1 Variables aleatorias independientes
|
|
|
- María José Villalba Villanueva
- hace 9 años
- Vistas:
Transcripción
1 1 Variables aleatorias independientes El concepto de independencia es sumamente importante en teoría de probabilidad y su negación, la dependencia, es un importante objeto de estudio actualmente en diversas áreas de la investigación. Para conceptualizar la independencia de variables aleatorias, imitaremos la idea de la independencia de conjuntos. Recordemos que dado un espacio de probabilidad (Ω, F, P) dos eventos A, B F con P [B > 0 son independientes si y sólo si P [ A B = P [A Esta definición, completamente intuitiva, se extiende a conjuntos de probabilidad cero, dándonos por resultado que los conjuntos A, B F son independientes si y sólo si P [A B = P [A P [B (1) Cómo extender esta idea a variables aleatorias? Sabemos, por definición de variable aleatoria que para cualesquiera conjuntos C, D B(R) 1 tenemos {ω : X(ω) C} F {ω : Y (ω) D} F La clase de conjuntos σ(x) = {ω : X(ω) C; C B(R)} es toda la información disponible sobre la variable aleatoria X (obsérvese que C varía sobre B(R)), es decir, son todos aquéllos eventos del espacio muestral relacionados con la variable aleatoria X. Es por esto que resulta intuitivo definir independencia de variables aleatorias en términos de estas clases de conjuntos. Definición 1.1. Dos variables aleatorias X, Y son independientes si y sólo si para cualesquiera A σ(x) y B σ(y ) los eventos A y B son independientes. Equivalentemente, las variables aleatorias X, Y son independientes si y sólo si para cualesquiera C, D B(R) tenemos P [X C, Y D = P [X C P [X D De la misma manera que en el caso univariado, es deseable tener una caracterización de la independencia en términos de las funciones de distribución y de densidad. Esto se logra gracias a que los conjuntos de la forma n (, x i i=1 1 B(R) representa a los conjuntos Borelianos, todos aquéllos conjuntos C R para los cuáles deseamos calcular P [X C. 1
2 son suficientes para explicar las cantidades P [X C, Y D, C, D B(R) como se vio en la sección?? sobre la Función de distribución multivariada. Con esto, tenemos una definición alternativa para la independencia de dos variables aleatorias mucho más manejable. Definición 1.2. Dos variables aleatorias X, Y con función de distribución conjunta F (x, y) y marginales F X (x) y F Y (y) respectivamente son independientes si y sólo si para cualesquiera dos valores x, y R se tiene F (x, y) = F X (x)f Y (y) (2) Es importante recalcar que esta definición es independiente del carácter discreto o continuo (o ninguno de ambos) de las variables aleatorias X, Y, por lo cual es una definición un tanto general todavía. Concentrémonos en cada caso y analicemos la relación de la ecuación (2) con las funciones de densidad. 1.1 Caso discreto Cuando las variables aleatorias X, Y son discretas el análisis es muy simple. Denotemos por p(x, y) a la función de densidad conjunta del vector (X, Y ) y por p X (x), p Y (y) a las densidades marginales de cada variable. Partiendo directamente de la definición conjuntista de independencia observamos que si X y Y son independientes, entonces para cualesquiera x Ran(X), y Ran(Y ), p(x, y) =P [X = x, Y = y = P [X {x}, Y {y} =P [X {x} P [Y {y} = P [X = x P [Y = y = p X (x)p Y (y) Es decir, la independencia implica la factorización p(x, y) = p X (x)p Y (y) para cualesquiera valores x Ran(X), y Ran(Y ). Por otro lado, si suponemos que esta factorización es cierta, entonces para cualesquiera conjuntos C, D tenemos P [X C, Y D = p(x, y) = p X (x)p Y (y) x C y D x C y D = p X (x) (4) p Y (y) = P [X C P [Y D x C y D (3) En conclusión hemos demostrado la siguiente Proposición. Proposición 1.1. Sean X, Y variables aleatorias discretas con función de densidad conjunta p(x, y) y funciones de densidad marginales p X (x), p Y (y). Entonces, X es independiente de Y si y sólo si x Ran(X), y Ran(Y ), p(x, y) = p X (x)p Y (y) 2
3 Ejemplo 1.1 Supongamos que el número de personas que llegan al andén del tren entre las 5:00 am y las 5:15 am para abordar el primer tren de la mañana sigue una distribución de Poisson con parámetro λ > 0. Cada individuo que llega a abordar este tren es hombre con probabilidad p (0, 1) y mujer con probabilidad 1 p independientemente de los demás que han llegado y llegarán. Sean H el número de hombres que abordan el primer tren y M el número de mujeres que lo abordan. Cuál es la distribución conjunta de (H, M)? Son independientes? Solución: Para encontrar la función de densidad conjunta, tomemos m, n N cualesquiera, entonces P [H = n, M = m = P [ H = n, M = m H + M = j P [H + M = j j=0 = P [ H = n, M = m (5) H + M = n + m P [H + M = n + m Para comprender esta ecuación obsérvese que la