TEMA 3. SISTEMA DISCRET DE PARTÍCULES. SÒLID RÍGID.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 3. SISTEMA DISCRET DE PARTÍCULES. SÒLID RÍGID."

Transcripción

1 Tea. Sstea dscret de partícules. Sòld rígd. TEMA. SISTEMA DISCRET DE PARTÍCUES. SÒID RÍGID. Supose que en l espa h ha dstrbuïdes n partícules puntuals ab asses, r r r,..., n. Cada partícula està posconada pel seu vector poscó,,..., n respecte el ate sstea de referènca nercal... Centre de asses d un sstea de partícules llures puntuals. El centre de asses o centre de gravetat () d un sstea de partícules es defne co: r r r r r + r n rn n El centre de asses representa la poscó que tndra una sola assa ab valor sua de totes les partícules, que les substtuís. EXEMPE. Calculeu la poscó del del sstea forat per kg 5kg. Els seus vectors r r r r r r 5 r r poscó són + j k + j k. S vole pode calcular els coponents del centre de asses per separat. Aí ens quedaren els coponents del centre de asses epressats co: n n n y + y n yn y n z + z n zn z n.. Defncó de sòld rígd. Quan en un sstea de partícules puntuals les dstànces relatves es antenen constants de que el sstea es coporta co un sòld rígd. Co eeples de sòld rígds ten tots els cossos sòld sepre quan les vbracons que realtzen els seus àtos les deforacons que es produeen per accó de les forces (traccó, copressó, fleó torsó) sgun neglgbles. En ser les dstànces nteratòques olt pettes pode consderar que qualsevol cos sòld és contnu. És per aò que tabé pode dr que els sòlds rígds són sòlds contnus... Centre de asses d un sòld contnu regular. Consdereu un sòld contnu qualsevol que es troba en absènca de l accó de la gravetat. S el colpege per un punt observare que el sòld es ou descrvnt una translacó una rotacó. Tots els punts del sòld descruen una trajectòra crcular respecte el centre de asses o centre de gravetat el centre de gravetat descru una trajectòra rectlína. Per Roger Maurco Grañó

2 Tea. Sstea dscret de partícules. Sòld rígd. El càlcul del centre de asses d un sòld contnu ve donat per les següents ntegrals. d; y M cos M cos y d Aquest càlcul és coplcat però en el cas dels sòlds regulars (esferes, lànes quadrades o rectangulars, lànes trangulars, etc...) les seves setres la seva dstrbucó de assa unfore en redue la dfcultat. Cercle de rad R àna quadrada de costat àna rectangular de costats àna trangular de costats a,b c h h h àna secrcular de rad R. 4R π Per Roger Maurco Grañó

3 Tea. Sstea dscret de partícules. Sòld rígd. En aquest tea aprendre a deternar els centres de asses d algunes fgures geoètrques no regulars, concretaent les que estan forades per fgures regulars. - Càlcul del centre de asses. Quan els sòld rígds estgun forat per és d una part regular aplcare cnc passos per deternar el seu centre de asses.. Prer dvdre la fgura en la enor quanttat possble de fgures geoètrques regulars.. Posconare els centres de asses de cada una de les fgures geoètrques regulars.. Calculare la assa de cada fgura geoètrca regular. 4. Substture les fgures geoètrques regulars per asses puntuals stuades en els centres de asses calculats en el punt. 5. Calculare el centre de asses total ab les equacons de l apartat.. EXEMPE. Calculeu el centre de asses de la làna de la fgura. y 5 c. Dvd la fgura en fgures geoètrques senzlles.. Marcare els centres de asses de cada fgura.. Calculare la assa que té cada una de les fgures regulars. σ S σ S σ S σ σ σ y y ( ) ( ) ) y 8 Per Roger Maurco Grañó

4 Tea. Sstea dscret de partícules. Sòld rígd. 4. Substture les fgures per les asses anterors. 5. Calculare el centre de asses de la fgura rregular y y + y + y + + σ σ ( ) + σ ( ) + σ ( ) σ ( ) + σ ( ) + σ ( ) ( ) + σ ( )( ) + σ ( ) σ ( ) + σ ( ) + σ ( ) y 7 c Moent d nèrca. El oent d nèrca respecte un e de gr ens peret conèer:. Co està dstrbuïda la assa al voltant de l e de gr.. la dfcultat de fer grar el cos respecte l e de gr. El oent d nèrca de qualsevol partícula puntual ve donat per : I r S una sòld està forat per n partícules puntuals el seu oent d nèrca vndrà donat per la sua dels oents d nèrca de cada partícula. I I n n r S el sòld és contnu, la sua anteror es convertrà en una ntegral. I d r Per splfcar pode usar els oents d nèrca d alguns sòlds rígds regulars. Esfera assssa de rad R respecte el seu dàetre Closca esfèrca de rad R respecte el seu dàetre I MR 5 I MR Anell clíndrc de rad R respecte el seu e I MR Clndre sòld de rad R respecte el seu e I MR 4 Per Roger Maurco Grañó

5 Tea. Sstea dscret de partícules. Sòld rígd. Clndre assís de rad R longtud respecte el dàetre que passa pel centre és perpendcular al clndre R I M 4 + Barra pra de longtud respecte a una recta que passa pel seu centre és perpendcular a la barra. I M Paral lelepípede d arestes a, b c respecte un e que passa pel centre és paral lel a l aresta c ( b ) I M a +.5. Teorea d Stener. S conee el oent d nèrca respecte d un e que pass pel centre de asses d una fgura, pode calcular fàclent el oent d nèrca respecte de qualsevol e paral lel al prer. on d és la dstànca entre els dos eos. I I + d A EXEMPE Calculeu el oent d nèrca respecte l e A que passa per l etre d una barra pra de longtud. Dada: I oent d nèrca respecte d un e que passa pel és perpendcular a la barra. Aplque el teorea d Stener. I A I d + d I A + I A 5 Per Roger Maurco Grañó

