Rectas perpendiculares.
|
|
|
- Juan José Daniel Valdéz Salazar
- hace 9 años
- Vistas:
Transcripción
1 HPTER 2 Rectas perpendiculares. 1. Ángulos rectos, agudos y obtusos. Un ángulo de 90 ± (congruente por lo tanto con la mitad de un ángulo llano o con una cuarta parte del ángulo completo) se llama un ángulo recto. Un ángulo más chico que el recto se llama agudo y uno más grande que el recto, pero más chico que el llano se llama obtuso (Figura 1). Todos lo ángulos rectos son, por supuesto, congruentes, ya que contienen el mismo número de grados. La medida de un ángulo recto se denota a veces como d (la inicial de la palabra francesa droit que significa recto ). 2. Ángulos suplementarios. os ángulos ( y, Figura 3) se llaman suplementarios si tienen un lado en común y sus dos lados restantes forman la continuación uno del otro. omo la suma de estos ángulos es un ángulo llano, la suma de dos ángulos suplementarios es 180 ± (en otras palabras, es congruente a la suma de dos ángulos rectos). Para cada ángulo se pueden construir dos ángulos suplementarios. Por ejemplo, para el ángulo (Figura 3), al prolongar el lado obtenemos un ángulo suplementario y al prolongar el lado obtenemos otro ángulo suplementario. os ángulos suplementarios al mismo ángulo son congruentes, 90 recto agudo obtuso FIGURE 1 19
2 20 2. RETS PERPENIULRES. FIGURE 2 FIGURE 3 ya que ambos contienen el mismo número de grados, a saber, el número que suplementa al número de grados en el ángulo a 180 ±, los grados que contiene un ángulo llano. Si es un ángulo recto (Figura 4), i.e., si contiene 90 ±, entonces cada uno de sus ángulos suplementarios y también deben ser rectos, ya que contienen 180 ± -90 ±, i.e., 90 ±. El cuarto ángulo también debe de ser recto, ya que los tres ángulos, y contienen entre ellos 270 ± y, por lo tanto, lo que queda de 360 ± para el cuarto ángulo también es 90 ±. Luego, si uno de los cuatro ángulos formados por dos rectas que se intersecan ( y, Figura 4) es recto, entonces los otros tres ángulos también deben ser rectos. 3. Una perpendicular y una inclinada. En el caso en que dos ángulos suplementarios no son congruentes, su lado común (lado, Figura 5) se llama una inclinada 1 a la línea ( ) que contiene los otros dos lados. uando, sin embargo, los ángulos suplementarios son congruentes (Figura 6) y cuando, por lo tanto, cada uno de los ángulos es recto, el lado común se llama una perpendicular a la línea que contiene los otros dos 1 tro nombre que se usa es una línea oblicua.
3 3. UN PERPENIULR Y UN INLIN FIGURE 4 FIGURE 5 FIGURE 6 lados. El vértice común () se llama el pie de la inclinada en el primer caso y el pie de la perpendicular en el segundo. os rectas ( y, Figura 4) que se intersecan en un ángulo recto se llaman perpendiculares. El hecho de que la ínea sea perpendicular a la línea se escribe:?. omentarios. (1) Si se debe trazar una perpendicular a una línea (Figura 6) a través de un punto en esta línea, entonces se dice que la perpendicular se levanta a la línea y, si la perpendicular se debe trazar a través de un punto
4 22 2. RETS PERPENIULRES. M N FIGURE 7 fuera de ella, entonces se dice que la perpendicular se tira a la línea (si importar si es para arriba, para abajo o de lado). (2) bviamente en cualquier punto de una línea dada y hacia cualquiera de sus lados, se puede levantar una perpendicular y tal perpendicular es única. 4 Probemos que desde cualquier punto fuera de una recta dada se puede tirar una perpendicular a esta recta y tal perpendicular es única. Sean una recta y M un punto fuera de la recta dada (Figura 7). ebemos mostrar, primero, que se puede tirar una perpendicular desde este punto a y, en segundo lugar, que sólo hay una perpendicular tal. Imaginemos que el diagrama está doblado de tal manera que la parte de arriba se identifica con la parte de abajo. Entonces el punto M toma alguna posición N. Marquemos esta posición, desdoblemos el diagrama a su forma inicial y conectemos los puntos M y N con una recta. Mostremos ahora que la recta resultante MN es perpendicular a y que cualquier otra línea que pasa por M, por ejemplo M, no es perpendicular a. Para esto doblemos el diagrama de nuevo. Entonces el punto M se encima con N otra vez y los puntos y se quedan en sus lugares. Por lo tanto la línea M se identifica con N y M con N. Se sigue que \M = \N y \M = \N. Pero los ángulos M y N son suplementarios. Por lo tanto cada uno de ellos es recto y de ahí que MN?. omomn no es una línea recta (ya que no puede haber dos rectas que conectan a los puntos M y N), entonces la suma de los dos ángulos congruentes M y N no es igual a 2d. Por lo tanto el ángulo M no es recto y, por consiguiente, M no es perpendicular a. Luego no se puede tirar otra perpendicular desde el punto M a la recta.