primera igualdad es la fórmula de la probabilidad total aplicada al evento {H = n, M = m} usando la partición de Ω formada por los conjuntos {H + M = j} j N. La segunda igualdad se sigue de que para todo j n + m P [ H = n, M = m H + M = j = 0 Ahora, H + M es el número total de pasajeros del tren y por lo tanto sigue una distribución de Poisson con parámetro λ > 0 por hipótesis. La otra hipótesis del enunciado nos dice que sabiendo que han llegado n + m personas, cada una es hombre (éxito) con probabilidad p (0, 1) por lo cuál el número total de hombres sigue una distribución Binomial con parámetros (n + m, p). Cabe destacar que esta distribución Binomial para H está condicionada a que el número total de arribos es n + m. Como consecuencia P [ H = n, M = m H + M = n + m = ( n + m n Sustituyendo esto en la fórmula (5) obtenemos ( n + m P [H = n, M = m = )p n (1 p) m e λ λ n+m n = e pλ (pλ) n n! e (1 p)λ ((1 p)λ) m m! ) p n (1 p) m = p n (1 p) m e pλ λ n e (1 p)λ λ m n!m! Esto demuestra que H y M son variables aleatorias independientes con distribuciones Poisson de parámetros pλ y (1 p)λ respectivamente. 3
4 Este resultado es muy intuitivo pues si pensamos que el número total de personas es Poisson λ, entonces el número promedio de personas que llegan al andén es λ. Como cada uno es hombre o mujer independientemente de los demás y la proporción de hombres es p y la de mujeres es 1 p, esperamos que el número de hombres que llegan al andén sea, en promedio, pλ y el de mujeres (1 p)λ. El hecho de que la distribución sea Poisson se puede intuir pensando que los arribos de hombres siguen el mismo patrón que los arribos globales. Esta manera de resolver el ejemplo es muy informativa, pues nos dice que H, M son independientes y nos da de inmediato sus densidades. No obstante, puede parecer un truco el escribir λ = pλ + (1 p)λ en la exponencial. De no hacerlo así obtenemos la densidad conjunta como p(n, m) = e λ (pλ) n ((1 p)λ) m n!m! La buena noticia es que esta expresión es suficiente para obtener la independencia de las variables H, M. La razón de que esto sea así se expresa en la siguiente Proposición. Proposición 1.2. Sean X, Y variables aleatorias discretas con función de densidad conjunta p(x, y). Las variables X, Y son independientes si y sólo si existen g(x), h(y) tales que para cada x Ran(X), y Ran(Y ) se tiene p(x, y) = g(x)h(y) Demostración. Supongamos primero que X, Y son independientes. En este caso basta tomar g(x) = p X (x) y h(y) = p Y (y) como se ha demostrado al incio de esta sección. Supongamos ahora que existen g(x), h(y) para las cuáles p(x, y) = g(x)h(y), entonces 1 = p(x, y) = g(x) h(y) x y x y por lo cuál existen g(x) = C 1, x y Calculando la densidad marginal de X obtenemos h(y) = C 2, y además C 1 C 2 = 1 p X (x) = y p(x, y) = y g(x)h(y) = C 2 g(x) Análogamente p Y (y) = C 1 h(y) Esto implica que p(x, y) = g(x)h(y) = C 1 C 2 g(x)h(y) = p X (x)p Y (y) es decir X y Y son independientes. 4
5 Observación 1.1. En caso que se pueda factorizar la densidad conjunta p(x, y) cada una de las funciones involucradas en la factorización es un múltiplo de la densidad marginal. En el ejemplo 1.1 las funciones son λ (pλ)n g(n) = e n! de modo que nuestras constantes C 1 y C 2 son h(m) = ((1 p)λ)m m! C 1 = e λ(1 p), C 2 = e λ(1 p) 5
Espacio de Funciones Medibles
Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles
Introducción al Tema 9
Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables
Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez
Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como
Lógica Proposicional, Teoremas y Demostraciones
Lógica Proposicional, Teoremas y Demostraciones Manuel Maia 19 de marzo de 2012 1 Proposiciones Una proposición es una oración declarativa o una expresión matemática que es verdadera o es falsa, pero no
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
Ejercicios de Variables Aleatorias
Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UCM Función de distribución y función de densidad Ejercicio. Sea X una variable aleatoria con función de distribución dada
Soluciones Examen de Estadística
Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 15 de Febrero, 5 Cuestiones horas C1. Un programa se ejecuta desde uno cualquiera de cuatro periféricos A, B, C y D con arreglo
Definición de la matriz inversa
Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones
Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua
Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones
5. VARIABLES ALEATORIAS Y SUS MOMENTOS
5. VARIABLES ALEATORIAS Y SUS MOMENTOS Una variable aleatoria Objetivos Introducir la idea de una variable aleatoria y su distribución y sus características como la media, la varianza, los cuartíles etc.