6 Tea. Sstea dscret de partícules. Sòld rígd..6. Teorea de la fgura plana. Aquest teorea relacona els oents d nèrca respecte eos perpendculars entre s contnguts en el pla que conté la fgura plana, ab el oent d nèrca perpendcular a la fgura plana que passa pel punt de tall dels dos eos anterors. Supose una partícula puntual ( ) de la fgura plana. El seu oent d nèrca respecte els eos y són I y I y.el oent d nèrca de la assa respecte l e z serà I Z a on a + y. Substtunt, ens quedarà: I a I + y Z Z ( ) Aplcant aquest raonaent a tots els punts del sòld suant per a tot el sòld, ens quedarà: I + y I + y I I + I Z ( ) Z ( ) ( ) Z y.7. Moent d nèrca de fgures copostes. S un sòld està forat per dverses parts, pode calcular el seu oent d nèrca co la sua dels oents d nèrca de cada part, sepre tennt en copte que els oents s han de calcular respecte el ate e de gr. EXEMPE cos I k N I Calculeu el oent d nèrca respecte l e A de la fgura forada per una esfera de rad R una barra pra de longtud de asses M respectvaent. R M 0,5 kg 0, kg 0,5 R 0,.8. Representacó de forces en els sòlds contnus. Els sòlds contnus estaran sotesos a l accó de forces puntuals que són produïdes per altres sòlds o superfíces. En aquest apartat aprendre a dentfcar les forces que apareen sobre un cos per contacte ab un altre objecte. Un cop dentfcada la força pode substtur el cos causant de la força per una de puntual. Els tpus de contactes és habtuals que ens pode trobar són: 6 Per Roger Maurco Grañó

7 Tea. Sstea dscret de partícules. Sòld rígd. CONTACTES EN UN PUNT Cable tens sense pes: a força que fa el cable és en el sentt del cable ja que el cable sepre estra a epeny. Cable ab pes: a força és tangent a la curvatura del cable en el punt de contacte el sentt és el del cable ja que sepre estra a epeny. Contacte entre superfíces llses en un punt: a força és perpendcular a la superfíce de contacte. Contacte entre una superfíce llsa un cantell: a força és perpendcular a la tangent de la corba en el punt de contacte. Contacte entre superfíces ab frec: H ha dues forces, una és perpendcular a la tangent en el punt de contacte l altra és tangent a la corba en el punt de contacte. contacte. F r F F r F CONTACTES EXTENSOS Contactes etensos entre superfíces planes: - Contacte en tota la superfíce plana. a força és perpendcular a la superfíce de contacte. No pode establr-ne el punt d aplcacó. - Contacte en una aresta de la superfíce. a força actua a l aresta és perpendcular a la superfíce de recolzaent. Rodets gues llscants sense fregaent: a força és perpendcular a la dreccó de ovent del rodet. Artculacó: Actuen dues forces, una paral lela l altra perpendcular a la paret o al terra. 7 Per Roger Maurco Grañó

8 Tea. Sstea dscret de partícules. Sòld rígd. Encastaents: Actuen dues forces, una paral lela l altra perpendcular a la paret o al terra, un oent aplcat en l encastaent. RESOUCIÓ DE PROBEMES AMB SÒIDS CONTINUS Quan resoleu problees de dnàca haureu de procedr de la següent anera:. Observare el sòld a estudar dentfcare els tpus contactes a què està sotès.. Aïllare el sòld substture els contactes per les forces els oents. Dbuare les forces els oents on es produïa el contacte.. Fare el recopte del nobre d ncògntes. 4. Escrure les equacons de la dnàca que correspongun. 8 Per Roger Maurco Grañó

8 Geometria analítica

8 Geometria analítica Geometria analítica INTRODUCCIÓ Els vectors s utilitzen en diverses branques de la física que fan servir magnituds vectorials, per això és important que els alumnes en coneguin els elements i les operacions.

Más detalles

TEMA 10: Cossos geomètrics

TEMA 10: Cossos geomètrics TEMA 10: Cossos geomètrics 4tESO CB Cossos geomètrics: podem diferenciar poliedres i cossos de revolució I. Poliedre És una figura tridimensional limitat per cares que tenen forma de polígon: triangles,

Más detalles

x x 1 x 11= 7) y = 6 3x-2 12) y = e 5x (3x 2-6)

x x 1 x 11= 7) y = 6 3x-2 12) y = e 5x (3x 2-6) Derivació1/ 1.- Calculeu la primera derivada de les funcions següents, simplificant el resultat el màim possible. 1) y = - 4 4 + - ) y 6 4 4 = + 3 3) y = 3 + 4) y = ) 3 y = 6) y = ( + ) 1 + 7) ( 3) y =

Más detalles

RECONÈIXER ELS PRISMES I PIRÀMIDES PRINCIPALS. CALCULAR-NE LES ÀREES

RECONÈIXER ELS PRISMES I PIRÀMIDES PRINCIPALS. CALCULAR-NE LES ÀREES OBJECTIU RECONÈIXER ELS PRISMES I PIRÀMIDES PRINCIPALS. CALCULAR-NE LES ÀREES 10 NOM: CURS: DATA: CONCEPTE DE PRISMA Un prisma és un poliedre format per dues bases iguals i paral leles, les cares laterals

Más detalles

Fonaments Físics de les Estructures. Tema 4.- Geometria de masses (I): Centre de gravetat de superfícies planes.

