DERIVADES: exercicis bàsics ex D.1
|
|
|
- Juan José Segura Aguirre
- hace 7 años
- Vistas:
Transcripción
1 DERIVADES: eercicis bàsics e D.. Estudiar la derivabilitat de les funcions que s indiquen, calculant el seu camp de derivabilitat. Escriure l epressió de la funció derivada corresponent, en el cas de que eisteii. (a) f() = sin E() (b) f() = (c) f() = (, si 0 e, si > 0 (d) f() = E( ).. Es considera la funció f : R R definida per f() = >< >: a + 3, si < 3, si = b + 5, si > Estudiar la continuïtat i derivabilitat d aquesta funció segons els valors dels paràmetres a, b R. 3. Sigui la funció f : R R definida per (, si 0 f() =, si < 0 (a) Estudiar la continuïtat de la funció en R. (b) Estudiar la derivabilitat de la funció en R. Calculeu la funció derivada Df. (c) Aplicant la definició de derivada d una funció en un punt, calculeu Df( 3). (d) Estudieu l eistència de la derivada segona de f. 4. Estudiar la continuïtat i derivabilitat de les funcions >< n sin f n : R R, definides per: f n () =, si 0 >: 0, si = 0 segons els valors de n N..
2 DERIVADES: eercicis bàsics e D. 5. Calcular les derivades laterals de les funcions següents en els punts que s indiquen: ><, si 0 (a) f() = + e/ en el punt a = 0 >: 0, si = 0 >< ( ) arctan, si (b) f() = en a =. >: 0, si = 6. Calcular les funcions derivades de les següents funcions: (a) ( + ) 3 (b) ( )3 (c) + (d) 3 tan3 tan + (e) + cos (f) ecos cos (g) e cos (h) cot tan (i) ln (j) ln log ln a log a (k) cos a cos (m) cos + ln ( + ) (o) argtanh (sin e ) (q) ln arctan cos cos (l) «(n) ( + cos 6 + sin 6 ) 5 «(r) 7. Si a, b > 0, provar les següents igualtats: (a) D a ln a +! a + = a + (b) D r ««a arctan = ab b a + b (p) arctan (ln ) + ln (arctan ) q + p +.
3 DERIVADES: eercicis bàsics e D.3. Provar que en la paràbola d equació y = A + B + C, la corda que unei als punts d abcissa = a i = b, és paral. lela a la recta tangent a la paràbola en el punt d abcissa = a + b. 9. Calcular la segona derivada de les funcions: (a)f() = e (b)h() = ( + ) arctan (c)g() = ln 3 + (d)i() = a cosh a. 0. Estudieu la derivabilitat i calculeu la derivada de les següents funcions: (a)f() = + (c)f() = + >< e t, t 0 (h)f(t) =, 0 < t < >: ln t, t (e)f() = cos + sin () + arctan (f)f() = + sin ( ) + ln + (b)f() = e + + (d)f() = >< t, t (g)f(t) = >: (t ), t >. Trobeu els punts en els que la recta tangent a la corba y = és paral. lela a l ei d abcisses.. Trobeu els punts en que la recta tangent a la corba y = és paral. lela a la recta y = Si f : R R és funció derivable, calculeu les derivades de les funcions: (a) g() = f( + ) (b) g() = f() + + (c) g() = f(sin ) + cos (f()) (d) g() = e f() + f() + f (f())
4 DERIVADES: eercicis bàsics e D.4 4. En quins punts la pendent de la recta tangent a f() = 3 6 és paral. lela al segment que unei P (0, 0) i P (, 4)? 5. Calcula la pendent de les tangents a la paràbola y = 4 + en els seus punts d intersecció amb l ei OX. 6. Sigui f la funció real definida per f() = 5 ( + ) ln( + ) [0, e] Determineu, si és possible, el nombre d arrels en [0, e]. 7. Trobeu els etrems relatius de f() = + 3. Trobeu l equació de la paràbola que millor aproima en el punt (0,0) a la corba f() = e ln( + ). 9. Calculeu cos() amb un error inferior a 0.00 aplicant la fórmula de Taylor. 0. Trobeu els etrems absoluts de la funció f() = 3 3 a l interval [0, ].. a) Epresseu el teorema de Taylor per a la funció eponencial en 0 = 0. b) Calculeu e amb un error inferior a 0.. Estudieu els límits: (a) (c) (e) (g) (i) arctan(a) 0 ln( + b) ln( + e ) + sin() sin() tan( ) ( ) ( ) 3 sin() + sin() (b 0) (b) 0 (d) (f) (h) + m ln( + e ) ln()