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar
Tema 4 Probabilidad condicionada: teoremas básicos. Independencia de sucesos
Tema 4 Probabilidad condicionada: teoremas básicos. Independencia de sucesos 1. Probabilidad condicionada. Espacio de probabilidad condicionado La probabilidad condicionada es uno de los conceptos clave
Tema 3: Estimadores de máxima verosimilitud
Tema 3: Estimadores de máxima verosimilitud 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: motivación Método
TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.
TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A
Espacios vectoriales con producto interior
Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,
3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada
SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función
5.1. Distribución Conjunta de Dos Variables Aleatorias.
Capítulo 5 Distribuciones Conjuntas e Independencia 51 Distribución Conjunta de Dos Variables Aleatorias Sean X e Y dos variables aleatorias sobre un espacio de probabilidad común (Ω, A, P ) Llamaremos
Anexo C. Introducción a las series de potencias. Series de potencias
Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno
PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)
PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Al igual que la distribución binomial, la distribución
Matemáticas I: Hoja 1
Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para
Variables Aleatorias. Capítulo 4. 4.1. Introducción.
Capítulo 4 Variables Aleatorias 41 Introducción A la realización de un experimento aleatorio le hemos asociado un modelo matemático representado por un espacio de probabilidad (Ω, F, P ), donde Ω es el
Nombre de la asignatura: Probabilidad y Estadística Ambiental
Nombre de la asignatura: Probabilidad y Estadística Ambiental Créditos: 2 2-4 Aportación al perfil Proporcionar los fundamentos necesarios para el manejo estadístico de datos experimentales que le permitan
TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL
ESTADÍSTICA II TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL II.1.- Distribución chi-cuadrado. II.1.1.- Definición. II.1..- Función de densidad. Representación gráfica. II.1.3.- Media y varianza.
2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria
2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
Proyecciones. Producto escalar de vectores. Aplicaciones
Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento
6.3. Estimadores Insesgados de Varianza Uniformemente Mínima
6.3. Estimadores Insesgados de Varianza Uniformemente Mínima El objetivo en esta parte será encontrar al mejor estimador de τ(θ), bajo algún criterio. Primero que nada podríamos pensar en encontrar al
Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea?
82 Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (2y - 6x + ) dy = 0 Será ésta una ecuación diferencial reducible a homogénea? Si observamos la ecuación diferencial, tenemos que 2x 4y = 0 2y 6x +
0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5
1.- Cómo utilizar la tabla de la distribución Binomial? Supongamos que lanzamos al aire una moneda trucada. Con esta moneda la probabilidad de obtener cara es del 30%. La probabilidad que salga cruz será,
Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias
Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................
P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249
Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen
Explorando la ecuación de la recta pendiente intercepto
Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el
1. SISTEMAS DE ECUACIONES DIFERENCIALES
1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t
Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4
Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones
C. Distribución Binomial
Objetivos de aprendizaje 1. Definir los resultados binomiales 2. Calcular la probabilidad de obtener X éxitos en N pruebas 3. Calcular probabilidades binomiales acumulativas 4. Encontrar la media y la
Matrices escalonadas y escalonadas reducidas
Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver
EJERCICIOS RESUELTOS TEMA 7
EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de
6. ESTIMACIÓN DE PARÁMETROS
PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza
Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. [email protected].