Fonaments Físics de les Estructures. Tema 4.- Geometria de masses (I): Centre de gravetat de superfícies planes. Fonaments Físcs de les Estructures Tema 4.- eometra de masses (I): Centre de gravetat de superfíces planes. Objectus: Entendre el concepte de centre de gravetat. Dferencar el centre de gravetat màssc del

Más detalles

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT

EXERCICIS MATEMÀTIQUES 1r BATXILLERAT Treball d estiu/r Batillerat CT EXERCICIS MATEMÀTIQUES r BATXILLERAT. Aquells alumnes que tinguin la matèria de matemàtiques pendent, hauran de presentar els eercicis el dia de la prova de recuperació.

Más detalles

DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA

DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA Abans de començar cal tenir uns coneixements bàsics que estudiareu a partir d ara. PUNT: No es pot definir, però podem dir que és la marca més petita que

Más detalles

= 1+ β, essent α i β paràmetres reals. a la recta r 2. i el pla Π d equació

= 1+ β, essent α i β paràmetres reals. a la recta r 2. i el pla Π d equació Problema A Setembre 0 + y z = En l espai es té la recta r i el pla Π d equacions r x + mz = 0, on x y z = 0 m és un paràmetre real a) Un vector director de la recta r b) El valor de m per al qual la recta

Más detalles

I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC

I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC DIBUIX TÈCNIC I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES 1. Dist. d un punt a una recta - Abatiment del pla format per la recta i el punt 2. Dist. d un punt a un pla - Canvi de pla posant el pla de perfil

Más detalles

Cantidad de movimiento de una partícula: pi = mi vi Cantidad de movimiento del sistema: i i i. dt dt dt dt. Conjunto de partículas: 1 m 1

Cantidad de movimiento de una partícula: pi = mi vi Cantidad de movimiento del sistema: i i i. dt dt dt dt. Conjunto de partículas: 1 m 1 DFARN -- FFI DINÁMICA DE LOS SISTEMAS A CANTIDAD DE MOVIMIENTO Para una partícula: Cantdad de ovento de una partícula: p v Cantdad de ovento del sstea: p p v d( v F + F Para el sstea (suando para todas

Más detalles

Políedres regulars Cossos de revolució

Políedres regulars Cossos de revolució Políedres regulars Cossos de revolució Políedre. Un políedre és un cos limitat per cares poligonals. Angle díedre. Angle políedre anomena angle díedre d un políedre el que està format per dues cares que

Más detalles

Institut Jaume Balmes Aplicacions de les derivades I

Institut Jaume Balmes Aplicacions de les derivades I MS 1) Donada la funció y 6 + 8 a) Troba la recta tangent en el seu punt d'infleió. b) Troba la recta normal en el punt de 1 (1+0,5 1,5 punts) ) A la vista de la gràfica d'aquesta funció. a) Estudia la

Más detalles

Exercicis UNITAT Sobre la cadira actuen les forces. Determina gràficament el mòdul, la direcció iel sentit de la força resultant.

Exercicis UNITAT Sobre la cadira actuen les forces. Determina gràficament el mòdul, la direcció iel sentit de la força resultant. Exercicis UNITAT 1 1. Sobre la cadira actuen les forces. Determina gràficament el mòdul, la direcció iel sentit de la força resultant. 2. El pistó AB de la figura exerceix una força de 1000N per aixecar

Más detalles

Proves d accés a la Universitat per a més grans de 25 anys Convocatòria 2013

Proves d accés a la Universitat per a més grans de 25 anys Convocatòria 2013 Pàgina 1 de 5 Sèrie 3 Opció A A1.- Digueu de quin tipus és la progressió numèrica següent i calculeu la suma dels seus termes La progressió és geomètrica de raó 2 ja que cada terme s obté multiplicant

Más detalles

j Introducció al càlcul vectorial

j Introducció al càlcul vectorial FÍSICA 00 9 j Introducció al càlcul vectorial j Activitats finals h Qüestions 1. La suma dels vectors unitaris i, j és un altre vector unitari? Justifiqueu la resposta fent un gràfic. Els vectors unitaris

Más detalles

Tema 2: GEOMETRIA ANALÍTICA AL PLA

Tema 2: GEOMETRIA ANALÍTICA AL PLA Tema : GEOMETRIA ANALÍTICA AL PLA Vector El vector AB és el segment orientat amb origen al punt A i extrem al punt B b a A B Les projeccions del vector sobre els eixos són les components del vector: a

Más detalles

TEMA 6 : Geometria en l espai. Activitats

TEMA 6 : Geometria en l espai. Activitats TEMA 6 : Geometria en l espai Activitats 1. Siguin els punts A(1,2,3), B(0,1,3) i C(2,3,1) a) Trobeu el vector b) Calculeu el mòdul del vector c) Trobeu el vector unitari d igual direcció que el vector

Más detalles

+ 1= 0 té alguna arrel real (x en radians).

+ 1= 0 té alguna arrel real (x en radians). Generalitat de Cataluna Departament d Educació Institut d Educació Secundària Jaume Balmes Departament de Matemàtiques n BATX MA Eamen r quadrimestre Nom i Cognoms: Grup: Data: ) Calculeu els its següents:

Más detalles

POLÍGONS, CIRCUMFERÈNCIA I CERCLE

POLÍGONS, CIRCUMFERÈNCIA I CERCLE POLÍGONS, CIRCUMFERÈNCIA I CERCLE POLÍGONS Polígon és la figura plana tancada formada per n segments P 1P,PP3,P3P4,...,Pn P1 ( n 3 ) anomenats costats, essent els punts P,P,... els vèrtexs. 1 Pn L angle

Más detalles

Resolucions de l autoavaluació del llibre de text

Resolucions de l autoavaluació del llibre de text Pàg. 1 de 1 Tenim els vectors u(3,, 1), v ( 4, 0, 3) i w (3,, 0): a) Formen una base de Á 3? b) Troba m per tal que el vector (, 6, m) sigui perpendicular a u. c) Calcula u, ì v i ( u, v). a) Per tal que

