden tene eoes eatas (es un ollo escibios las soluciones bonitas con el odenado), así que

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVIACIÓN 1 GRAVIACIÓN INRODUCCIÓN MÉODO 1. En geneal: Se dibujan las fuezas que actúan sobe el sistema. Se calcula la esultante po el pincipio de supeposición. Se aplica la ª ley de Newton

Más detalles

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 -

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 1 - IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachilleato. Tema 6: Descipción del movimiento - 1 - TEMA 6: DESCRIPCIÓN DEL MOVIMIENTO DE UNA PARTÍCULA 6.1 Concepto de movimiento. Sistema de efeencia.

Más detalles

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS

5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS 5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS descitos en una efeencia inecial (I) po sus vectoes de posición 0 y 1 espectivamente. I m 1 1 F 10 1 F 01 m 1 0 0 0 Figua 5.1: Sistema binaio aislado

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

Interacción gravitatoria

Interacción gravitatoria Inteacción gavitatoia H. O. Di Rocco I.F.A.S., Facultad de Cs. Exactas, U.N.C.P.B.A. June 5, 00 Abstact Tatamos en esta clase de oto de los modelos fundamentales de la Física toda: el movimiento en campos

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal Poecto PMME - Cuso 8 Instituto de Física Facultad de Inenieía UdelaR TÍTULO MOVIMIENTO RELATIVO MOVIMIENTO E PROYECTIL. EL ALEGRE CAZAOR QUE VUELVE A SU CASA CON UN FUERTE OLOR ACÁ. AUTORES

Más detalles

LECCIÓN 5: CINEMÁTICA DEL PUNTO

LECCIÓN 5: CINEMÁTICA DEL PUNTO LECCIÓN 5: CINEMÁTICA DEL PUNTO 5.1.Punto mateial. 5.. Vecto de posición. Tayectoia. 5.3. Vecto velocidad. 5.4. Vecto aceleación. 5.5. Algunos tipos de movimientos. 5.1. PUNTO MATERIAL. Un punto mateial

Más detalles

I MAGNITUDES Y MEDIDAS

I MAGNITUDES Y MEDIDAS I MAGNITUDES Y MEDIDAS 1. MAGNITUDES Se llama magnitud a cualquie caacteística de un cuepo que se puede medi y expesa como una cantidad. Así, son magnitudes la altua de un cuepo, la tempeatua, y no son

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

Kronotek: Configuración de Red para VoIP

Kronotek: Configuración de Red para VoIP Konotek: Configuación de Red paa VoIP Contenido 1. Intoducción... 2 2. Impotancia de la Configuación de Red... 2 3. Pasos Pevios: Cálculo del númeo de líneas de voz... 3 Pime paso: obtención del ancho

Más detalles

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor

INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula

Más detalles

Campo gravitatorio: cuestiones PAU

Campo gravitatorio: cuestiones PAU Campo gavitatoio: cuestiones PU 3. Descibe bevemente las teoías que se han sucedido a lo lago de la histoia paa explica la estuctua del sistema sola. La obsevación del cielo y sus astos ha sido, desde

Más detalles

CONTENIDO PROLOGO I PARTE I FUNDAMENTOS DE LA MECÁNICA PARA LA INGENIERÍA Y DINÁMICA DE LA PARTÍCULA EN MOVIMIENTO PLANO

CONTENIDO PROLOGO I PARTE I FUNDAMENTOS DE LA MECÁNICA PARA LA INGENIERÍA Y DINÁMICA DE LA PARTÍCULA EN MOVIMIENTO PLANO V CONTENIDO PROLOGO I PRTE I FUNDMENTOS DE L MECÁNIC PR L INGENIERÍ Y DINÁMIC DE L PRTÍCUL EN MOVIMIENTO PLNO 1. Fundamentos de la Mecánica paa la Ingenieía. 1.1 Intoducción. 1 1. Conceptos básicos. 1.3

Más detalles

PROBLEMAS CAPÍTULO 5 V I = R = X 1 X

PROBLEMAS CAPÍTULO 5 V I = R = X 1 X PROBLEMAS APÍULO 5.- En el cicuito de la figua, la esistencia consume 300 W, los dos condensadoes 300 VAR cada uno y la bobina.000 VAR. Se pide, calcula: a) El valo de R,, y L. b) La potencia disipada

