POSTULADOS SOBRE LA RECTA
|
|
|
- Óscar Botella Moreno
- hace 9 años
- Vistas:
Transcripción
1 STULS SR L RT STUL 1 isten infinitos puntos isten infinitas rectas isten infinitos planos s decir: n una recta eisten infinitos puntos. n un plano eisten infinitas rectas. n el espacio eisten infinitos planos. STUL : ( L ISTNI) cada par de puntos diferentes corresponde un número positivo único. STUL 3: ( L RGL) odemos establecer una correspondencia entre los puntos de una recta los números reales de manera que: - cada punto de la recta le corresponde eactamente un número real. - cada número real le corresponde eactamente un punto de la recta. - La ISTNI entre dos puntos cualesquiera es el valor absoluto de la diferencia de sus números correspondientes. - La distancia entre dos puntos cualesquiera es ÚNI. STUL 4: ( L LIÓN L RGL) ados dos puntos de una recta, se puede escoger un sistema de coordenadas de tal manera que la coordenada de sea cero la coordenada de sea positiva. STUL 5: ( L RT) ados dos puntos distintos, eiste una sólo una recta que contiene a ambos. STULS NGRUNI TRIÁNGULS STUL :(STUL LL) Toda correspondencia LL es una congruencia. STUL 16: (STUL L) Toda correspondencia L es una congruencia. STUL 17: (STUL LLL) Toda correspondencia LLL es una congruencia. F RFSR MIGUL GI MG F F Trabajo hecho por MM/
2 MSTRIÓN FRML UN TRM 8) atos: 1) n la figura, G es opuesto a G. ) G G emostrar que G es complementario con G. MSTRIÓN FIRMINS/ RZNS 1) G opuesto a G R1) ato ) G suplemento de G R) ostulado 1. 3) m G + m G = 180º R3) Ángulos suplementarios 4) G G R4) ato 5) m G = 90º R5) efinición de perpendicular recto. 6) m G = m G + 90º R6) dición de ángulos 7) m G + m G + 90º = 180º R7) Sustitución de la afirmación 6 en la 3. 8) m G + m G = 90º R8) Reducción en 7 9) G es complemento de G R9) ef. de s complementarios en 8 ÁNGULS N L IRUNFRNI NTRL m = m arc SMI-INSRIT m = m = -INSRIT m = m arc m arc TRIR TRIR m = 180 m arc m arc- m arc INSRIT m = m arc m = TRIR m arc- m arc Trabajo hecho por MM/
3 TRM VI-5 Las parejas de tangentes trazadas desde un mismo punto eterior a una circunferencia son congruentes. m = INTRIR m arc+ m arc TRMVI-1 n toda circunferencia, rectas secantes paralelas intersecan arcos congruentes. TRM VI- n toda circunferencia, a cuerdas congruentes le corresponden arcos congruentes. TRM VI-3 Todo radio es perpendicular a una recta tangente en su punto de tangencia. L 1 //L = L 1 L L 1 L = arc =arc TRM VI-6 Los arcos de intersección determinados por dos circunferencias secantes congruentes, son congruentes. R = Q = RIS RTIULRS LS TRIÁNGULS 1) Los lados de un Δ miden = 1cm, = 14cm = 16 cm. n el interior del Δ se toma un punto. uál de los siguientes valores puede ser igual a + +? a) 0cm b) 1cm c) 0 cm d) 4cm e) 46cm R 1 14 L:Tangente L TRM VI-4 Si un radio es perpendicular a una cuerda, entonces dicho radio biseca tanto a la cuerda como al arco que subtiende L 16 or el Teorema IV-5: n Δ : + > 16 n Δ : + > 1 n Δ : + > > > 1 (1) H H = H arc = arc > + Trabajo hecho por MM/