Más detalles

Nom i Cognoms: Grup: Data:

Nom i Cognoms: Grup: Data: Generalitat de Catalunya Departaent d Educació Institut d Educació Secundària Jaue Bales Departaent de Mateàtiques n BATX MA Àlgebra i vectors No i Cognos: Grup: Data: 1) Discutiu i resoleu en els casos

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2012

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2012 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 1 1 k 1.- Determineu el rang de la matriu A = 1 k 1 en funció del valor del paràmetre k. k 1 1 [2 punts] En ser la matriu

Más detalles

1.- Sabem que el vector (2, 1, 1) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c. . cx by +2z = b

1.- Sabem que el vector (2, 1, 1) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c. . cx by +2z = b Oficina d Organització de Proves d Accés a la Universitat Pàgina de 5 PAU 0 - Sabem que el vector (,, ) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c cx by +z = b Calculeu el valor

Más detalles

PROVES D ACCÉS A CICLES FORMATIUS DE GRAU SUPERIOR Convocatòria maig de 2005 DIBUIX TÈCNIC

PROVES D ACCÉS A CICLES FORMATIUS DE GRAU SUPERIOR Convocatòria maig de 2005 DIBUIX TÈCNIC PROVES D ACCÉS A CICLES FORMATIUS DE GRAU SUPERIOR Convocatòria maig de 2005 DIBUIX TÈCNIC 1º A Donada la perspectiva de la figura dibuixa, a mà alçada, les tres vistes de la mateixa Dada la perspectiva

Más detalles

TEMA 4 : Geometria analítica al pla. Vectors i la Recta. Activitats

TEMA 4 : Geometria analítica al pla. Vectors i la Recta. Activitats TEMA 4 : Geometria analítica al pla. Vectors i la Recta Activitats 1. Donats els punts A(2,1), B(6,5),i C(-1,4): a) Representa els vectors AB i CA i estudia totes les seves característiques b) Calcula

Más detalles

UNITAT 3. Forces i les lleis de Newton

UNITAT 3. Forces i les lleis de Newton Generalitat de Catalunya Departament d educació i universitats IES FLIX DEPARTAMENT DE CIÈNCIES BLOC 2_ Objectius 1ER BAT. 1. OBJECTIUS UNITAT 3. Forces i les lleis de Newton Comprendre el concepte de

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves dʼaccés a la Universitat. Curs 2009-2010 Matemàtiques Sèrie 1 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què és el que voleu fer i per què. Cada qüestió val

Más detalles

Cognoms i Nom: Examen parcial de Física - CORRENT CONTINU 17 de Març del 2014

Cognoms i Nom: Examen parcial de Física - CORRENT CONTINU 17 de Març del 2014 Cognoms i Nom: Examen parcial de Física - CORRENT CONTINU 17 de Març del 2014 Codi Model A Qüestions: 50% de l examen A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació:

Más detalles

PROBLEMES DE DINÀMICA DE LA PARTÍCULA

PROBLEMES DE DINÀMICA DE LA PARTÍCULA EUETI PROLEMES DE DINÀMIC DE L PRTÍCUL 3.1 Una partícula de assa = 0,50 kg està sotesa a l acció de dues forces de valors: F 1 = 2,0 N i 3,0 N j F 2 = -3,0 N i + 5,0 N j Si la partícula inicialent es troba

Más detalles

VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D

VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D VECTORS I RECTES AL PLA Un vector és un segment orientat que és determinat per dos punts, A i B, i l'ordre d'aquests. El primer dels punts s'anomena origen i el segons es denomina extrem, i s'escriu AB.

Más detalles

Deduce razonadamente en que casos los planos π 1 y π 2 son o no paralelos:

Deduce razonadamente en que casos los planos π 1 y π 2 son o no paralelos: GEOMETRÍA Junio 98 Deduce razonadamente en que casos los planos y son o no paralelos: a) : x + y + z = y : x + y z = 4 b) : x y + z = 4 y : x y + z = Obtén la distancia entre los planos y cuando sean paralelos.

Más detalles

MMF 10 / 1. Mecànica 5. Dinàmica del sòlid rígid: tensor d inèrcia S. Xambó

MMF 10 / 1. Mecànica 5. Dinàmica del sòlid rígid: tensor d inèrcia S. Xambó MMF 10 / 1. Mecànica 5. Dinàmica del sòlid rígid: tensor d inèrcia S. Xambó Preliminars matemàtics Tensor d inèrcia Teorema d Steiner Moment angular Energia cinètica Moments d inèrcia Moments i eixos principals

Más detalles

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne: INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament

Más detalles

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ Representem un punt A en un pla i tracem dues semirectes amb origen en aquest punt. El punt A serà el vèrtex de l angle i cada semirecta serà el costat. 1..

Más detalles

CAMPS DE FORÇA CONSERVATIUS

CAMPS DE FORÇA CONSERVATIUS El treball fet per les forces del camp per a traslladar una partícula entre dos punts, no depèn del camí seguit, només depèn de la posició inicial i final. PROPIETATS: 1. El treball fet pel camp quan la

Más detalles

2 m. L = 3 m 42º 30º TREBALL I ENERGIA. 0,1 kg. 3,4 m. x 1 m. 0,2 m. k = 75 N/m. 1,2 m 60º

2 m. L = 3 m 42º 30º TREBALL I ENERGIA. 0,1 kg. 3,4 m. x 1 m. 0,2 m. k = 75 N/m. 1,2 m 60º 2 m L = 3 m 42º 30º TREBALL I ENERGIA 0,1 kg k = 75 N/m x 1 m 3,4 m 0,2 m 1,2 m 60º ÍNDEX 3.1. Concepte de treball 3.2. Tipus d energies 3.3. Energia mecànica. Principi de conservació de l energia mecànica

Más detalles

Cognoms i Nom: Examen parcial de Física - CORRENT CONTINU 3 d Octubre del 2013

Cognoms i Nom: Examen parcial de Física - CORRENT CONTINU 3 d Octubre del 2013 Examen parcial de Física - COENT CONTINU Model Qüestions: 50% de l examen cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25

Más detalles

Es important dir que, dos vectors, des del punt de vista matemàtic, són iguals quan els seus mòduls, sentits i direccions són equivalents.