5 DERIVADES: eercicis bàsics e D.5 3. Calculeu els etrems de la funció f() = sin() a l interval [0, 6]. 4. Calculeu els etrems de la funció f() = ln() a l interval [0., 3]. 5. Sigui f la funció real definida per f() = 5 ( + ) ln( + ) [0, e] Determineu, si és possible, el nombre d arrels en [0, e]. 6. Trobeu els etrems absoluts de la funció f() = 3 3 a l interval [0, ]. 7. Trobeu l equació de la paràbola que millor aproima en el punt (0,0) a la corba f() = e ln( + ).. D un mirall rectangular de m de llargària i m d alçada se n ha trencat, en un dels vèrtes, un triangle rectangle que té 30cm de llargària i 0cm d altura. Com s haurà de tallar un altre mirall de costats paral.lels al mirall inicial de manera que l àrea d aquest nou mirall sigui màima. 9. Disposem d un filferro d m de llargària. De quina manera s haurà de repartir per tal de construir una circumferència i un quadrat de manera que la suma de l àrea del cercle que determina la circumferènca i l àrea del quadrat sigui mínima. 30. Determinar l altura del cilindre circular recte de volum màim que es pot inscriure en un con circular recte d un metre d altura. 3. Un col.leccionista, entre segells i monedes, en té 50. Si un altre col.leccionista li dóna tres segells a canvi d una moneda, el producte del nombre de monedes que li queden pel de segells és màim. Quants segells i monedes tenia inicialment. 3. Troba dos nombres positius que sumant 30 tinguin mínima la suma dels seus quadrats. 33. Es vol construir un recipient cilíndric, amb tapa, de volum 00m 3. Quines han de ser les seves dimensions perquè s utilitzi la mínima quantitat de material? 34. Una persona transporta un vidre molt prim per un carrer en forma de L, de manera que una de les parts del carrer té 4m
6 DERIVADES: eercicis bàsics e D.6 d amplada i l altra, 3m. Quina serà la longitud màima que podrà tenir el vidre per poder passar-hi? 35. Hem de construir un parterre en forma de sector circular amb perímetre de 0m. Calcula el radi del sector per tal d obtenir-lo d àrea màima. 36. Troba els punts de la gràfica de la funció y = 4, tals que la distància al punt (4, 0) sigui mínima. Calcula aquesta distància. 37. Troba el punt de la paràbola y = que està més a prop del punt (9, 0). 3. Calcula els punts de la gràfica de la funció f() = + en què la tangent té pendent màim. 39. La trajectòria d un projectil disparat per un canó d artilleria situat a l origen de coordenades és la paràbola f() = k( + tan α) + tan α, on k és una constant positiva que depèn de les característiques del canó i α és l angle que formen l ei de les positives i el canó. L angle α se suposa comprès entre 0 i P i. Calcula l angle α per al qual la paràbola anterior talla a l ei de les el més lluny possible de l origen.