4 75 > demás: + > > + e donde: ( ) > > ; + > > 5 + > > + 16 Sumando miembro a miembro las desigualdades de las tres gráficas auiliares tenemos: 84 > + + ; es decir: or consiguiente: 5 < < 75 3) n la figura: = 8cm, hallar. 4 > + + () e (1) () tenemos: 1 < + + < 4 30º or lo tanto + + puede ser igual a 0 ) Los lados de una figura de cuatro lados miden = 10cm; = 1cm; = 13cm; = cm. Si en el interior de la figura se toma un punto. Hallar los límites en que varía la suma or Teorema IV-5: + + > > > > º 0º Trazamos la mediana referente a la hipotenusa del Δ rectángulo. omo M es mediana del Δ rectángulo, por el Teorema IV-16: 1 M = = 14cm omo m M = 0º; m M = 70º. omo Δ M es isósceles, m M = 70º m M = 40º. or consiguiente: Δ M es isósceles, = 14 cm. 8cm 14 0º 40º 14 M 14 30º 40º 0 > ( ) Trabajo hecho por MM/
5 4) n la figura = cm; = 17 cm. Hallar. α 17 α 6) n el ΔQR, acutángulo. p = 5, q = 0. Hallar r. Si la proección de q sobre p mide. r =? q = 0 α α 17 H 17 Q p = 5 r = p + q p () r = (5)() r = r = 16,58 r = 75 r =16,58 R GMTRÍ RTSIN Trazamos H Δ ΔH; por consiguiente = H = 17cm LN RTSIN n Δ rectángulo, por Teorema de itágoras. Tenemos: = 17 = 8cm + = = 17 Q(-,-) (,) S(5,1) 5 = 9cm 5) n el Δ, recto en. La hipotenusa mide 10cm el cateto maor mide 8cm. uánto mide la proección del cateto menor sobre la hipotenusa? b a = = m = a m 8 m 19 m = 6,4cm a = 8 m b = 10 H n c =? Las rectas perpendiculares se llaman ejes cartesianos. je : eje de las abscisas. je : eje de las ordenadas. ara el punto : bscisa rdenada l par ordenado (,) constitue las coordenadas del punto. Las rectas reales perpendiculares en el plano constituen un sistema de coordenadas. Las coordenadas de Q son: bscisa: - rdenada: - Las coordenadas de S son: bscisa: 5 rdenada: 1 Trabajo hecho por MM/
6 SI RTSIN Z z (,,z) M coordenadas de son:,, z. Z Las (,) F(0,p) 5 = p -3 = 4p p > 0 M 4 Las coordenadas de son: 4, -3, 5 UIÓN L RÁL VÉRTI N L RIGN J N UN J RN = p V F(0,p) L (,) L (,) V F(p,0) = 4p p < 0 = p p>0 = 4p F(p,0) (,) = p p< 0 = 4p Trabajo hecho por MM/
UNIDAD: GEOMETRÍA ÁNGULOS EN LA CIRCUNFERENCIA Y TEOREMAS. Trazo cuyos extremos son el centro de la circunferencia y un punto de ésta (OA ).
u r s o : Matemática Material N 16 UNI: GMTRÍ ÁNGULS N L IRUNFRNI Y TRMS GUÍ TÓRI RÁTI Nº 13 FINIINS IRUNFRNI: ado un punto y una distancia r, se llama circunferencia de centro y radio r al conjunto de
La Circunferencia y el círculo
La ircunferencia y el círculo La ircunferencia es una curva cerrada cuyos puntos están en un mismo plano y a igual distancia de otro punto interior fijo que se llama centro de la circunferencia. l círculo
GEOMETRÍA Y TRIGONOMETRÍA
GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un
TRIÁNGULO: es una figura geométrica cerrada de tres lados. Según la medida de sus lados, se clasifican en:
L IRUNFERENI Y SUS ÁNGULS Introducción La circunferencia es la más sencilla y familiar de las curvas y constituye, desde tiempos remotos, un elemento de suma importancia para el arte, el diseño y la arquitectura.