Es important dir que, dos vectors, des del punt de vista matemàtic, són iguals quan els seus mòduls, sentits i direccions són equivalents. 1 CÀLCUL VECTORIAL Abans de començar a parlar de vectors i ficar-nos plenament en el seu estudi, hem de saber distingir els dos tipus de magnituds que defineixen la física: 1. Magnituds escalars: magnituds

Más detalles

2.5. La mesura de les forces. El dinamòmetre

2.5. La mesura de les forces. El dinamòmetre D11 2.5. La mesura de les forces. El dinamòmetre Per mesurar forces utilitzarem el dinamòmetre (NO la balança!) Els dinamòmetres contenen al seu interior una molla que és elàstica, a l aplicar una força

Más detalles

DERIVADES: exercicis bàsics ex D.1

DERIVADES: exercicis bàsics ex D.1 DERIVADES: eercicis bàsics e D.. Estudiar la derivabilitat de les funcions que s indiquen, calculant el seu camp de derivabilitat. Escriure l epressió de la funció derivada corresponent, en el cas de que

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d accés a la universitat Convocatòria 2014 Dibuix tècnic Sèrie 3 Indiqueu les opcions triades: Exercici 1: Opció A Opció B Exercici 2: Opció A Opció B Exercici 3: Opció A Opció B Qualificació 1

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2010-2011 Física Sèrie 2 L examen consta d una part comuna (problemes P1 i P2), que heu de fer obligatòriament, i d una part optativa, de la qual heu d escollir UNA

Más detalles

1. RECTA TANGENT I NORMAL 2. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS

1. RECTA TANGENT I NORMAL 2. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS APLICACIONS DE LA DERIVADA 1. RECTA TANGENT I NORMAL. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS 1. RECTA TANGENT I NORMAL 1.1 Trobeu l equació

Más detalles

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i.

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. Oficina d Accés a la Universitat Pàgina 1 de 11 Sèrie 5 1. Siguin i les rectes de d equacions : 55 3 2 : 3 2 1 2 3 1 a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. b) Trobeu l

Más detalles

CONVOCATÒRIA ORDINÀRIA. Proves d'accés a Cicles Formatius de Grau Mitjà 2004 Matemàtiques SOLUCIONS

CONVOCATÒRIA ORDINÀRIA. Proves d'accés a Cicles Formatius de Grau Mitjà 2004 Matemàtiques SOLUCIONS CONVOCATÒRIA ORDINÀRIA Proves d'accés a Cicles Formatius de Grau Mitjà 004 Matemàtiques SOLUCIONS PROVA D ACCÉS A CICLES FORMATIUS DE GRAU MITJÀ. Matemàtiques Solucions 1. A l esquerra teniu situacions

Más detalles

CONVOCATÒRIA ORDINÀRIA. Proves d'accés a Cicles Formatius de Grau Mitjà 2004 Matemàtiques

CONVOCATÒRIA ORDINÀRIA. Proves d'accés a Cicles Formatius de Grau Mitjà 2004 Matemàtiques CONVOCATÒRIA ORDINÀRIA Proves d'accés a Cicles Formatius de Grau Mitjà 2004 Matemàtiques PROVA D ACCÉS A CICLES FORMATIUS DE GRAU MITJÀ. Matemàtiques Convocatòria ordinària. 2004. 1. A l esquerra teniu

Más detalles

Problemes de dinàmica:

Problemes de dinàmica: Problemes de dinàmica: 1- Sobre una massa M = 5 kg, que es troba en repòs a la base del pla inclinat de la figura, s'aplica una força horitzontal F de mòdul 50 N. En arribar a l'extrem superior E, situat

Más detalles

PRIMERA MODEL B Codi B2. A1. C

PRIMERA MODEL B Codi B2. A1. C TOT n 15-16 -1/1 PRIMERA MODEL B Codi B A1 C1 15-16 1- (1) a) Raoneu que els polinomis són funcions contínues a tots el reals (1) b) Digueu que entenem per discontinuïtat de salt i poseu-ne un exemple

Más detalles

La porció limitada per una línia poligonal tancada és un

La porció limitada per una línia poligonal tancada és un PLA Si n és el nombre de costats del polígon: El nombre de diagonals és La suma dels seus angles és 180º ( n 2 ). La porció limitada per una línia poligonal tancada és un Entre les seves propietats destaquem

Más detalles

SÈRIE 4 PAU. Curs DIBUIX TÈCNIC

SÈRIE 4 PAU. Curs DIBUIX TÈCNIC SÈRIE 4 PAU. Curs 2004-2005 DIBUIX TÈCNIC L examen consta de la realització de tres dibuixos: el dibuix 1, una de les dues opcions del dibuix 2 i una de les dues opcions del dibuix 3. Escolliu entre l

Más detalles

Exercicis de rectes en el pla

Exercicis de rectes en el pla Equacions de la recta 1. Escriu les diferents equacions de la recta que passa pel punt P(3, 4) i que té com a vector director el vector v = ( 5, 2). 2. Per a la recta d equació director. 6 + y = 1, escriu