Sistemas de Ecuaciones Lineales Solución de Sistemas de Ecuaciones Lineales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2008 Contenido 1. Sistemas de Ecuaciones Lineales 2
CÁLCULO DIFERENCIAL Muestras de examen
CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar
Límites en el infinito, funciones divergentes
Tema 2 Límites en el infinito, funciones divergentes Nuestro próximo objetivo es usar las sucesiones divergentes para ampliar la noción de límite funcional en dos sentidos. Por una parte, analizaremos
Método de fórmula general
Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula
ANILLOS DE POLINOMIOS. Sea A un anillo conmutativo. El conjunto A[X] de polinomios sobre A esta formado por los elementos
ANILLOS DE POLINOMIOS Sea A un anillo conmutativo. El conjunto A[X] de polinomios sobre A esta formado por los elementos n i=0 a i X i = a 0 + a 1 X + a 2 X 2 +... + a n X n. Se definen dos operaciones
Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.
Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.
Modelos de probabilidad
Modelos de probabilidad José Gabriel Palomo Sánchez [email protected] E.U.A.T. U.P.M. Julio de 2011 Índice I 1 Variables aleatorias 1 Denición 2 Generalidades 2 Probabilidad 1 Objetivo de la probailidad.
TEMA 2: DERIVADA DE UNA FUNCIÓN
TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media
Estadística Avanzada y Análisis de Datos
1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son
Funciones Exponenciales y Logarítmicas
Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,
DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)
DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores
Profr. Efraín Soto Apolinar. Método Gráfico
Método Gráfico El último método que estudiaremos es el más sencillo. Se trata de considerar a la ecuación como una máquina que transforma los números. Para eso, crearemos una función. Función (Definición
Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.
Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta
Tema 5: Principales Distribuciones de Probabilidad
Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad
Ecuaciones. 3º de ESO
Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =
UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA.
UNIDAD 3: ANALICEMOS LA FUNCION EXPONENCIAL Y LOGARITMICA Históricamente, los exponentes fueron introducidos en matemáticas para dar un método corto que indicara el producto de varios factores semejantes,
Tema 11: Intervalos de confianza.
Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS LOGARITMOS
LOGARITMOS Introducción El empleo de los logaritmos es de gran utilidad para entender muchos de los desarrollos que se analizan en la Matemática, y para explicar una variedad muy extensa de problemas que
Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.
Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,
Variable Aleatoria. Relación de problemas 6
Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es
Teoría de la decisión Estadística
Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y
si este límite es finito, y en este caso decimos que f es integrable (impropia)
Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría
Propiedades en una muestra aleatoria
Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables
7. Distribución normal
7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o
La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si
La distribución normal La distribución normal o gaussiana es la distribución continua más importante. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si f(x) = 1
Combinación Lineal. Departamento de Matemáticas, CCIR/ITESM. 10 de enero de 2011
Combinación Lineal Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice.1. Introducción............................................... 1.. Combinación lineal entre vectores...................................
x R F (x) := P (X 1 (, x]) = P ({e Ω : X(e) x}) = P (X x) salvo que en este caso esta función es siempre una función continua.
PROBABILIDAD Tema 2.3: Variables aleatorias continuas Objetivos Distinguir entre variables aleatorias discretas y continuas. Dominar el uso de las funciones asociadas a una variable aleatoria continua.
Integración por el método de Monte Carlo
Integración por el método de Monte Carlo Georgina Flesia FaMAF 29 de marzo, 2012 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para seleccionar muestras aleatorias de una
Procesos Estocásticos
Capítulo 2 Procesos Estocásticos La teoría de la probabilidad es, junto con la teoría de señales, uno de los dos pilares matemáticos sobre los que se asienta el análisis de sistemas de comunicaciones digitales.
Taller matemático. Razonamiento. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid
Taller matemático Razonamiento Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid 1. Razonamiento matemático Conocimiento aceptado - Axiomas o
Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.
Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.
VOCABULARIO HABILIDADES Y CONCEPTOS
REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9.doc 1 DE 7 Nombre: Fecha: VOCABULARIO A. Valor absoluto de un número complejo B. Eje de simetría C. Completar el cuadrado D. Número complejo E. Plano de números
Conjuntos finitos y conjuntos numerables
Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos
2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.
2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades
Si quisiéramos estudiar también cuánto distan, es decir a b, tendríamos 6 resultados: 0, 1, 2, 3, 4 ó 5, con distribución de probabilidad dada por:
Capítulo 3 Variables aleatorias 3. Definición, tipos En ocasiones de un experimento aleatorio sólo nos interesará medir ciertas características del mismo. En estos casos nos bastará con conocer la distribución
1 Aplicaciones lineales
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal
Práctica 2 Métodos de búsqueda para funciones de una variable
Práctica 2 Métodos de búsqueda para funciones de una variable Introducción Definición 1. Una función real f se dice que es fuertemente cuasiconvexa en el intervalo (a, b) si para cada par de puntos x 1,
VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como:
VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del al origen
Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma
Polinomios Desde la secundaria estamos acostumbrados a trabajar con polinomios, los cuales identificamos con expresiones de la forma p(x) = a 0 + a 1 x +... + a n x n (1) donde x es la variable y a 0,
Tema 1. Álgebra lineal. Matrices
1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos
CURSOSO. Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. MATEMÁTICAS. AntonioF.CostaGonzález
CURSOSO CURSOSO MATEMÁTICAS Aritmética: Númerosnaturalesyenteros. Númerosracionalesyfraciones. AntonioF.CostaGonzález DepartamentodeMatemáticasFundamentales FacultaddeCiencias Índice 1 Introducción y objetivos
Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones
Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,
Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4
Seminario de problemas-bachillerato. Curso 2012-13. Hoja 4 25. El número 2 x es la mayor potencia entera de 2 entre las que tienen nueve dígitos en base 10, y sus nueve dígitos son distintos. Usando que
LA DISTRIBUCIÓN NORMAL
LA DISTRIBUCIÓN NORMAL En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad que con más frecuencia aparece
Valores y Vectores Propios
Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................
1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.
. Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.
Solución de ecuaciones de segundo grado completando el trinomio cuadrado perfecto
Solución de ecuaciones de segundo grado completando el trinomio cuadrado perfecto Cuando no es posible factorizar la ecuación, se completa el trinomio cuadrado perfecto con la única finalidad de poder
3 Aplicaciones de ED de primer orden
CAPÍTULO 3 Aplicaciones de E de primer orden 3.2 ecaimiento radioactivo Si observamos cierta cantidad inicial de sustancia o material radioactivo, al paso del tiempo se puede verificar un cambio en la
Probabilidades y la curva normal
Probabilidades y la curva normal Las distribuciones reales y las distribuciones teóricas Por Tevni Grajales Guerra Tal cual estudiamos en nuestro tercer tema. Cuando registramos los valores de una variable
SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE)
SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) I. CONTENIDOS: 1. Ejercicios resueltos aplicando exponentes y logaritmos (2ª. Parte) 2. Derivación de funciones exponenciales y
El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo.
El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo. El supermercado cuenta con 3 departamentos: Abarrotes, Embutidos y. Solamente el Departamento
Apuntes de Matemática Discreta 2. Operaciones con Conjuntos
Apuntes de Matemática Discreta 2. Operaciones con Conjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 2 Operaciones con Conjuntos
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:
Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián
Aplicaciones de las integrales dobles
Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en
Suma de Potencias. Gastón Rafael Burrull Naredo. 22 de marzo de 2009. Resumen
Suma de Potencias de marzo de 9 Resumen En este documento veremos una explicación completamente detallada de algunas fórmulas básicas de sumatoria, como las sumas de los primeros n naturales, primeros
Sucesiones y funciones divergentes
Tema 2 Sucesiones y funciones divergentes Nuestro próximo objetivo es ampliar el estudio de los dos tipos de convergencia, o de las dos nociones de límite, que hasta ahora conocemos: el límite de una sucesión
CLASE Nº7. Patrones, series y regularidades numéricas
CLASE Nº7 Patrones, series y regularidades numéricas Patrón numérico en la naturaleza Regularidades numéricas Patrones Espiral con triángulos rectángulos Series numéricas REGULARIDADES NUMÉRICAS Son series
Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.
Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades
Problemas de Física 1 o Bachillerato
Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento
Demostración de la Transformada de Laplace
Transformada de Laplace bilateral Demostración de la Transformada de Laplace Transformada Inversa de Laplace En el presente documento trataremos de demostrar matemáticamente cómo puede obtenerse la Transformada
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 5 Nombre: Distribuciones de probabilidad para variables Contextualización Ya se han estudiado los conceptos variable aleatoria y distribución