5 7. ÁNGULS QUE TIENEN UN VÉRTIE MÚN. 23 E FIGURE 8 5. La escuadra. Para la contrucción de una perpendicular a una recta dada, en la práctica es conveniente usar una escuadra (uno de cuyos ángulos es recto). Para dibujar la perpendicular a la recta (Figura 8) a través del punto en la recta, o a través de un punto fuera de esta línea, se alínea una regal la recta, la escuadra con la regla y se desliza la escuadra a lo largo de la regla hasta que el otro lado del ángulo recto toca al punto o al y entonces trazamos la recta E. 6. Ángulos verticales. os ángulos se llaman verticales si los lados de uno de ellos son continuación de los lados del otro. Por ejemplo, en la intersección de dos rectas y (Figura 9) se forman dos pares de ángulos verticales: y, y (y hay cuatro pares de ángulos suplementarios). os ángulos verticales son congruentes (por ejemplo, \ = \) ya que cada uno de ellos es suplementario del mismo ángulo (de \ o de \) y tales ángulos, como vimos (partado 2), son congruentes. 7. Ángulos que tienen un vértice común. Es útil recordar los sigientes hechos simples acerca de los ángulos que tienen su vértice común: (1) Si la suma de varios ángulos (,,, E, Figura 10) que tienen su vértice común es congruente con un ángulo llano, entonces la suma es 2d, i.e., 180 ±. (2) Si la suma de varios ángulos (,,, E, E, Figura 11) que tienen su vértice común es congruente con el ángulo completo, entonces la suma es 4d, i.e., 360 ±.
6 24 2. RETS PERPENIULRES. FIGURE 9 E FIGURE 10 E FIGURE 11 (3) Si dos ángulos ( y, Figura 5) tienen su vértice común () y un lado común () y suman 2d (i.e., 180 ± ) entonces sus otros dos lados
7 EJERIIS 25 ( y ) son continuación uno del otro (i.e., son ángulos suplementarios). Ejercicios (1) La suma de los ángulos 14 ± y 75 ± es aguda u obtusa? (2) inco rayos trazados desde el mismo punto dividen al ángulo completo en cinco partes congruentes. uántos ángulos distintos forman estos cinco rayos? uáles de estos ángulos son congruentes? uáles de ellos son agudos? obtusos? Encuentra la medida en grados de cada uno de ellos. (3) Pueden dos ángulos cuya suma es un ángulo llano ser ambos agudos? ambos obtusos? (4) Encuentra el menor número posible de ángulos agudos que suman un ángulo completo. Lo mismo para ángulos obtusos. (5) Un ángulo mide 38 ± Encuentra la medida de sus ángulos suplementarios. (6) Uno de los ángulos formado por dos rectas que se intersecan es 2d/5. Encuentra la medida de los otros tres. (7) alcula la medida de un ángulo que es congruente con dos veces su ángulo suplementario. (8) os ángulos y que tienen el vértice común y el lado común están colocados de tal manera que no se cubren el uno al otro. El ángulo = 100 ± 20 0 y el ángulo = 79 ± Los lados y forman una línea recta o una línea quebrada? (9) os rayos distintos, perpendiculares a una recta dada se levantan en un punto dado. Encuentra la medida del ángulo entre estos rayos. (10) En la parte de adentro de un ángulo obtuso dos perpendiculares a sus lados se levantan en su vértice. alcula la medida del ángulo obtuso, si el ángulo entre las perpendiculares es 4d/5. emuestra: (11) Las bisectrices de dos ángulos suplementarios son perpendiculares. (12) Las bisectrices de dos ángulos verticales son continuación una de la otra. (13) Si en un punto de la recta (Figura 9) se construyen dos ángulos congruentes y en lados opuestos de, entonces sus lados y forman una línea recta. (14) Si desde un punto se construyen rayos,, y de tal manera que \ = \ y \ = \, entonces es continuación de y es continuación de Sugerencia: plica el partado 7, enunciados 2 y 3.