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
GUÍA DE MATEMÁTICA. Unidad : Circunferencia y sus ángulos I. ELEMENTOS DE UNA CIRCUNFERENCIA :
GUÍ DE MTEMÁTI Unidad : ircunferencia y sus ángulos urso : Medio I. ELEMENTOS DE UN IRUNFERENI : D O L L 1 O = centro de la circunferencia O = O = O = radio de la circunferencia = diámetro de la circunferencia
LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .
LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos
RESUMEN GEOMETRÍA SAINT MARY SCHOOL. PROF. JUAN K. BOLAÑOS M. Geometría Elemental
Geometría Elemental Punto Sólo tiene posición. No posee longitud, anchura ni espesor. Se representa por un. Se designa por medio de una letra mayúscula colocada cerca del punto gráfico. Línea recta Es
UNIDAD: GEOMETRÍA CONGRUENCIA DE TRIÁNGULOS Y ELEMENTOS SECUNDARIOS
U R S O : MTMÁTI MTRIL N 012-I UNI: GOMTRÍ GUÍ TORIO PRÁTI Nº 11 ONGRUNI TRIÁNGULOS Y LMNTOS SUNRIOS ONGRUNI TRIÁNGULOS 1. INIIÓN os triángulos son congruentes si y sólo si existe una correspondencia entre
Apuntes Trigonometría. 4º ESO.
Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al
3. 2. Pendiente de una recta. Definición 3. 3.
3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia
1. Polígonos. 1.1 Definición
1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1.- ÁNGULOS Un ángulo es la porción de plano limitada por dos semirrectas o rayos que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo
Ángulos y segmentos proporcionales en la circunferencia
Ángulos y segmentos proporcionales en la circunferencia Circunferencia Una circunferencia, es el conjunto de todos los puntos del plano, tales que su distancia a un punto fijo llamado centro es la misma
Ejercicios Resueltos
Ejercicios Resueltos ANGULOS 1. Si el complemento de ángulo x es x, Cuál es el valor de x en grados? x + x = 90 3x = 90 x = 90 /3 x = 30. Si el suplemento del ángulo x es 5x, Cuál es el valor de x? 5x+x=
CIRCUNFERENCIA TEORÍA PROPIEDADES PROBLEMAS RESUELTOS
CIRCUNFERENCIA TEORÍA PROPIEDADES PROLEMAS RESUELTOS CIRCUNFERENCIA.- Es un lugar geométrico de un conjunto de infinitos puntos que equidistan de un punto situado en el centro. Cuerda PQ ELEMENTOS DE UNA
UNIDAD: GEOMETRÍA ÁNGULOS EN LA CIRCUNFERENCIA Y TEOREMAS. Recta que intersecta a la circunferencia en un solo punto (TM). T punto de tangencia.
u r s o : Matemática Material N 16 GUÍ TÓRI RÁTI Nº 13 UNI: GMTRÍ ÁNGULS N L IRUNFRNI Y TRMS FINIINS IRUNFRNI: ado un punto y una distancia r, se llama circunferencia de centro y radio r al conjunto de
1.- 3.- Las áreas de dos polígonos semejantes son 121 cm 2 y 324 cm 2. Si el perímetro del primero es 44 cm, cuál es el perímetro del segundo?
olegio-laret 1.- 10m 7m 30m SMINRIO MTMÁTIS l dibujo presenta un método aproximado para medir la anchura de un río sin necesidad más que de tomar medidas en una orilla. Situándonos en el punto hemos realizado
Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:
Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben
4.1 Medida de ángulo: sistema sexagesimal. Para medir la amplitud de un ángulo podemos utilizar el sistema sexagesimal. 180º
PÍTULO 4 Tópicos de Geometría Geometría, palabra que proviene del griego, geo: tierra; metrein: medir, es una de las ramas mas antiguas de las ciencias, que tal vez ha tenido y tenga mayor incidencia en
UNIDAD 5. Ángulos en la circunferencia Relaciones métricas de la circunferencia Teorema de Euclides
Matemática UNI 5. Ángulos en la circunferencia Relaciones métricas de la circunferencia Teorema de Euclides 2 Medio GUÍ N 1 ÁNGULS EN L IRUNFERENI Recordemos algunas definiciones básicas necesarias para
Curso: Matemáticas segundo medio
urso: Matemáticas segundo medio LEGI SS NEPIN NMRE: lase Teórica Práctica Nº 29 IRUNFERENI La circunferencia se define como la figura geométrica cuyo conjunto de puntos del plano que la componen, están
TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)
TES DE TEÁTICS (posiciones de Secundaria) TE 40 GEETRÍ DE L CIRCUNFERENCI. 1. Generalidades. 1.1. Teorema fundamental.. osiciones relativas de una recta y una circunferencia..1. Rectas secantes.. Rectas
Propiedades y clasificación de triángulos
MT-22 Clase Propiedades y clasificación de triángulos Síntesis de la clase Ángulos Polígonos convexos Clasificación de ángulos Relaciones angulares Regulares Irregulares 0º < Agudo < 90 Recto = 90 90º
Rectas perpendiculares.
HPTER 2 Rectas perpendiculares. 1. Ángulos rectos, agudos y obtusos. Un ángulo de 90 ± (congruente por lo tanto con la mitad de un ángulo llano o con una cuarta parte del ángulo completo) se llama un ángulo
El triángulo órtico en el Court
El triángulo órtico en el ourt Francisco Javier García apitán 4 de febrero de 2009 Resumen acemos una lectura atenta de la sección The orthic triangle del libro ollege Geometry, n Introduction to the Modern
Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO
Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO 1º.- Deducir razonadamente el valor del ángulo α marcado en la figura sabiendo que esta representa
Rectas y Parábolas. Sistemas de coordenadas rectangulares (Plano Cartesiano)
Rectas y Parábolas Prof. Gabriel Rivel Pizarro Sistemas de coordenadas rectangulares (Plano Cartesiano) El sistemas de coordenadas rectangulares se representa en un plano, mediante dos rectas perpendiculares.
- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.
Ángulos. TRIGONOMETRÍA - Ángulo en el plano. Dos semirrectas con un origen común dividen al plano, en dos regiones, cada una de las cuales determina un ángulo ( α, β ). Al origen común se le llama vértice.
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
ÁNGULOS EN LA CIRCUNFERENCIA
GUÍ PRTI: N 1 ÁNGULS EN L IRUNFERENI 1. efinamos... ircunferencia: dado un punto y una distancia r, se llama circunferencia de centro y radio r al conjunto de todos los puntos del plano que están a la
1. Ángulos en la circunferencia
1. Ángulos en la circunferencia Ángulo central. Es el que tiene el vértice en el centro de la circunferencia. Se identifica con el arco, de modo que escribiremos α = Figura 1: Ángulo central, inscrito
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O
O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.
MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en
RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo
RAZONES TRIGONOMÉTRICAS Razones trigonométricas en un triángulo rectángulo Seno El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa. Se denota por sen B. Coseno El coseno
LA ECUACIÓN DE UN CÍRCULO 10.1.1 10.1.2
Capítulo 10 L ECUCIÓN DE UN CÍRCUL 10.1.1 10.1.2 Los alumnos han calculado las circunferencias áreas de círculos, de partes de los círculos, han usado las propiedades de los círculos en problemas de aplicación
Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades:
Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. II Nivel I Eliminatoria
OLIMPID OSTRRIENSE DE MTEMÁTI UN - UR - TE - UNED - MEP - MIIT Geometría II Nivel I Eliminatoria bril, 015 ontenido 1 II Nivel (8 y 9 ) - Geometría 1.1 Presentación.........................................