Más detalles

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza:

Sustituyendo los valores que nos da el problema obtenemos el siguiente valor para la fuerza: 1. Caga eléctica 2. Fueza electostática 3. Campo eléctico 4. Potencial electostático 5. Enegía potencial electostática 6. Repesentación de campos elécticos 7. Movimiento de cagas elécticas en el seno de

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

La Ley de la Gravitación Universal

La Ley de la Gravitación Universal Capítulo 7 La Ley de la Gavitación Univesal 7.1 La Ley Amónica de Keple La ley que Keple había encontado no elacionaba los adios con los cinco poliedos egulaes, peo ea igualmente simple y bella: Ley Amónica:

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES EL ESPACIO VECORIAL MAGNITUDES VECTORIALES Son las que paa queda pefectamente definidas es necesaio da: - Punto de aplicación - Diección - Sentido - Módulo o valo del VECTOR MODULO Y COSENOS DIRECTORES

Más detalles

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas

El Espacio Afín. I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas I. E. S. Siete Colinas (Ceuta) Depatamento de Matemáticas Matemáticas de º de Bachilleato El Espacio Afín Po Javie Caoquino CaZas Catedático de matemáticas del I.E.S. Siete Colinas Ceuta 005 El Espacio

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

b) La velocidad de escape se calcula con la siguiente expresión:

b) La velocidad de escape se calcula con la siguiente expresión: ADID / JUNIO 0. LOGSE / FÍSICA / CAPO GAVIAOIO PIEA PAE CUESIÓN Un planeta esféico tiene un adio de 000 km, y la aceleación de la gavedad en su supeficie es 6 m/s. a) Cuál es su densidad media? b) Cuál

Más detalles

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades.

FÍSICA UNIDAD TEMÁTICA I: Introducción a la Física. Conceptos Elementales. 1.3.- Unidades y Medidas. Sistemas de Unidades. UNIDAD TEMÁTICA I: Intoducción a la Física. Conceptos Elementales. 1.- ÍNDICE. 1.1.- Intoducción a la Física. 1.2.- Magnitudes Físicas. 1.3.- Unidades y Medidas. Sistemas de Unidades. 1.4.- Ecuación de

Más detalles

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA

TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA ORIA RLAIVISA D LA RAVIACION N LA XPANSION COSMOLOICA Rodolfo CARABIO Posiguiendo el estudio eoía Relativista de la avitación basada en la Relatividad special, se analizaa a continuación la aplicación

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera)

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera) Aplicación : Divesificación de las invesiones (poblema de selección de catea) Hecho empíico: Cuanto mayo es el valo espeado (endimiento) de una invesión NO es cieto que sea más apetecible. (Si invesoes

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A

I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A Opción A Ejecicio A [ 5 puntos] Se sabe que la función f: R R definida po f ( - +b+ si ) =, es deiable. a -5+a si > Detemina los aloes de a y b Paa se deiable debe de se, pimeamente, función continua,

Más detalles

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es:

CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es: CAMPO ELÉCTRICO Camp eléctic Es la egión del espaci que se ve petubada p la pesencia de caga cagas elécticas. Las caacteísticas más imptantes de la caga eléctica sn: - La caga eléctica se cnseva. - Está

Más detalles

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA CONSTANTE DIELÉCTRICA RELATIVA OBJETIVO: El alumno podá detemina la constante dieléctica elativa de divesos mateiales dielécticos mediante la medición de la capacitancia de un condensado de placas paalelas.

Más detalles

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA

CAMPO GRAVITATORIO FCA 05 ANDALUCÍA CAPO GRAVIAORIO FCA 05 ANDALUCÍA 1. Un satélite descibe una óbita cicula alededo de la iea. Conteste azonadaente a las siguientes peguntas: a) Qué tabajo ealiza la fueza de atacción hacia la iea a lo lago

Más detalles

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS

Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS Física Geneal III Ley de Gauss Optaciano Vásquez Gacía CAPITULO III LY D GAUSS 9 Física Geneal III Ley de Gauss Optaciano Vásquez Gacía 3.1 INTRODUCCIÓN n el capitulo anteio apendimos el significado del

Más detalles

Dinámica. Principio de Inercia

Dinámica. Principio de Inercia Dinámica Hemos estudiado algunos de los distintos tipos de movimientos que existen en la natualeza. Ahoa, llegó el momento de explica po qué se poducen éstos movimientos, y de esto se encaga la dinámica.