Triángulos isóceles y simetría
CHAPTER 5 Triángulos isóceles y simetría 35. Teoremas. (1) En un triángulos isóceles la bisectriz del ángulo en el vértice es al mismo tiempo la mediana y la altura. (2) En un triángulos isóceles los ángulos
RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental
Geometría Elemental Punto Sólo tiene posición. No posee longitud, anchura ni espesor. Se representa por un. Se designa por medio de una letra mayúscula colocada cerca del punto gráfico. Línea recta Es
Nombrando y midiendo ángulos
itácora del studiante Nombrando y midiendo ángulos Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Un transportador se utiliza para. 2. Los ángulos se miden en unidades llamadas.
B3 Ángulos. Geometría plana
Geometría plana B3 Ángulos Ángulo Es la porción del plano delimitada por dos rectas. Las rectas se llaman lados y el punto en el que se cortan, vértice. Un ángulo se designa: por tres letras mayúsculas
CHAPTER 7. Desigualdades en triángulos. 41. Ángulos exteriores.
HPTR 7 esigualdades en triángulos. 41. Ángulos exteriores. l ángulo suplementario a un ángulo de un triángulo (o polígono) se llama unángulo exterior de este triángulo (o polígono). Por ejemplo (Figura
GEOMETRÍA Y TRIGONOMETRÍA
GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un
UNIDAD 9. LOS ÁNGULOS
UNIDAD 9. LOS ÁNGULOS 1. LOS ÁNGULOS: ELEMENTOS Y TIPOS. 2. SISTEMA SEXAGESIMAL Y MEDIDA DE ÁNGULOS. 3. SUMA Y RESTA DE ÁNGULOS. 4. MEDIDAS ANGULARES COMPLEJAS E INCOMPLEJAS. 5. PASO DE MEDIDAS COMPLEJAS
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1.- ÁNGULOS Un ángulo es la porción de plano limitada por dos semirrectas o rayos que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo
Ejercicios de Geometría y Trigonometría
Información: Clasificación de los ángulos por la medida de su abertura 1 Información continuación: Parejas especiales de ángulos. 2 Ejercicio. 6 Instrucción: Escribe el nombre correspondiente en torno
Ángulos (páginas 506 509)
A NOMRE FECHA PERÍODO Ángulos (páginas 506 509) Las rectas que forman las artistas de una caja se juntan en un punto llamado vértice. Dos rectas que se juntan en un vértice forman un ángulo. Los ángulos
Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos
Profesor: Guillermo Corbacho [email protected] Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto
CHAPTER 1. Ángulos. 1. Conceptos preliminares.
CHPTER 1 Ángulos 1. Conceptos preliminares. Una figura formada por dos rayos trazados desde el mismo punto se llama un ángulo. Los rayos que forman el ángulo se llaman sus lados y su extremo común se llama
PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES MATEMÁTICA
Geometría La palabra geometría tiene sus raíces en la composición de las palabras geo que significa tierra, y la palabra metrein que significa medida, por lo tanto en su significado más literal es medida
Ángulos. Proporcionalidad. Igualdad y Semejanza
3. ÁNGULOS 3.1 DEFINICIÓN Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. II Nivel I Eliminatoria
OLIMPID OSTRRIENSE DE MTEMÁTI UN - UR - TE - UNED - MEP - MIIT Geometría II Nivel I Eliminatoria bril, 015 ontenido 1 II Nivel (8 y 9 ) - Geometría 1.1 Presentación.........................................
La Circunferencia y el círculo
La ircunferencia y el círculo La ircunferencia es una curva cerrada cuyos puntos están en un mismo plano y a igual distancia de otro punto interior fijo que se llama centro de la circunferencia. l círculo
4.1 Medida de ángulo: sistema sexagesimal. Para medir la amplitud de un ángulo podemos utilizar el sistema sexagesimal. 180º
PÍTULO 4 Tópicos de Geometría Geometría, palabra que proviene del griego, geo: tierra; metrein: medir, es una de las ramas mas antiguas de las ciencias, que tal vez ha tenido y tenga mayor incidencia en
ÁNGULOS. Definición: Un ángulo convexo es la intersección de dos semiplanos cuyos bordes son rectas secantes.
ÁNGULOS Definición: Un ángulo convexo es la intersección de dos semiplanos cuyos bordes son rectas secantes. Dos rectas secantes determinan en el plano 4 regiones llamadas ángulos convexos 1 Elementos
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos
Profesor: Guillermo Corbacho Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos 1. Sistemas de Medidas No vamos a definir lo que es un ángulo, pues tal concepto está bien
Angulo es la abertura que se produce al intersectar dos rectas (Fig.1)
1.- Definición Angulo es la abertura que se produce al intersectar dos rectas (Fig.1) D o A B Fig.1 Un ángulo está formado por dos rayos que tienen un origen común. A ese punto común le llamamos vértice.
ANGULOS. 1 grado = 1º 1 minuto = 1' 1 segundo = 1"
ANGULOS 1 ANGULO Fíjate en el siguiente dibujo formado por dos semirrectas de origen el punto O. A O B Todo ángulo está formado por 2 lados que son las semirrectas que lo forman y un vértice que es el
Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo
1.3.6.-Ángulos. Definición Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.
CORRECCIÓN DE ACTIVIDADES GEOMETRÍA LINEAL
CORRECCIÓN DE ACTIVIDADES GEOMETRÍA LINEAL *. Responde a las siguientes preguntas en tu cuaderno. a) Qué es una recta? Dibújala. Recta: sucesión infinita de puntos (no tiene principio ni fin). Las rectas
11-A-1/8. Nombre: Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser:
11-A-1/8 Geometría (polígonos) Líneas poligonales. Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser: Abierta Cerrada El trozo de plano que hay dentro de una línea poligonal cerrada,
36 Alfonso Sánchez UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL
36 Alfonso Sánchez UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL GEOMETRÍA 10 Prof. Alfonso Sánchez ENCUENTRO 4 PERPENDICULARIDAD. PARALELISMO POSICIÓN RELATIVA
RECTAS Y ÁNGULOS. Una recta divide a un plano en dos partes llamadas semiplanos. Un punto divide a una recta en dos partes llamadas semirrectas.
RECTAS Y ÁNGULOS Una recta divide a un plano en dos partes llamadas semiplanos. Un punto divide a una recta en dos partes llamadas semirrectas. Segmento es la parte de recta comprendida entre dos puntos.
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS CONCEPTOS BÁSICOS Punto, línea recta y plano: son conceptos que no de nimos pero utilizamos su representación grá
B7 Cuadriláteros. Geometría plana
Geometría plana B7 Cuadriláteros Cuadrilátero es un polígono de cuatro lados. Lados opuestos son los que no tienen punto común. Ejemplo AB y CD, AD y BC. Lados contiguos son los que tienen un extremo común.
RECTAS Y ÁNGULOS es la parte de una recta limitada por dos puntos. - Un punto divide a una recta en dos... Con dos estremos
RECTAS Y ÁNGULOS 1 Completa. -... es la parte de una recta limitada por dos puntos. - Un punto divide a una recta en dos.... 2 Relaciona estas columnas. Semirrecta Segmento Recta Sin extremos Con un extremo
TEMA 2. DIBUJO TÉCNICO
TEMA 2. DIBUJO TÉCNICO 1.PARALELISMO Y PERPENDICULARIDAD Dos rectas son paralelas cuando mantienen siempre la misma distancia entre ellas y nunca llegan a unirse. Dos rectas son perpendiculares cuando
1. Polígonos. 1.1 Definición
1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros
TEMA 4: ELEMENTOS BÁSICOS DE GEOMETRÍA
TEMA 4: ELEMENTOS BÁSICOS DE GEOMETRÍA Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. DEFINICIONES BÁSICAS RECTILÍNEAS...3 3. DEFINICIONES BÁSICAS ANGULARES...5
UNIDAD: GEOMETRÍA ÁNGULOS EN LA CIRCUNFERENCIA Y TEOREMAS. Trazo cuyos extremos son el centro de la circunferencia y un punto de ésta (OA ).
u r s o : Matemática Material N 16 UNI: GMTRÍ ÁNGULS N L IRUNFRNI Y TRMS GUÍ TÓRI RÁTI Nº 13 FINIINS IRUNFRNI: ado un punto y una distancia r, se llama circunferencia de centro y radio r al conjunto de
Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio.