XI Concurso Intercentros de Matemáticas de la Comunidad de Madrid
9 de noviembre de 0 PRUE POR EQUIPOS º y º de E.S.O. (45 minutos). ntonio escribe en la pizarra un número N de cinco cifras. Marta copia el número de ntonio y le añade un a la derecha y obtiene un número
UNIDAD 6. CIRCUNFERENCIA
UNIDAD 6. CIRCUNFERENCIA DEFINICIONES CIRCUNFERENCIA: Dados un plano, un punto O en dicho plano y un número real positivo r, (r > 0), se llama Circunferencia de centro O y radio r, C(O; r), al conjunto
OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. III Nivel I Eliminatoria
OLIMPID OSTRRIENSE DE MTEMÁTI UN - UR - TE - UNED - MEP - MIIT Geometría III Nivel I Eliminatoria Marzo 2016 Índice 1. Presentación. 2 2. Temario 3 3. Teorema de Pitágoras 4 4. Triángulos Especiales 7
SEMEJANZA Y PROPORCIONALIDAD
SEMEJANZA Y PROPORCIONALIDAD Teorema de Pitágoras En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. congruencia ( ) : Dos figuras son congruentes
Proporcionalidad en la circunferencia
Pre-universitario Manuel Guerrero Ceballos Clase N 13 MODULO COMPLEMENTRIO Proporcionalidad en la circunferencia Resumen de la clase anterior Cuadriláteros suma de los ángulos interiores 360º suma de los
Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,
GUÍA DE GEOMETRÍA N 2. Triángulos
Liceo Benjamín Vicuña Mackenna Departamento de matemática Triángulo: Es un polígono de tres lados; está determinado por tres segmentos de recta que se denominan lados, o tres puntos no alineados que se
Fundación Uno. Ejercicio Reto. ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS:
ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS: 1. Triángulos.Rectas notables. Propiedades. 2. Cuadriláteros. Propiedades. 3. Polígonos. Propiedades. 4. Circunferencia.
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
1. En la siguiente figura, asocie un término del lado izquierdo con los nombres del lado derecho.
TALLER # 3 DE GEOMETRÍA: CIRCUNFERENCIAS Y POLIGONOS PROFESOR: MANUEL J. SALAZAR JIMENEZ 1. En la siguiente figura, asocie un término del lado izquierdo con los nombres del lado derecho. a) OE 1. Radio
SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA.
CUADERNILLO DE GEOMETRIA I.- SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA. 1.- SON LOS TRIÁNGULOS QUE TIENEN TODOS LOS ÁNGULOS IGUALES. A) EQUILÁTERO B) ACUTÁNGULO C) ISÓSCELES D) ESCALENO E) RECTÁNGULO
8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo
8. LA CIRCUNFERENCIA Y EL CÍRCULO 8.1. La Circunferencia. Una circunferencia es una línea curva, cerrada y plana, cuyos puntos están a la misma distancia de otro interior al que llamamos centro, es decir:
POLÍGONOS Y TRIÁNGULOS
POLÍGONOS Y TRIÁNGULOS POLÍGONOS. POLÍGONO es una figura limitada por segmentos de rectas. Los polígonos pueden ser cóncavos o convexos. POLÍGONO ONVEXO POLÍGONO ÓNVO. Se clasifican de acuerdo al número
ÁNGULOS EN LA CIRCUNFERENCIA
Pontificia Universidad atólica de hile entro de lumnos de Ingeniería 2009 ÁNGULS EN L IRUNFERENI 1. efinamos... ircunferencia: dado un punto y una distancia r, se llama circunferencia de centro y radio
Además del centro y el radio, distinguen: 1. Cuerda: segmento que une dos puntos cualquiera de la circunferencia. EF
23 1.5 ircunferencia efinición ado un punto y una distancia r, la circunferencia de centro y radio r, es el conjunto de puntos del plano y solo ellos, que están a la distancia r del punto. La circunferencia
Comencemos este breve estudio acerca de las propiedades angulares en la circunferencia describiendo algunos elementos básicos:
MATEMÁTICA MÓDULO 2 Eje temático: Geometría 1. PROPIEDADES ANGULARES EN LA CIRCUNFERENCIA Comencemos este breve estudio acerca de las propiedades angulares en la circunferencia describiendo algunos elementos
GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA
PÁGINA: 1 de 8 Nombres y Apellidos del Estudiante: Docente: Esp. LANA ROZO LANO Área: Matemática Grado:9º Periodo: 3 Duración: 8 horas Asignatura: Geometría ESTÁNDAR: Uso representaciones geométricas para
7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO
Tema 7: Trigonometría Matemáticas B 4º ESO TEMA 7 TRIGONOMETRÍA 7.0 UNIDADES DE MEDIDAS DE ÁNGULOS 4º 7.0. GRADOS SEXAGESIMALES Grados, minutos y segundos : grado 60 minutos, minuto 60 segundos 4º 7.0.
Casos de igualdad de triángulos
Geometría Plana y Trigonometría (aldor) r. G. Urcid Septiembre iciembre 008 INE 6/ asos de igualdad de triángulos apítulo 6. Ejercicios Resueltos (pp. 70 7) () Si < = < y < 3 = < 4, demostrar que =. 3
Polígonos y circunferencia
826464 _ 055-070.qxd 12/2/07 09:22 Página 55 Polígonos y circunferencia INTRODUCCIÓN RESUMEN DE LA UNIDAD Nos introducimos en el estudio de los polígonos, recordando contenidos trabajados por los alumnos
UNIDAD: GEOMETRÍA ÁNGULOS EN LA CIRCUNFERENCIA Y TEOREMAS. Recta que intersecta a la circunferencia en un solo punto (TM). T punto de tangencia.
u r s o : Matemática Material N 16 GUÍ TEÓRI RÁTI Nº 13 UNI: GEMETRÍ ÁNGULS EN L IRUNFERENI Y TEREMS EFINIINES IRUNFERENI: ado un punto y una distancia r, se llama circunferencia de centro y radio r al
Generalidades y ángulos en la circunferencia. Matemática I III Medio 2018
Generalidades y ángulos en la circunferencia Matemática I III Medio 2018 1. Elementos de la circunferencia y del círculo 2. Área y perímetro 3. Propiedades de ángulos 1. Elementos de la circunferencia
GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO.
1. Líneas y ángulos Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. Los puntos del espacio se consideran agrupados en conjuntos parciales de infinitos puntos llamados PLANOS.
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
SOLUIONES LOS EJERIIOS E L UNI ág. 1 ágina 170 RTI Semejanza de figuras 1 opia en una hoja de papel cuadriculado estas dos figuras. Modifica la de la derecha para que sean semejantes. En un mapa cuya escala
TRIANGULOS. La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos.
TRIANGULOS La trigonometría se desarrollo con el fin de relacionar los lados y los ángulos de los triángulos. CLASIFICACION DE LOS TRIANGULOS Los triángulos se pueden clasificar por la relación entre las
Colegio BOLIVAR. ÁREA DE MATEMÁTICAS Geometría. Lady Arismandy. Cohete - AVANZAR GRADO 8 PRIMER PERIODO
Colegio BOLIVAR ÁREA DE Lady Arismandy Cohete - AVANZAR GRADO 8 PRIMER PERIODO 2008 PRIMER periodo GEOMETRÍA PRESABERES ALGEBRA Aproximación histórica. La historia del origen de la geometría está asociada
1. La circunferencia.
http://www.telefonica.net/web/jlgarciarodrigo/. La circunferencia... Elementos de una circunferencia. Definición. Se llama circunferencia al lugar geométrico formado por los puntos que equidistan de otro
Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.
Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90
B7 Cuadriláteros. Geometría plana
Geometría plana B7 Cuadriláteros Cuadrilátero es un polígono de cuatro lados. Lados opuestos son los que no tienen punto común. Ejemplo AB y CD, AD y BC. Lados contiguos son los que tienen un extremo común.
Generalidades y ángulos en la circunferencia
PPTCES021MT22-A15V1 Clase Generalidades y ángulos en la circunferencia Aprendizajes esperados Identificar los elementos de una circunferencia y un círculo. Calcular áreas y perímetros del círculo, del
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES. 2.- La suma de dos números es 15 y su producto es 26. Cuáles son dichos números?
RESOLUCIÓN DE PROBLEMAS MEDIANTE ECUACIONES 1.- El perímetro de un rectángulo es 4 cm y su área es 0 cm. Cuáles son sus dimensiones? Sea = altura ; y = base Como perímetro es 4: + y = 1 y = 1 Como el área
CORRECCIÓN DE ACTIVIDADES GEOMETRÍA LINEAL
CORRECCIÓN DE ACTIVIDADES GEOMETRÍA LINEAL *. Responde a las siguientes preguntas en tu cuaderno. a) Qué es una recta? Dibújala. Recta: sucesión infinita de puntos (no tiene principio ni fin). Las rectas
Teoremas de los ángulos. Los ángulos adyacentes son suplementarios. Los ángulos opuestos por el vértice son congruentes
Resumen de Matemática LiceoProm14.tk Nomenclatura: (Solo para circunferencias) Rectas perpendiculares Rectas paralelas Teoremas de los ángulos Teorema 1: Los ángulos adyacentes son suplementarios. Teorema
GEOMETRÍA EUCLIDIANA CONCEPTOS BÁSICOS
GEOMETRÍA EUCLIDIANA CONCEPTOS BÁSICOS EL MÉTODO DEDUCTIVO: El método deductivo es el utilizado en la ciencia y principalmente en la geometría. Este método consiste en conectar un conjunto de conocimientos
Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad
Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza
11-A-1/8. Nombre: Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser:
11-A-1/8 Geometría (polígonos) Líneas poligonales. Es un conjunto de segmentos unidos, formando diversos ángulos. Pueden ser: Abierta Cerrada El trozo de plano que hay dentro de una línea poligonal cerrada,
Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad.
Capítulo II. Lugar geométrico. Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Ejemplo: la mediatriz de un segmento es el conjunto
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón:
PERÍMETROS Y ÁREAS DE FIGURAS PLANAS UNIDADE 13 1º ESO 1 ) Halla la superficie y el perímetro del recinto marrón: 2 ) Calcula el perímetro y el área de esta figura: 3 ) Calcula el perímetro y el área de
6.- Calcular el área de un triángulo equilátero cuyo perímetro mide 48 cm.
SEMANA DEL 03 AL 07 DE ABRIL ACTIVIDAD 01: RESOLVEMOS PROBLEMAS DE TRIÁNGULOS Ejercicios 1.- Analiza y marca con x la posibilidad de existencia de los siguientes triángulos, sabiendo que la medida de sus
SOLUCIONES DE LAS ACTIVIDADES Págs. 191 a 213
SOLUCIONES DE LAS ACTIVIDADES Págs. 191 a 1 Página 191 1. ( ) ( ) ( 9) ( ). a) ; 6 18 6 18 0 ; 1 16 184 0; 4 46 0 6 7 ; 8 6 7 ± ; ( 6) 7 4 5 0 5 / 4 ( 6) ( 7) 4 19 0 9 / 4 b) r: 4 4 0 4 4 5 ; 17 10 4 4
Trigonometría y problemas métricos
Trigonometría y problemas métricos 1) En un triángulo rectángulo, los catetos miden 6 y 8 centímetros. Calcula la medida de la altura sobre la hipotenusa y la distancia desde su pie hasta los extremos.
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS 1) En cada ejercicio hallar la ecuación de la circunferencia que cumple: 1) El radio es igual a 6 y las coordenadas de su centro son ( 1, 2). 2) Su centro es el origen de coordenadas
8. Elementos de geometría plana
8. Elementos de geometría plana 1. Elementos básicos de la geometría 2. Ángulos 2.1. El sistema sexagesimal 2.1.1. Suma de ángulos 2.1.2. Resta de ángulos 2.1.3. Multiplicar por un número 2.1.4. Dividir
Ejercicios de Geometría Plana
jercicios de Geometría lana 1. n la (, ),,,, y son puntos de la circunferencia, =. rueba que: y diámetros a) GH es isósceles. b) HG es un trapecio isósceles. c) GH. 2. n la figura y paralelogramos, y puntos
TEMA2: TRIGONOMETRÍA I
TEMA: Trigonometría (del griego trigonon, triángulo y métron, medida). MEDIDA DE ÁNGULOS Para medir los ángulos y los ar de circunferencia se usan fundamentalmente dos sistemas de medida:. Sistema Sexagesimal:
Liceo Experimental Bilingüe José Figueres Ferrer. Departamento de Matemática. Prof. Pamela Granados Vargas. Geometría - Undécimo Año
Liceo Experimental ilingüe José Figueres Ferrer epartamento de Matemática rof. amela Granados Vargas Geometría - Undécimo ño Unidad 1: írculo y ircunferencia Estudiante Sección írculo y ircunferencia Undécimo
13. PROBLEMAS DE CUADRILÁTEROS
13. PROBLEMAS DE CUADRILÁTEROS 13.1. Propiedades. Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades: - Las diagonales de un paralelogramo se cortan en sus
ÁNGULOS. SEMEJANZA. TEOREMA DE THALES
ÁNGULOS. SMJNZ. TORM THLS I. ÁNGULOS Ángulos complementarios: aquellos que suman 90º. Ángulos suplementarios: aquellos que suman 180º. Ángulos ayacentes: aquellos que tienen un lao en común y otro en prolongación:
Ángulos y Triángulos
Ángulos y Triángulos Ángulos Según su medida un ángulo puede ser: Ángulo agudo: su medida es menor que 90 Ángulo recto: su medida es 90, es decir, mide la cuarta parte del ángulo completo. Se dice que
GEOMETRÍA ANALÍTICA EN EL PLANO
GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
SOLUIONES LOS EJERIIOS E L UNI ág. 1 ágina 16 RTI Semejanza de figuras 1 uáles de estas figuras son semejantes? uál es su razón de semejanza? La primera y la cuarta son semejantes, porque todos los lados
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA
ASIGNATURA: MATEMÁTICA Contenido: TRIGONOMETRÍA I TEORÍA Docente: Teneppe María Gabriela Medida de ángulos: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas
MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.
ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la
ÁNGULOS Y GEOMETRÍA DEL TRIÁNGULO: CLASIFICACIÓN Y APLICACIONES DIDÁCTICAS.
ÁNGULOS Y GEOMETRÍA DEL TRIÁNGULO: CLASIFICACIÓN Y APLICACIONES DIDÁCTICAS. AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO Resumen EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS ÁNGULOS
Lección 17: Polígonos básicos
Lección 17: Polígonos básicos Un polígono es una figura cerrada formada por segmentos de recta que no se cruzan entre sí. Los segmentos se llaman lados del polígono. Los polígonos pueden ser convexos,
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría
TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.
Unidad 3 Lección 1. Unidad 3 Lección 1 Nombre
Unidad 3 Lección 1 Prueba A 1. Un segmento dibujado desde el centro de un círculo hasta el borde del mismo, se llama un. 2. Todos los radios de un círculo tienen el mismo. 3. Escriba una ecuación que represente
Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.
6. Trigonometría 37 6 Trigonometría Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. A efectos representativos y de medición, el
Guía de Matemáticas Primer Grado
Guía de Matemáticas Primer Grado 1 Cómo recibe el nombre de nuestro sistema de numeración y que se agrupa de diez en diez las unidades, centenas, etc.? a) Sistema natural b) Sistema vigesimal c) Sistema
Conceptos básicos de Geometría
Conceptos básicos de geometría La geometría trata de la medición y de las propiedades de puntos, líneas, ángulos, planos y sólidos, así como de las relaciones que guardan entre sí. A continuación veremos