Semblança. Teorema de Tales
Semblança. Teorema de Tales Dos polígons són semblants si el angles corresponents són iguals i els costats corresponents són proporcionals. ABCDE A'B'C'D'E' si: Â = Â',Bˆ = Bˆ', Ĉ = Ĉ', Dˆ = Dˆ', Ê = Ê'
MATEMÀTIQUES ÀREES I VOLUMS
materials del curs de: MATEMÀTIQUES ÀREES I VOLUMS EXERCICIS RECULL D APUNTS I EXERCICIS D INTERNET FET PER: Xavier Vilardell Bascompte [email protected] ÚLTIMA REVISIÓ: 08 de febrer de 2010 Aquests materials
6. Calcula l obertura de l angle que falta. Digues de quin tipus d angles es tracta. 6
Geometria dossier estiu 2012 2C 1. Dibuixa dues rectes, m i n, que siguin: a) Paral leles horitzontalment. c) Paral leles verticalment. b) Secants. d) Perpendiculars. 6 2. Dibuixa una recta qualsevol m
GEOMETRÍA ANALÍTICA PLANA
GEOMETRÍA ANALÍTICA PLANA Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Módulo del vector : Es la longitud del segmento AB, se representa por. Dirección del
Matemàtiques 1r d'eso Professora: Lucía Clar Tur DOSSIER DE REPÀS
DOSSIER DE REPÀS 1. Ordena els nombres de més petit a més gran: 01 0 01 101 0 001 0 001 0 1. Converteix els nombres fraccionaris en nombres decimals i representa ls en la recta: /4 1/ 8/ 11/10. Efectua
I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC
DIBUIX TÈCNIC I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES 1. Dist. d un punt a una recta - Abatiment del pla format per la recta i el punt 2. Dist. d un punt a un pla - Canvi de pla posant el pla de perfil
10 Calcula la distancia que separa entre dos puntos inaccesibles A y B.
1 De un triángulo sabemos que: a = 6 m, B = 45 y C = 105. Calcula los restantes elementos. 2 De un triángulo sabemos que: a = 10 m, b = 7 m y C = 30. Calcula los restantes elementos. 3 Resuelve el triángulo
TEMA 4: Equacions de primer grau
TEMA 4: Equacions de primer grau Full de preparació Aquest full s ha de lliurar el dia de la prova Nom:... Curs:... 1. Expressa algèbricament les operacions següents: a) Nombre de rodes necessàries per
UNITAT 3 OPERACIONS AMB FRACCIONS
M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de
Curs de preparació per a la prova d accés a cicles formatius de grau superior. Matemàtiques BLOC 3: FUNCIONS I GRÀFICS. AUTORA: Alícia Espuig Bermell
Curs de preparació per a la prova d accés a cicles formatius de grau superior Matemàtiques BLOC : FUNCIONS I GRÀFICS AUTORA: Alícia Espuig Bermell Bloc : Funcions i gràfics Tema 7: Funcions... Tema 8:
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
8 Geometria analítica
Geometria analítica INTRODUCCIÓ Els vectors s utilitzen en diverses branques de la física que fan servir magnituds vectorials, per això és important que els alumnes en coneguin els elements i les operacions.
Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh
Módulo 1 DERIVADAS 1.1 Reglas de diferenciación Reconocimiento de saberes Ejercicio 1 Relacione convenientemente cada una de las siguientes epresiones: (considere > 0 ) ln ( e ) ln ln ( e ) ln e ln + ln
x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4
CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2
Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS
M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
Unidad I Funciones Expresar una función. Dominios
Unidad I Funciones Epresar una función 1. Un rectángulo tiene un perímetro de 0m. Eprese el área del rectángulo como función de la longitud de uno de sus lados.. Un rectángulo tiene un área de 16 m. Eprese
Programa Grumet Èxit Fitxes complementàries
MESURA DE DENSITATS DE SÒLIDS I LÍQUIDS Activitat 1. a) Digueu el volum aproximat dels següents recipients: telèfon mòbil, un cotxe i una iogurt. Teniu en compte que un brik de llet té un volum de 1000cm3.