Tema 5: Polígonos 5.1 Elementos Fundamentales de Geometría Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. A P * B Cualquier punto P de la mediatriz equidista de los extremos
Los Ángulos. 2. Cómo pueden ser los ángulos? Definir cada uno. Nulos: Si su medida es Cero. Ej.
Los Ángulos 1. Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO.
1. Líneas y ángulos Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. Los puntos del espacio se consideran agrupados en conjuntos parciales de infinitos puntos llamados PLANOS.
Área de paralelogramos, triángulos y trapecios (páginas 314 318)
NOMRE FECHA PERÍODO Área de paralelogramos, triángulos y trapecios (páginas 34 38) Cualquier lado de un paralelogramo o triángulo puede usarse como base. La altitud de un paralelogramo es un segmento de
Definición y clasificación de ángulos
y clasificación de ángulos La palabra «geometría» viene de las palabras griegas «geo» que significa tierra y la palabra «metria» que significa medición. odemos traducir esta palabra como: «medición de
Sistemas de Representación y Dibujo Técnico Año 2015. Geometría Básica
EL PUNTO Geometría Básica El punto es la entidad geométrica más pequeña y finita. Se puede definir por intersección de 2 rectas. En un plano, se puede definir por medio de 2 coordenadas. En el espacio,
Conceptos básicos de Geometría
Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos
Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:
Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben
POSTULADOS SOBRE LA RECTA
STULS SR L RT STUL 1 isten infinitos puntos isten infinitas rectas isten infinitos planos s decir: n una recta eisten infinitos puntos. n un plano eisten infinitas rectas. n el espacio eisten infinitos
TEMA: 8 RECTAS Y ÁNGULOS EJERCICIOS + SOLUCIONARIO
I.E SAN VICENTE SEDE CENTRAL AREA CIENCIAS NATURALES Palmira Valle FECHA: ENTREGA: YAMILE CORTES DOCENTE SEDE CENTRAL GEOMETRÍA TEMA: 8 RECTAS Y ÁNGULOS EJERCICIOS + SOLUCIONARIO LA LÍNEA RECTAS 1 Escribe
Colegio BOLIVAR. ÁREA DE MATEMÁTICAS Geometría. Lady Arismandy. Cohete - AVANZAR GRADO 8 PRIMER PERIODO
Colegio BOLIVAR ÁREA DE Lady Arismandy Cohete - AVANZAR GRADO 8 PRIMER PERIODO 2008 PRIMER periodo GEOMETRÍA PRESABERES ALGEBRA Aproximación histórica. La historia del origen de la geometría está asociada
2. Enlace de puntos que no están en línea recta por medio de arcos que sean tangentes entre sí
Unidad Nº 2. Dibujo Geométrico 1. Enlace de puntos y de líneas. Introducción 2. Enlace de puntos que no están en línea recta por medio de arcos que sean tangentes entre sí 3. Empalmar dos rectas perpendiculares
LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .
LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos
20. Rectas y puntos notables
Matemáticas II, 2012-II Lugares geométricos En geometría es útil conocer varios lugares geométricos. Un lugar geométrico es un conjunto de puntos que satisfacen una cierta propiedad. Ejemplo 1. El lugar
a intersección de los semiplanos aa, bb y cc lo llamaremos el triángulo determinado por los puntos A, B y C y lo
apítulo 3 Triángulos Luego de las rectas y los ángulos, las figuras más sencillas en el plano son los triángulos, que pasamos a estudiar a continuación. Sean, y tres puntos no colineales en el plano, a
Unidad 3 Lección 1. Unidad 3 Lección 1 Nombre
Unidad 3 Lección 1 Prueba A 1. Un segmento dibujado desde el centro de un círculo hasta el borde del mismo, se llama un. 2. Todos los radios de un círculo tienen el mismo. 3. Escriba una ecuación que represente
XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid
9 de noviembre de 0 PRUE POR EQUIPOS º y º de E.S.O. (45 minutos). ntonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de ntonio y le añade un a la derecha y obtiene un número
ALGUNAS PROPIEDADES DEL TRIÁNGULO
CAPÍTULO III 13 ALGUNAS PROPIEDADES DEL TRIÁNGULO Conocimientos previos: - Suponemos conocido lo siguiente: a) El lugar geométrico de los puntos del plano que equidistan de dos puntos dados A y B, es una
Construcción de una línea perpendicular, dado un punto y una línea. 1. Dibuja una línea horizontal y un punto por encima de esa línea.
Materia: Matemática de Séptimo Tema: Rectas Perpendiculares Qué piensas cuando te dicen que dos líneas forman en un ángulo recto? Qué terminología usarías para describir a estas líneas? Después de revisar
GEOMETRÍA EUCLIDIANA CONCEPTOS BÁSICOS
GEOMETRÍA EUCLIDIANA CONCEPTOS BÁSICOS EL MÉTODO DEDUCTIVO: El método deductivo es el utilizado en la ciencia y principalmente en la geometría. Este método consiste en conectar un conjunto de conocimientos
PROBLEMAS RESUELTOS GEOMETRÍA
PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el
Proyecto Guao. Ángulos y pares de ángulos. Objetivos de aprendizaje
ÁNGULOS Imagina que quieres calcular la dirección que debes darle a una pelota de golf para meterla en el hoyo, o la pendiente adecuada para la instalación de una canal de recolección de agua de lluvia,
TRIÁNGULO: es una figura geométrica cerrada de tres lados. Según la medida de sus lados, se clasifican en:
L IRUNFERENI Y SUS ÁNGULS Introducción La circunferencia es la más sencilla y familiar de las curvas y constituye, desde tiempos remotos, un elemento de suma importancia para el arte, el diseño y la arquitectura.
MATEMÁTICA APLICADA FICHA DE TRABAJO Nº 2
MATEMÁTICA APLICADA FICHA DE TRABAJO Nº INDICACIÓN: escoger 10 ejercicios (números impares), desarrollado en hoja de block cuadriculado. Fecha de entrega: 6 de setiembre en Secretaría de Mayores (Sra.
LOS ÁNGULOS. Agudo Recto Obtuso Llano Completo
LOS ÁNGULOS Los ángulos según su abertura Agudo Recto Obtuso Llano Completo Los ángulos según su posición relativa Consecutivos Adyacentes Opuestos por el vértices Tienen el vértice y un lado Son consecutivos
GUÍA DE GEOMETRÍA N 2. Triángulos
Liceo Benjamín Vicuña Mackenna Departamento de matemática Triángulo: Es un polígono de tres lados; está determinado por tres segmentos de recta que se denominan lados, o tres puntos no alineados que se
Polígonos y circunferencia
826464 _ 055-070.qxd 12/2/07 09:22 Página 55 Polígonos y circunferencia INTRODUCCIÓN RESUMEN DE LA UNIDAD Nos introducimos en el estudio de los polígonos, recordando contenidos trabajados por los alumnos
Tema 1: Introducción. Primeros conceptos.
Tema 1: Introducción. Primeros conceptos. El papel de la geometría en las matemáticas de primaria: cuál es? cuál debería ser? En la puerta de la Academia de Platón se podía leer Que no entre aquí nadie
El segmento, parte de una recta comprendida entre dos puntos. Mediatriz: recta perpendicular que corta un segmento en su punto medio.
CONTENIDOS 1º ESO A, B Y C. 2º EVALUACIÓN. Educación Plástica y visual. Pilar Martínez Carnicer. ELEMENTOS FUNDAMENTALES DE LA EXPRESIÓN PLÁSTICA 1. El punto, es el elemento de expresión plástica más simple
Relaciones entre rectas y ángulos (páginas 256 260)
A NMRE FECHA PERÍD Relaciones entre rectas y ángulos (páginas 256 260) Las rectas paralelas son rectas en un plano que nunca se intersecan. Si la recta p es paralela a la recta q, entonces escribe p q.
ÁNGULOS ENTRE PARARLELAS CORTADAS POR UNA SECANTE
02 1 ÁNGULOS ENTRE PARARLELAS CORTADAS POR UNA SECANTE Encuentra la medida de los ángulos que se forman entre líneas paralelas cortadas por una secante. En presentación de contenidos se estudia qué son
GEOMETRÍA DEL TRIÁNGULO
GEOMETRÍA DEL TRIÁNGULO ROCÍO MÉNDEZ MENDOZA 1.- Las Matemáticas en Educación Primaria Las Matemáticas son un conjunto de saberes asociados en una primera aproximación a los números y las formas, que van
Guía de ejercicios de repaso
Fundación Educacional Colegio de los SS.CC. Manquehue Coordinación Académica 2º Ciclo Guía de ejercicios de repaso Marca con una X la alternativa correcta. 1. Los lados de un ángulo son AB y BC. A qué
Página 1 de 19 EXAMEN A: Ejercicio nº 1.- Traza por cada punto, con regla y escuadra, una recta paralela a la recta r. Ejercicio nº 2.- Traza la mediatriz de estos segmentos y responde: Qué tienen en común
C. ÁNGULOS: Geometría plana. Trazados geométricos fundamentales
C. ÁNGULOS: DEFINICIÓN. Si sobre un plano se consideran dos semirrectas de origen común, el plano queda dividido en dos regiones denominadas ángulos. Ángulo es por tanto la parte del plano comprendida
Á GULOS 7) En la figura, L 1 // L 2 // L 3 y L 4 // L 5 // L 6. Si β = 2α, cuál de las siguientes relaciones es falsa? L 4 L 5
TTI 1) Se tiene a + 40º = 180º y b + 140º = 180º, entonces: a + b =? ) 120º ) 140º ) 180º ) 200º ) 360º 2), y son rectas tales que:, =? Á GUS 7) n la figura, // // y 4 // 5 // 6. Si = 2, cuál de las siguientes
GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS
Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas
El triángulo órtico en el Court
El triángulo órtico en el ourt Francisco Javier García apitán 4 de febrero de 2009 Resumen acemos una lectura atenta de la sección The orthic triangle del libro ollege Geometry, n Introduction to the Modern
Propiedades y clasificación de triángulos
MT-22 Clase Propiedades y clasificación de triángulos Síntesis de la clase Ángulos Polígonos convexos Clasificación de ángulos Relaciones angulares Regulares Irregulares 0º < Agudo < 90 Recto = 90 90º
Vectores y Escalares
Vectores y Escalares Suma Grafica y Analítica En física debemos distinguir entre vectores y escalares. Un vector es una cantidad orientada, tiene tanto magnitud como dirección. La velocidad, la fuerza
Geometría Plana y Trigonometría (Baldor) Septiembre Diciembre 2008 INAOE 8/1. Cuadriláteros. Capítulo 8. Ejercicios Resueltos (p.
Geometría Plana y Trigonometría (aldor) r. G. Urcid Septiembre iciembre 2008 INOE 8/1 uadriláteros apítulo 8. Ejercicios Resueltos (p. 88) (1) onstruir un cuadrado de 5 cm de lado, trazar sus diagonales
O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.
MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en
ELEMENTOS DE GEOMETRÍA
ELEMENTOS DE GEOMETRÍA 1. Elementos geométricos básicos: punto, recta y plano. 2. Semirrectas y segmentos. 3. Ángulos. 3.1. Cómo se miden los ángulos? 3.2. Ángulos importantes. 3.3. Clasificación respecto
TALLER No. 17 GEOMETRÍA
TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?
CAPÍTULO 1. Rectas y ángulos
CÍTU Elementos básicos de la Geometría Rectas y ángulos 1.1 En Geometría hay ideas básicas que todos entendemos pero que no definimos. Éstas son las ideas de unto, Recta, lano y Espacio. Señalamos un punto
Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.
Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90
Página 1 de 1 ASIGNATURA /AREA GEOMETRIA GRADO: 6 PERÍODO 1 AÑO: 2017 NOMBRE DEL ESTUDIANTE. Nombre del Documento: Planes de Mejoramiento Versión 01
Proceso: CURRICULAR INSTITUCIÓN EDUCATIVA HECTOR ABAD GOMEZ Código Nombre del Documento: Planes de Mejoramiento Versión 01 Página 1 de 1 ASIGNATURA /AREA GEOMETRIA GRADO: 6 PERÍODO 1 AÑO: 2017 NOMBRE DEL
Profr. Efraín Soto Apolinar. Suma de ángulos
Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema
Matemáticas. Encontrando Ángulos por medio de Grados. Respuestas. Nombre:
1) 153 obtuso 2) 15 agudo 3) 16 agudo 4) 50 agudo 5) 67 agudo 6) 90 derecho 7) 90 derecho 8) 123 obtuso 9) 76 agudo 10) 180 recto 11) 140 obtuso 12) 150 obtuso 13) 180 recto 14) 129 obtuso 15) 165 obtuso
11º lección TEMA 11.- LOS ÁNGULOS Y SU MEDIDA
-. Señala de qué tipo son los ángulos siguientes. Compruébalo con un transportador. Indica su valor -. Un ángulo está formado por dos lados. -. Un vértice. -. La amplitud del ángulo -.Dibujar un ángulo
Recuerda lo fundamental
11 Rectas y ángulos Recuerda lo fundamental Curso:... Fecha:... RECTS Y ÁNGULOS RECTS INTERESNTES La mediatriz de un segmento es una recta perpendicular al... en su... Cada punto P de la mediatriz de un
Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos.
ÍNDICE Elementos fundamentales Ángulos Triángulos y cuadriláteros Áreas y volúmenes Poliedros ELEMENTOS FUNDAMENTALES DE GEOMETRÍA Conceptos fundamentales Punto Recta Plano Semirecta : porción de recta
Identifico diferentes líneas Tema 9-1
T9 Geometría Identifico diferentes líneas Tema 9-1 Cuáles son líneas rectas? Cuáles son líneas curvas? Escribo las letras que corresponden. (a) (b) (d) (c) líneas rectas líneas curvas Leo y observo. inclinada
GEOMETRÍA. Instrumentos geométricos básicos: Reglas: regla graduada y la regla T Escuadra y cartabón transportador Compás
GEOMETRÍA La geometría como palabra tiene dos raíces griegas: GEO = tierra y METRÓN = medida; es decir, significa: medida de la tierra. Es la rama de las matemáticas que estudia las propiedades de las
ÁNGULOS Y GEOMETRÍA DEL TRIÁNGULO: CLASIFICACIÓN Y APLICACIONES DIDÁCTICAS.
ÁNGULOS Y GEOMETRÍA DEL TRIÁNGULO: CLASIFICACIÓN Y APLICACIONES DIDÁCTICAS. AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO Resumen EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS ÁNGULOS
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMA 34 ANÁLISIS Y FORMALIZACIÓN DE LOS CONCEPTOS GEOMÉTRICOS INTUITIVOS: INCIDENCIA, PARALELISMO, PERPENDICULARIDAD, ÁNGULO, ETC. 1. Introducción. 2. Puntos,
SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA.
CUADERNILLO DE GEOMETRIA I.- SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA. 1.- SON LOS TRIÁNGULOS QUE TIENEN TODOS LOS ÁNGULOS IGUALES. A) EQUILÁTERO B) ACUTÁNGULO C) ISÓSCELES D) ESCALENO E) RECTÁNGULO
Manejo de las herramientas de Dibujo
Manejo de las herramientas de Dibujo Una vez aprendidos los instrumentos de dibujo más básicos, en la siguiente ficha, vas a descubrir para que sirven en la práctica, y vas a poder adquirir soltura en
DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.
DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X
LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO.
LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. Polígono es la superficie plana limitada por una línea poligonal cerrada. Línea poligonal es la figura formada
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA Tema. Triángulos TRIÁNGULOS Así como nuestro alrededor está lleno de objetos que nos ejemplifican claramente el concepto de ángulo, también existen
3. ÁNGULOS. A ó. A se lee ángulo A. 3.1 Definición y notación de ángulos
3. ÁNGULOS 3.1 Definición y notación de ángulos El ángulo es la abertura comprendida entre dos líneas rectas que convergen en un punto común llamado vértice. Semirrecta O Vértice Semirrecta O Un ángulo
21.3. Rectas tangentes exteriores a dos circunferencias.
21. TANGENCIAS 21.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.
EVALUACIÓN Módulo 3 Matemática. Sexto año básico
EVLUIÓN Módulo 3 Matemática Sexto año básico Mi nombre Mi curso Nombre de mi escuela Fecha 2013 Instrucciones: Lee con atención el enunciado de las preguntas y haz un círculo a la letra con la respuesta
EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 1º y 3º ESO. Trazados básicos
EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 1º y 3º ESO Trazados básicos LOS MATERIALES DE DIBUJO Vamos a utilizar fundamentalmente los siguientes materiales: ESCUADRA CARTABÓN