Más detalles

UN POLÍGON és una superficie plana

UN POLÍGON és una superficie plana UNITAT 10 - FIGURES PLANES RECORDA 4t. Primària UN POLÍGON és una superficie plana limitada per segments rectes. Cadascún d aquests segments és un COSTAT i cada punt on s uneixen dos costats forman un

Más detalles

SÈRIE 3 PAU. Curs DIBUIX TÈCNIC

SÈRIE 3 PAU. Curs DIBUIX TÈCNIC SÈRIE 3 PAU. Curs 2003-2004 DIBUIX TÈCNIC L examen consta de la realització de tres dibuixos: el dibuix 1, una de les dues opcions del dibuix 2 i una de les dues opcions del dibuix 3. Escolliu entre l

Más detalles

x + 2 y = 3 2 x y = 1 4 x + 3 y = k a) Afegiu-hi una equació lineal de manera que el sistema resultant sigui incompatible.

x + 2 y = 3 2 x y = 1 4 x + 3 y = k a) Afegiu-hi una equació lineal de manera que el sistema resultant sigui incompatible. 1998 - Sèrie 3 - Qüestió 4 Discutiu el sistema d'equacions a x y + 2 z = (2 a) 2 x + 3 y z = 3a x + 2 y z = 2a segons els valors del paràmetre a. 1999 - Sèrie 1 - Qüestió 1 Resoleu el sistema següent per

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 2007

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 2007 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 007 SÈRIE 3 Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 3 ÀREES I VOLUMS. Unitat 3 ÀREES I VOLUMS

Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 3 ÀREES I VOLUMS. Unitat 3 ÀREES I VOLUMS 70 Unitat 3 ÀREES I VOLUMS què treballaràs? En acabar la unitat has de ser capaç de: Reconèixer unitats de mesura d una àrea. Interpretar fórmules d àrees de figures planes. Aplicar fórmules d àrees de

Más detalles

Semblança. Teorema de Tales

Semblança. Teorema de Tales Semblança. Teorema de Tales Dos polígons són semblants si el angles corresponents són iguals i els costats corresponents són proporcionals. ABCDE A'B'C'D'E' si: Â = Â',Bˆ = Bˆ', Ĉ = Ĉ', Dˆ = Dˆ', Ê = Ê'

Más detalles

1. EQUILIBRI DE LA PARTÍCULA

1. EQUILIBRI DE LA PARTÍCULA 1. EQUILIBRI DE LA PARTÍCULA 1.1. Primera llei de Newton A la segona meitat del segle XVII Isaac Newton va formular tres lleis fonamentals en què es basa la mecànica clàssica. La primera d'aquestes lleis

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Módulo del vector : Es la longitud del segmento AB, se representa por. Dirección del

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Matemàtiques Sèrie 4 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts.

Más detalles

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta .- Elements d una recta..- Vector director d una recta..- Vector normal d una recta.3.- Pendent d una recta.- Equacions d una recta..- Equació ectorial, paramètrica i contínua..- Equació explícita.3.-

Más detalles

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35 ESO Divisibilitat 1 ESO Divisibilitat 2 A. El significat de les paraules. DIVISIBILITAT Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 = 7 5 35 = 5 7 35 7 0 5 35

Más detalles

UIB 2 + f (x) + f(x) ց ց ր ր Per tant, el punt ( 3. Una altra forma de veure-ho és calcular la derivada segona i mirar el signe en x = 3: 2 f (x) =

UIB 2 + f (x) + f(x) ց ց ր ր Per tant, el punt ( 3. Una altra forma de veure-ho és calcular la derivada segona i mirar el signe en x = 3: 2 f (x) = El cas positiu no té solució. Si analitzam el cas negatiu, ens surt x = x+, d on x =. A continuació fem la taula següent per veure si el valor obtingut és un màxim, mínim o un punt de sella. x + f (x)

Más detalles

LLEIS DELS GASOS (Ratoneja AQUÍ i fes-ho seguidament amb el títol)

LLEIS DELS GASOS (Ratoneja AQUÍ i fes-ho seguidament amb el títol) 1 LLEIS DELS GASOS (Ratoneja AQUÍ i fes-ho seguidaent ab el títol) Les lleis dels gasos es copleixen quan un gas té un coportaent ideal. A teperatures altes, els gasos tendeixen a tenir un coportaent és

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d accés a la universitat Convocatòria 2014 Dibuix tècnic Sèrie 3 Indiqueu les opcions triades: Exercici 1: Opció A Opció B Exercici 2: Opció A Opció B Exercici 3: Opció A Opció B Qualificació 1

Más detalles

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES.

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES. Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES 41 42 Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser

Más detalles

f x té màxims o mínims relatius. 6.- Determina els intervals de creixement i decreixement, màxims i mínims de les funcions següents: x

f x té màxims o mínims relatius. 6.- Determina els intervals de creixement i decreixement, màxims i mínims de les funcions següents: x EXERCICIS REPRESENTACIÓ DE FUNCIONS: - Estudia els intervals de monotonia (crei/decrei) de: f - Estudia si la funció f - Determina si la funció 4 té màims o mínims relatius e f té punts on la funció hi

Más detalles

Per què un cos modifica la seva velocitat? Un cos modifica la seva velocitat si sobre ell s exerceix una acció externa

Per què un cos modifica la seva velocitat? Un cos modifica la seva velocitat si sobre ell s exerceix una acció externa TEMA2: DIÀMICA er què un cos odifica la seva velocitat? Un cos odifica la seva velocitat si sobre ell s exerceix una acció externa. Les accions externes es representen per forces. La variació de la velocitat

Más detalles

Tema 8: Les forces i les màquines

Tema 8: Les forces i les màquines En aquest tema aprendràs que des de l antiguitat els éssers humans han inventat instruments per facilitar les feines i estalviar-se esforços. Aquests estris que ens ajuden a alleujar i simplicar una feina

Más detalles

Derivació Funcions Vàries Variables

Derivació Funcions Vàries Variables Derivació Funcions Vàries Variables Jordi Villanueva Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya 24 de febrer de 2016 Jordi Villanueva (MA1) Derivació Funcions Vàries Variables

Más detalles

GEOMETRIA ANALÍTICA PLANA

GEOMETRIA ANALÍTICA PLANA GEOMETRIA ANALÍTICA PLANA Un vector fix és un segment orientat que va del punt A (origen) al punto B (extrem). M òdul del vector AB, es representa pe r. : É s la long itud del segment Direc ció del vector

Más detalles

30. Calculeu l altura d una piràmide de base quadrada de 5 m de costat i 10 m d aresta lateral.

30. Calculeu l altura d una piràmide de base quadrada de 5 m de costat i 10 m d aresta lateral. 29. Es vol construir un celler per emmagatzemar bótes de vi de la forma com s indica en el dibui. Si d = 60 cm és el diàmetre de les bótes. Quina ha de ser l altura del celler? 30. Calculeu l altura d

Más detalles

Prova d accés a la Universitat (2013) Matemàtiques II Model 1. (b) Suposant que a = 1, trobau totes les matrius X que satisfan AX + Id = A, on Id

Prova d accés a la Universitat (2013) Matemàtiques II Model 1. (b) Suposant que a = 1, trobau totes les matrius X que satisfan AX + Id = A, on Id UIB Prova d accés a la Universitat () Matemàtiques II Model Contestau de manera clara i raonada una de les dues opcions proposades. Es disposa de 9 minuts. Cada qüestió es puntua sobre punts. La qualificació

Más detalles

La recta. La paràbola

La recta. La paràbola LA RECTA, LA PARÀBOLA I LA HIPÈRBOLA La recta Una recta és una funció de la forma y = m + n. m és el pendent de la recta i n és l ordenada a l origen. L ordenada a l origen ens indica el punt de tall amb

Más detalles

Problemes d optimització de les Pau s de València

Problemes d optimització de les Pau s de València Problemes d optimització de les Pau s de València 00-01 Problema 1 Siga T un triangle de perímetre 60cm. Un dels costats del triangle T té x cm i els altres dos costats tenen la mateixa longitud. a) Obteniu

Más detalles

Dotze problemes d optimització

Dotze problemes d optimització Dotze problemes d optimització Problema 1 Determineu les dimensions d un cilindre de volum màxim inscrit en un cub d aresta a tal que l eix del cilindre siga una diagonal del cub Problema En una semiesfera

Más detalles

Geometria / GE 2. Perpendicularitat S. Xambó

Geometria / GE 2. Perpendicularitat S. Xambó Geometria / GE 2. Perpendicularitat S. Xambó Vectors perpendiculars Ortogonal d un subespai Varietats lineals ortogonals Projecció ortogonal Càlcul efectiu de la projecció ortogonal Aplicació: ortonormalització

Más detalles

Proves d accés a la universitat Dibuix tècnic Sèrie 1 Indiqueu les opcions triades: Convocatòria 2017

Proves d accés a la universitat Dibuix tècnic Sèrie 1 Indiqueu les opcions triades: Convocatòria 2017 Proves d accés a la universitat Dibuix tècnic Sèrie 1 Indiqueu les opcions triades: Exercici 1: Opció A Exercici 2: Opció A Exercici 3: Opció A Opció B Opció B Opció B Qualificació 1 Exercicis 2 3 Suma

Más detalles

Problemes de Geometria per a l ESO 208

Problemes de Geometria per a l ESO 208 roblemes de Geometria per a l ESO 08 07- Si un jardí rectangular l eixamplarem m més ample i 3 m més llarg, tindria 64 metres quadrats més gran Si l eixamplarem 3 m més amples i m més llargs, tindria 68

Más detalles

PAAU. LOGSE. Curs

PAAU. LOGSE. Curs SÈRIE 2 PAAU. LOGSE Curs 1999-2000 DIBUIX TÈCNIC L examen consta de la realització de tres dibuixos: el dibuix 1, el dibuix 2 i una de les dues opcions del dibuix 3 (escolliu entre l opció A i l opció

Más detalles

La placa de característiques d un motor de corrent continu d excitació independent amb imants permanents és la següent:

La placa de característiques d un motor de corrent continu d excitació independent amb imants permanents és la següent: Motors de CC ( ca) 1. SÈRIE 1 PAU. LOGSE. Curs 2001-2002 Segona part OPCIÓ B - Exercc 4 [2,5 punts] La placa de característques d un motor de corrent contnu d exctacó ndependent amb mants permanents és

Más detalles

2 desembre 2015 Límits i número exercicis. 2.1 Límits i número

2 desembre 2015 Límits i número exercicis. 2.1 Límits i número I. E. S. JÚLIA MINGUELL Matemàtiques 2n BAT. 2 desembre 205 Límits i número exercicis 2. Límits i número 4. Repàs de logaritmes i exponencials: troba totes les solucions de cadascuna de les següents equacions:

Más detalles

Com és la Lluna? 1 Com és la Lluna? F I T X A D I D À C T I C A 4

Com és la Lluna? 1 Com és la Lluna? F I T X A D I D À C T I C A 4 F I T X A 4 Com és la Lluna? El divendres 20 de març tens l oportunitat d observar un fenomen molt poc freqüent: un eclipsi de Sol. Cap a les nou del matí, veuràs com la Lluna va situant-se davant del

Más detalles

IES MARAGALL Barcelona

IES MARAGALL Barcelona ASSOCIACIO DE BARCELONA PER A L ESTUDI I L APRENENTATGE DE LES MATEMATIQUES ` IES MARAGALL Barcelona FEM MATEMÀTIQUES 2005. SEGONA FASE. 9-IV-05 NIVELL 1. SISÈ D EP PROVA INDIVIDUAL 1. En Carles col. lecciona

Más detalles

Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010

Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Matemàtiques Sèrie 1 Dades de la persona aspirant Qualificació

Más detalles

Geogebra és un programa de llicència lliure i multiplataforma per l aprenentatge i ensenyament de les matemàtiques a tots els nivells.

Geogebra és un programa de llicència lliure i multiplataforma per l aprenentatge i ensenyament de les matemàtiques a tots els nivells. Espiral de Fibonacci Geogebra 1. Introducció al programa Geogebra és un programa de llicència lliure i multiplataforma per l aprenentatge i ensenyament de les matemàtiques a tots els nivells. Teniu una

Más detalles

1. Què tenen en comú aquestes dues rectes? Com són entre elles? 2. En què es diferencien aquestes dues rectes?

1. Què tenen en comú aquestes dues rectes? Com són entre elles? 2. En què es diferencien aquestes dues rectes? En la nostra vida diària trobem moltes situacions de relació entre dues variable que es poden interpretar mitjançant una funció de primer grau. La seva expressió algebraica és del tipus f(x)=mx+n. També

Más detalles

TEMA 5 : Derivades. Tècniques de derivació. Activitats

TEMA 5 : Derivades. Tècniques de derivació. Activitats TEMA 5 : Derivades. Tècniques de derivació Activitats. Calculeu, mitjançant la definició de derivada, la derivada de les funcions següents en els punts indicats: a) f() en f() + 4 5 en - c) f() 6 + 5 en

Más detalles

Matemàtiques Sèrie 1. Instruccions

Matemàtiques Sèrie 1. Instruccions Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 0 Matemàtiques Sèrie SOLUCIONS, CRITERIS DE CORRECCIÓ

Más detalles

Equacions i sistemes de segon grau

Equacions i sistemes de segon grau Equacions i sistemes de segon grau 3 Equacions de segon grau. Resolució. a) L àrea del pati d una escola és quadrada i fa 0,5 m. Per calcular el perímetre del pati seguei els passos següents: Escriu l

Más detalles

INTEGRALS. 2 a) 3-2 x 2 x 3 dx b) 5-3x 2 dx c) 5 x 2 7 x dx d) x x 4 dx. x x - 2 x2 - x 3 dx c) 1+x 2 dx.

INTEGRALS. 2 a) 3-2 x 2 x 3 dx b) 5-3x 2 dx c) 5 x 2 7 x dx d) x x 4 dx. x x - 2 x2 - x 3 dx c) 1+x 2 dx. INTEGRALS a) 3 6 b) 2 2 c) 5 3 2 d) 7 3 e) 2 a) 3-2 2 3 b) 5-3 2 c) 5 2 7 d) 3 a) 5-2 3-7 2 +2-5 3 b) 3 2-3 + 3 +5 2-2 2-3 c) + 2 a) 3-3 2 2 b) -3 2 c) 5-3 2 5 a) 2 +7-6 +3 5 b) 7 3-2+ 3 +3 c) 5+3 7 2

Más detalles

Polinomis i fraccions algèbriques

Polinomis i fraccions algèbriques Polnoms fraccons algèbrques Crèdt varable d amplacó Tema Fraccons algèbrques Fraccons algèbrques En molts problemes apareen sovnt fraccons en les quals el numerador o el denomnador o tots dos alhora són

Más detalles

Tema 6. Energia. Treball i potència. (Correspondria al Tema 7 del vostre llibre de text pàg. 144-175)

Tema 6. Energia. Treball i potència. (Correspondria al Tema 7 del vostre llibre de text pàg. 144-175) Tema 6. Energia. Treball i potència (Correspondria al Tema 7 del vostre llibre de text pàg. 144-175) ÍNDEX 6.1. Definició d energia 6.2. Característiques de l energia 6.3. Com podem transferir l energia

Más detalles

Càlcul d'àrees i volums.

Càlcul d'àrees i volums. Càlcul d'àrees i volums. Exemple 1. Donada la figura següent: Calcula'n: superfície volum Resolució: Fixem-nos que la superfície està formada per tres objectes.: 1. la base del cilindre 2. la paret del

Más detalles

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos DE S L U S RE S I V I C LES Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos aquells exercicis que requereixen

Más detalles

Gràfiques del moviment rectilini uniforme (MRU)

Gràfiques del moviment rectilini uniforme (MRU) x = x 0 + v (t-t 0 ) si t 0 = 0 s x = x 0 + vt D4 Gràfiques del moviment rectilini uniforme (MRU) Gràfica posició-temps Indica la posició del cos respecte el sistema de referència a mesura que passa el

Más detalles

MATEMÀTIQUES CURS En vermell comentaris per al professorat Construcció d una escultura 3D

MATEMÀTIQUES CURS En vermell comentaris per al professorat Construcció d una escultura 3D En vermell comentaris per al professorat Construcció d una escultura 3D 1/8 Es disposen en grups de tres o quatre i se ls fa lliurament del dossier. Potser és bona idea anar donant per parts, segons l

Más detalles

f x té màxims o mínims relatius. 6.- Determina els intervals de creixement i decreixement, màxims i mínims de les funcions següents: x

f x té màxims o mínims relatius. 6.- Determina els intervals de creixement i decreixement, màxims i mínims de les funcions següents: x 4- EXERCICIS REPRESENTACIÓ DE FUNCIONS: - Estudia els intervals de monotonia (crei/decrei) de: f - Estudia si la funció f - Determina si la funció 4 té màims o mínims relatius e f té punts on la funció

Más detalles