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2005
Oficina d Organització de Proves d Accés a la Universitat Pàgina de 0 PAU 005 SÈRIE Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar
APLICACIONES DE LAS DERIVADAS
UNIDAD APLICACIONES DE LAS DERIVADAS Página 98 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f
1,94% de sucre 0,97% de glucosa
EXERCICIS DE QUÍMICA 1. Es prepara una solució amb 2 kg de sucre, 1 kg de glucosa i 100 kg d aigua destil lada. Calcula el tant per cent en massa de cada solut en la solució obtinguda. 1,94% de sucre 0,97%
3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1
1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada
PROBLEMAS DE OPTIMIZACIÓN
1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello
3. y = (2x+1)2 2x+3. x, x < 2 x+1, x 2
Derivadas. Dada la siguiente función, calcular, por la definición, la derivada que se indica:. f() = - ; f (-). f() = ; f (0). f() = ln ; f () 4. f() = - ; f (0) 5. f() = +, < 0, 0 ; f (0) 6. f() = sen,
FIB Enunciats de Problemes de Física DFEN. Camp magnètic
Camp magnètic 1. Calculeu la força de Lorentz que actua sobre una càrrega q = -2 10-9 C que es mou amb una velocitat v = -(3 10-6 m/s) i, si el camp magnètic és a) B = 6000 G j b) B = 6000 G i + 6000 G
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES
TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,
DERIVADA DE FUNCIONES REALES
. Recta tangente a una curva DERIVADA DE FUNCIONES REALES Consideremos la curva y = f() correspondiente a una función continua y en ella dos puntos distintos P( ; y ) y Q( ; y ). PQ es una recta secante
Districte Universitari de Catalunya
Proves d Accés a la Universitat per a més grans de 25 anys Convocatòria 2013 Dibuix tècnic Sèrie 3 Fase específica Opció: Enginyeria i arquitectura Bloc 1 A/B Bloc 2 A/B Bloc 3 A/B Qualificació Qualificació
Profesor: Fernando Ureña Portero
MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)
4.7. Lleis de Newton (relacionen la força i el moviment)
D21 4.7. Lleis de ewton (relacionen la força i el moviment) - Primera Llei de ewton o Llei d inèrcia QUÈ ÉS LA IÈRCIA? La inèrcia és la tendència que tenen el cossos a mantenirse en repòs o en MRU. Dit
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Dossier d estiu de Matemàtiques. 5è d Educació Primària.
MATEMÀTIQUES 5è 1. Encercla el nombre que s indica: a) quaranta mil vuit: 48.000 40.080 40.008 408.000 b) un milió dotze mil: 1.000.012 1.120.000 1.012.000 1.000.120 c) tres milions tres-cents mil 300.300
Polígon. Taula de continguts. Noms i tipus. De Viquipèdia. Per a altres significats, vegeu «Polígon (desambiguació)».
Polígon De Viquipèdia Per a altres significats, vegeu «Polígon (desambiguació)». Un polígon (del grec, "molts angles") és una figura geomètrica plana formada per un nombre finit de segments lineals seqüencials.
A) Se planteará una prueba que corresponda a los contenidos de Geometría y/o de Arte y Dibujo Técnico.
8.- Assignatura: Dibuix Tècnic II. 8.1.- Característiques de l examen. Se ofrecerán al alumno dos ejercicios de los que deberá elegir y realizar uno. Cada uno de ellos estará compuesto de las siguientes
Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360
Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud
COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD
COMISSIÓ GESTORA DE LES PROVES D ACCÉS A LA UNIVERSITAT COMISIÓN GESTORA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD PROVES D ACCÉS A LA UNIVERSITAT PRUEBAS DE ACCESO A LA UNIVERSIDAD CONVOCATÒRIA: SETEMBRE
x = 0, la recta tangente a la gráfica de f (x)
CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?
TEORIA I QÜESTIONARIS
ENGRANATGES Introducció Funcionament Velocitat TEORIA I QÜESTIONARIS Júlia Ahmad Tarrés 4t d ESO Tecnologia Professor Miquel Estruch Curs 2012-13 3r Trimestre 13 de maig de 2013 Escola Paidos 1. INTRODUCCIÓ
1. Resolver las siguientes ecuaciones o inecuaciones.
. Resolver las siguientes ecuaciones o inecuaciones. a) + ; b) + 9 + 6 + ; c) + + ; d) = + + ; e) + = 0; f) 5 < + ; g) + > ; h) < < ; i) + < ; j) + ; b) < ó c) 05 9 05 9 ó < ó > 0
IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,
Veure que tot nombre cub s obté com a suma de senars consecutius.
Mòdul Cubs i nombres senars Edat mínima recomanada A partir de 1er d ESO, tot i que alguns conceptes relacionats amb el mòdul es poden introduir al cicle superior de primària. Descripció del material 15
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
APLICACIONES DE LA DERIVADA
7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece
EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA CPI EJERCITARIO GENERAL DE CÁLCULO DIFERENCIAL AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 CAPÍTULO 1: FUNCIONES
3. DIAPOSITIVA D ORGANIGRAMA I DIAGRAMA
1 3. DIAPOSITIVA D ORGANIGRAMA I DIAGRAMA Ms PowerPoint permet inserir, dins la presentació, objectes organigrama i diagrames. Els primers, poden resultar molt útils si es necessita presentar gràficament
Ejercicios de Análisis propuestos en Selectividad
Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa
CAMPS DE FORÇA CONSERVATIUS
El treball fet per les forces del camp per a traslladar una partícula entre dos punts, no depèn del camí seguit, només depèn de la posició inicial i final. PROPIETATS: 1. El treball fet pel camp quan la
Problemas de selectividad. Análisis
Departamento de Matemáticas Página 1 Problemas de selectividad. Anális 14.01.- De entre todos los triángulos rectángulos de área 8 cm, determina las dimenones del que tiene la hipotenusa de menor longitud.
Funcions i gràfiques. Objectius. 1.Funcions reals pàg. 132 Concepte de funció Gràfic d'una funció Domini i recorregut Funcions definides a trossos
8 Funcions i gràfiques Objectius En aquesta quinzena aprendreu a: Conèixer i interpretar les funcions i les diferents formes de presentar-les. Reconèixer el domini i el recorregut d'una funció. Determinar
b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0
ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio
Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.
Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución
[email protected]!!91.501.36.88!!28007!madrid!
CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,
5 Demostrar cada una de las siguientes afirmaciones empleando la definición de
Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las
Tema 10: Cuerpos geométricos y transformaciones geométricas
Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS
79 Problemes de física per a batxillerat...// M. L. Escoda, J. Planella, J. J. Suñol // ISBN:
79 Problemes de física per a batxillerat...// M. L. Escoda, J. Planella, J. J. Suñol // ISBN: 84-8458-0-5 TREBALL I ENERGIA Index P.. P.. P.3. P.4. P.5. P.6. Concepte de treball Teorema del treball i de
SOLUCIONARI Unitat 7
SOLUCIONAI Unitat 7 Electromagnetisme Qüestions 1. Un imant atrau una peça de ferro. Aleshores el ferro pot atraure una altra peça de ferro. Podeu donar una explicació d aquest fenomen? Quan un imant natural
Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales
Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=
DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES
UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en
DINÀMICA DE SISTEMES DE PARTÍCULES
07 Problemes de física per a batxillerat...// M. L. Escoda, J. Planella, J. J. Suñol // ISBN: 84-8458-0-5 DINÀMICA DE SISTEMES DE PARTÍCULES P.. P.. P.3. P.4. P.5. Concepte de centre de masses Moviment
dada por c(x) = donde x indica el tamaño de los pedidos para renovar existencias
FUNCIONES +, si
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. 001 Hallar 2 números cuya suma es 20, sabiendo que su producto es 002 003 004 005 Halla dos números cuya suma sea 25, tales que el doble
y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.
. Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.
UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades
EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x +
EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS).- La temperatura T, en grados centígrados, que adquiere una pieza sometida a un proceso viene dada en función del tiempo t, en horas, por la epresión: Tt t
UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS
Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo
f(x) f(x 0 ) = L IR h 0 = 0 = f (x 0 ); con lo que f (x) = 0 para todo x IR. (x x = lím x + x 0 = 2x 0 = f (x 0 ), y f (x) = 2x en IR.
Matemáticas I : Cálculo diferencial en IR Tema Funciones derivables. Derivada de una función en un punto Definición 4.- Se dice que f: (a, b IR es derivable en el punto (a, b si f( f( = L IR es decir,
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
APLICACIONES DEL CÁLCULO DIFERENCIAL-II
APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0
5.- Quins tres pobles amenaçaven l Europa occidental? D on venien?
L EUROPA FEUDAL Pàgs. 22 25 1.- A quins territoris es va implantar el feudalisme?... A partir de quina època?... 2.- Qui era Carlemany i què va fer? 3.- Com s organitzava el seu imperi? 4.- Què va passar
La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a
3 Derivación 3.. La derivada La derivada de una función en punto a de su dominio está dada por la fórmula f (a) = lím a f() f(a) a El cociente f() f(a) a es la pendiente de la recta secante a la función
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
IES LOS PEDROCHES. Geométrico
Geométrico Relaciones Trazar y acotar en mm. sobre cada uno de los segmentos correspondientes, la distancia entre cada par de elementos dados: Puntos P y Q, rectas r y s y circunferencia de centro O. +Q
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
UNIDAD DIDÁCTICA 10: Derivadas
accés a la universitat dels majors de 5 anys acceso a la universidad de los mayores de 5 años UNIDAD DIDÁCTICA 0: Derivadas ÍNDICE DESARROLLO DE LOS CONTENIDOS Visualización del concepto de derivada de
DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim
DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
6. Optimización de funciones de una variable.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. 6. Optimización de funciones de una variable. En esta sección estudiaremos cómo calcular los extremos absolutos (si estos existen) de una función suficientemente
11 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría
Aplicaciones de las derivadas. Máimos, mínimos y monotonía Piensa y calcula Dada la gráfica de la función f representada en el margen, halla los máimos y los mínimos relativos y los intervalos de crecimiento
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
Ejercicios para aprender a derivar
Ejercicios para aprender a derivar Derivación de polinomios y series de potencias Reglas de derivación: f ( ) k f '( ) 0 f ( ) a f '( ) a n n f ( ) a f '( ) an f ( ) u( ) + v( ) f '( ) u' + v' Ejemplos:
TEMA 3. Funciones. Cálculo diferencial
TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones
EJERCICIOS DE MATEMÁTICAS 3º ESO
EJERCICIOS DE MATEMÁTICAS º ESO Tema 1: NÚMEROS 1) Escriu com a potència única: a) 5.5 -.5 4 b) 4.4 4.7 4 c) [( 4) ] 4 d) 9 ) a) Quin és major dels radicals? 4 5 6... i... 8 Justifica el resultat anant
FORMACIÓ BONIFICADA. Gestió de las ajudes per a la formació en les empreses a traves de la Fundación Tripartita para la Formación en el Empleo
FORMACIÓ BONIFICADA Gestió de las ajudes per a la formació en les empreses a traves de la Fundación Tripartita para la Formación en el Empleo Les empreses que cotitzen a la Seguretat Social per la contingència
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
Matemática 3 Colegio N 11 B. Juárez
Unidad 4: RAZONES Y PROPORCIONES Definición de RAZÓN: Se denomina razón entre dos números racionales a y b, al cociente (división) entre ambos, siendo b distinto de 0. a se denomina antecedente Ejemplo
b) B es el punto Medio de MN siendo M(8,-2) y N(4,12) c) El baricentro del Triangulo es (3,7) R. A(1,2) B(6,5) C(2,14) CÁLCULO I COMPLEMENTO GUIA # 1
CÁLCULO I COMPLEMENTO GUIA # 1 Ejercicios sugeridos para la semana 2. Cubre el siguiente material: Sistemas de coordenadas rectangulares, Ecuación de la recta, Rectas paralelas y perpendiculares, Distancia
DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35
ESO Divisibilitat 1 ESO Divisibilitat 2 A. El significat de les paraules. DIVISIBILITAT Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 = 7 5 35 = 5 7 35 7 0 5 35
Dirección General del Bachillerato Centro de Estudios de Bachillerato 5/3 José Vasconcelos Calderón
1 Problema 1. os piezas cuadradas y tres piezas rectangulares se acomodan para formar un rompecabezas cuadrado como muestra la figura. Si cada una de las dos piezas cuadradas tiene 72cm de perímetro y