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO Joaquín ha comenzado a utiliza letas paa epesenta distintas situaciones numéicas. Obseve lo que ealiza con el siguiente enunciado: A Matías le egalaon

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

Fenómenos Ondulatorios: Interferencias

Fenómenos Ondulatorios: Interferencias Fenómenos Ondulatoios: Inteeencias Fenómenos de supeposición de ondas. Inteeencias (pags 67-76 Guadiel) Cuando en un punto de un medio coinciden dos o más ondas (petubaciones) se dice que en ese punto

Más detalles

Leyes de Kepler Movimiento de masas puntuales en las proximidades de la superficie terrestre Satélites. Velocidad orbital y velocidad de escape.

Leyes de Kepler Movimiento de masas puntuales en las proximidades de la superficie terrestre Satélites. Velocidad orbital y velocidad de escape. TEM : INTERCCIÓN GRVITTORI PRTE Genealización del concepto de tabajo a una fueza vaiable. Teoema del tabajo y la enegía cinética. Fuezas consevativas. Enegía potencial asociada a una fueza consevativa.

Más detalles

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Univesidad de Cantabia Tesis Doctoal FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Vidal Fenández Canales Capítulo 1 LA TURBULENCIA ATMOSFÉRICA La atmósfea no se compota como un medio homogéneo paa la popagación

Más detalles

Resistencia de Materiales

Resistencia de Materiales Tema 5 - Deflexión en Vigas Resistencia de Materiales Tema 5 Deflexión en vigas Sección 1 - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este tema se debe recordar

Más detalles

Movimiento en dos dimensiones

Movimiento en dos dimensiones Movimiento en dos dimensiones Nivelatoio de Física ESPOL Ing. José David Jiménez Continuación Contenido: Movimiento cicula Movimiento cicula Existen muchos ejemplos de movimiento cicula: Discos de música

Más detalles

LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL.

LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL. Física 1º bachilleato LAS FUERZAS Y SUS EFECTOS. DINÁMICA DEL PUNTO MATERIAL. 1.- Concepto de fueza. Tipos. Composición y descomposición de fuezas..- Fuezas y defomaciones. 3.- del punto mateial. Genealidades.

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

IES Al-Ándalus. Dpto. Física y Química. Curso 2004/05 Física 2º Bachillerato - 1 -

IES Al-Ándalus. Dpto. Física y Química. Curso 2004/05 Física 2º Bachillerato - 1 - IS Al-Ándalus. Dpto. Física y Quíica. Cuso 4/5 Física º Bachilleato - - FÍSICA º BACHIAO. XA AS 4, 5 - - 5 OPCIÓ A:. a) Caacteísticas de la inteacción anética. Difeencias con la inteacción electostática.

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

d AB =r A +r B = 2GM

d AB =r A +r B = 2GM Física de º Bachilleato Campo gavitatoio Actividad 1 [a] Enuncia la tecea ley de Keple y compueba su validez paa una óbita cicula. [b] Un satélite atificial descibe una óbita elíptica alededo de la Tiea,

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2

CONTENIDO Capítulo II.2 Campo y Potencial Eléctrico...2 CONTENIDO Capítulo II. Campo y Potencial Eléctico... II.. Definición de campo eléctico... II.. Campo poducido po vaias cagas discetas...4 II..3 Campo eléctico poducido po una distibución de caga continua...4

Más detalles

UNIVERSIDAD DE LA LAGUNA

UNIVERSIDAD DE LA LAGUNA ESCUEL UNIVERSIDD DE L LGUN TÉCNIC SUPERIOR DE INGENIERÍ INFORMÁTIC Tecnología de Computadoes Páctica de pogamación, cuso 2010/11 Pofeso: Juan Julian Meino Rubio Enunciado de la páctica: Cálculo de una

Más detalles

El campo eléctrico(i):ley de Coulomb

El campo eléctrico(i):ley de Coulomb El campo eléctico(i):ley de Coulomb La ley que ige el compotamiento de las cagas elécticas, es la ley de Coulomb, es como la ley de gavitación, una fueza a distancia ya que no se necesita ligadua física

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles