ÁNGULOS EN LA CIRCUNFERENCIA
|
|
|
- Carmen Díaz Campos
- hace 9 años
- Vistas:
Transcripción
1 GUÍ PRTI: N 1 ÁNGULS EN L IRUNFERENI 1. efinamos... ircunferencia: dado un punto y una distancia r, se llama circunferencia de centro y radio r al conjunto de todos los puntos del plano que están a la distancia r del punto. r (, r) Radio: trazo cuyos extremos son el centro de la circunferencia y un punto de ésta (). uerda: trazo cuyos extremos son dos puntos de una circunferencia (E). iámetro: cuerda que contiene al centro de la circunferencia (). Secante: recta que intersecta en dos puntos a la circunferencia (P Q) Tangente: recta que intersecta a la circunferencia en un solo punto (T M). T punto de tangencia. P T Q E rco: es una parte de la circunferencia determinada por dos puntos distintos de ella (E). Ángulo del entro: Es todo ángulo interior cuyo vértice es el centro de la circunferencia y sus lados son radios de la misma ( F E). Ángulo Inscrito: Es todo ángulo cuyo vértice es un punto de la circunferencia y parte de sus rayos son cuerdas de ésta ( F E) E F Ángulo Externo: Es todo ángulo formado por secantes fuera de la circunferencia ( ). Ángulo Interno: Es todo ángulo formado por cuerdas al interior de la circunferencia ( ). 1
2 2. Propiedades on respecto a los ángulos que se forman al interior de una circunferencia, se cumple que 1. En toda circunferencia la medida angular de un arco es igual a la medida del ángulo del centro que subtiende dicho arco. E= E = E 2. Todo ángulo inscrito en una circunferencia tiene como medida la mitad del ángulo del centro que subtiende el mismo arco. β 2 = β jo 1 Si β es un ángulo inscrito que subtiende el y es diámetro, entonces β = 90. β 2
3 3. Todo ángulo interno a una circunferencia tiene como medida la semisuma entre los arcos comprendidos por las cuerdas que lo forman. γ γ + = E = γ 2 4. Todo ángulo externo a una circunferencia tiene como medida la semidiferencia entre los arcos comprendidos por las secantes que lo forman. 2 = E = δ E δ jo 2 En todo cuadrilátero inscrito en una circunferencia, los ángulos opuestos son suplementarios. jo 3 La recta tangente a una circunferencia es perpendicular al radio en el punto de tangencia. β + γ = β + δ = 180 o T L γ δ T L 3
4 3. Ejercicios Sin calculadora. Marcar sólo 1 alternativa. 1. uál de las siguientes opciones es falsa? a) El diámetro de una circunferencia es el doble de su radio. b) La mayor cuerda de una circunferencia es el diámetro. c) En circunferencias congruentes los radios son congruentes. d) l cortarse dos cuerdas en el centro de la circunferencia forman ángulos del centro. e) Por tres puntos cualesquiera siempre pasa una circunferencia. 2. En la circunferencia de centro, es diametro. Si β = 20 o, entonces el valor de es a) 10 o b) 20 o c) 40 o d) 80 o e) 140 β 3. En la circunferencia de centro y diámetro de la figura, cuánto mide el? a) 22 o b) 34 o c) 36 o d) 44 o e) 68 o 68 o 4
5 4. En la circunferencia de centro de la figura, = 70 o y = 40 o. uánto mide el ángulo? a) 10 o b) 20 o c) 15 o d) 30 o e) 25 o 5. En la circunferencia de centro, se cumple que = y + = 3. Entonces la medida del es a) 45 o b) 60 o c) 72 o d) 84 o e) 90 o 6. y E son diámetros de la circunferencia de centro (fig. 2). Si = 2, entonces el mide a) 30 o b) 35 o E c) 45 o d) 600 o e) 120 o 5
6 7. En la figura, T P Q = 140 o y QRP = 15 o. uánto mide el P QT? a) 15 o b) 20 o c) 25 o d) 30 o T R e) 35 o P Q 8. es diámetro de la circunferencia de centro. uánto mide el ángulo? a) 15 o b) 25 o c) 35 o d) 55 o 55 o e) 70 o 9. En la figura, P T es tangente a la circunferencia de centro, en T. uánto mide el P T? a) 10 o T b) 20 o c) 30 o d) 40 o 40 o P e) 50 o 6
7 10. En la circunferencia de centro de la figura, P y P son tangentes en y, respectivamente. uánto mide el ángulo? a) 25 o b) 50 o c) 65 o 50 o P d) 100 o e) 130 o 11. En la figura, el cuadrilatero esta inscrito en la circunferencia. Si β = 145 o y = β δ, entonces γ = a) 35 o δ b) 45 o c) 55 o d) 60 o e) 70 o β γ 12. y son diámetros de la circunferencia de centro. Si el ángulo mide 80 o, cuánto mide el ángulo? a) 20 o b) 30 o c) 40 o d) 45 o e) 50 o 7
8 13. En la circunferencia de centro y diámetro de la figura, cuánto mide el ángulo si = 30 o y = 40 o? a) 70 o b) 100 o c) 125 o d) 140 o e) 160 o 14. y son los centros de las circunferencias de la figura. Si = 40 o, cuánto mide el ángulo? a) 10 o b) 20 o c) 25 o d) 40 o e) 50 o 15. es centro de la circunferencia de la figura, y QRP es cuadrado. uánto mide el ángulo RSP? a) 22,5 o S b) 30 o c) 45 o P d) 60 o e) 50 o Q R 8
9 16. En la circunferencia de centro de la figura, cuánto mide el ángulo P R? a) 35 o b) 40 o c) 45 o T R 70 o Q d) 50 o e) 70 o P 17. En la figura, es el centro de la circunferencia. Si RQ = 36 o y RP = 54 o, cuánto mide el RT P? a) 63 o b) 72 o c) 108 o T Q d) 117 o e) 144 o P R 18. En la circunferencia de centro de la figura, + = 80 o. Entonces, el mide a) falta información. b) 80 o c) 60 o d) 40 o e) 20 o 9
10 19. En la figura, = 40 o y = 30 o. uánto mide el? a) 60 o b) 90 o c) 100 o d) 120 o e) 110 o 20. En la figura, es diámetro y = 16 o. uánto mide el? a) 74 o b) 64 o c) 45 o d) 32 o e) 16 o 21. En la figura, //. Si = 80 o, entonces cuál(es) de las siguientes afirmaciones es (son) siempre verdadera(s)? I) = 40 o II) E = 80 o III) = 100 o a) Sólo I b) Sólo II E c) Sólo I y II d) Sólo II y III e) I, II y III 10
11 22. es centro de la circunferencia de la figura, QP = RQ = SR y RS = 72 o. uánto mide el ángulo P T Q? a) 54 o b) 36 o c) 35 o T d) 27 o e) 18 o P Q R S 23. es un cuarto de circunferencia con centro en. Si =, entonces el mide a) 15 o b) 30 o c) 45 o d) 60 o e) 75 o 24. En la figura, la circunferencia tiene centro en. El valor del ángulo x es a) 12,25 o b) 12,5 o c) 25 o a x 50 o a d) 37,50 o e) 50 o 11
12 25. En la circunferencia de centro, = 2. uánto mide el ángulo? a) 36 o b) 45 o c) 60 o d) 72 o e) 90 o 26. En la circunferencia de centro de la figura, se puede conocer el valor de si: (1) = 2 (2) = a) (1) por sí sola. b) (2) por sí sola. c) mbas juntas, (1) y (2). d) ada una por si sola, (1) ó (2). e) Se requiere información adicional. 27. En la circunferencia de centro de la figura, y son diámetros. Se puede conocer el valor de x si: (1) = 110 o (2) + = 70 o a) (1) por sí sola. b) (2) por sí sola. c) mbas juntas, (1) y (2). x d) ada una por si sola, (1) ó (2). e) Se requiere información adicional. 12
13 28. es diámetro de la circunferencia de centro. La medida del se puede determinar si: (1) = 2 (2) = 2 a) (1) por sí sola. b) (2) por sí sola. c) mbas juntas, (1) y (2). d) ada una por si sola, (1) ó (2). e) Se requiere información adicional. 29. En la figura, el cuadrilátero está inscrito en la circunferencia. Se puede saber la medida del si: (1) = 180 o (2) = 100 o a) (1) por sí sola. b) (2) por sí sola. c) mbas juntas, (1) y (2). d) ada una por si sola, (1) ó (2). e) Se requiere información adicional. 30. En la circunferencia de centro de la figura, y son puntos de tangencia. Se puede determinar la medida del si: (1) P = P (2) = 3 P a) (1) por sí sola. b) (2) por sí sola. c) mbas juntas, (1) y (2). P d) ada una por si sola, (1) ó (2). e) Se requiere información adicional. 13
14 1 E E 12 E E E E 30 14
UNIDAD: GEOMETRÍA ÁNGULOS EN LA CIRCUNFERENCIA Y TEOREMAS. Trazo cuyos extremos son el centro de la circunferencia y un punto de ésta (OA ).
u r s o : Matemática Material N 16 UNI: GMTRÍ ÁNGULS N L IRUNFRNI Y TRMS GUÍ TÓRI RÁTI Nº 13 FINIINS IRUNFRNI: ado un punto y una distancia r, se llama circunferencia de centro y radio r al conjunto de
Ángulos en la Circunferencia y Teoremas
Ángulos en la Circunferencia y Teoremas Nombre Alumno o Alumna: Curso: Definiciones Circunferencia: Dado un punto O y una distancia r, se llama circunferencia de centro O y radio r al conjunto de todos
TRIÁNGULO: es una figura geométrica cerrada de tres lados. Según la medida de sus lados, se clasifican en:
L IRUNFERENI Y SUS ÁNGULS Introducción La circunferencia es la más sencilla y familiar de las curvas y constituye, desde tiempos remotos, un elemento de suma importancia para el arte, el diseño y la arquitectura.
Tutorial MT-b13. Matemática Tutorial Nivel Básico. Circunferencia y círculo
134567890134567890 M ate m ática Tutorial MT-b13 Matemática 006 Tutorial Nivel ásico ircunferencia y círculo Matemática 006 Tutorial ircunferencia y írculo Marco Teórico 1. Elementos de la circunferencia
GUÍA DE MATEMÁTICA. Unidad : Circunferencia y sus ángulos I. ELEMENTOS DE UNA CIRCUNFERENCIA :
GUÍ DE MTEMÁTI Unidad : ircunferencia y sus ángulos urso : Medio I. ELEMENTOS DE UN IRUNFERENI : D O L L 1 O = centro de la circunferencia O = O = O = radio de la circunferencia = diámetro de la circunferencia
EGRESADOS. Matemática PROGRAMA. Guía: Generalidades de ángulos, polígonos y cuadriláteros. Ejercicios PSU // L 2. 1.
PROGRM GRSOS Guía: Generalidades de ángulos, polígonos y cuadriláteros jercicios PSU 1. n la figura, L 1 // L 2 // L 3, entonces α mide ) 82º ) 90º ) 122º ) 168º ) 238º L 1 L 2 110º a L 3 12º Matemática
La Circunferencia y el círculo
La ircunferencia y el círculo La ircunferencia es una curva cerrada cuyos puntos están en un mismo plano y a igual distancia de otro punto interior fijo que se llama centro de la circunferencia. l círculo
Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia
Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior
Subtemas: -Congruencia De Triángulos. -Tipos De Ángulos. -Tipos De Triángulos
Subtemas: -Congruencia De Triángulos -Tipos De Ángulos -Tipos De Triángulos Congruencia de triángulos La congruencia de triángulos estudia los casos en que dos o más triángulos presentan ángulos y lados
Ángulos y segmentos proporcionales en la circunferencia
Ángulos y segmentos proporcionales en la circunferencia Circunferencia Una circunferencia, es el conjunto de todos los puntos del plano, tales que su distancia a un punto fijo llamado centro es la misma
SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1
SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión
GUIA DOS CUADRILATEROS
PROF.: XIMN STRO NIVL IV MIO GUI OS URILTROS 1) Si el lado de un cuadrado mide m, entonces cuánto mide la altura de un triángulo de base m y cuya área es equivalente al del cuadrado? ) m ) m ) m ) m )
Preguntas Propuestas
reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de
Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad.
Capítulo II. Lugar geométrico. Definición: un lugar geométrico plano es el conjunto de todos los puntos del plano que cumplen una determinada propiedad. Ejemplo: la mediatriz de un segmento es el conjunto
GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS
Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas
1.1. Puntos y rectas notables en el triángulo. Sean A, B y C los vértices de un triángulo de lados opuestos a, b y c, respectivamente.
apítulo 1 Rectas notables 1.1. Puntos y rectas notables en el triángulo ltura, mediana y bisectriz Sean, y los vértices de un triángulo de lados opuestos a, b y c, respectivamente. H a c h b a H c H b
El radio de un cilindro mide 4 cm y su altura mide 6 cm. Cuánto mide su área?
PROGRM EGRESDOS Guía: uerpos redondos 1. 2. GUIEG07EM2-16V1. Matemática Ejercicios PSU El radio de un cilindro mide 4 cm y su altura mide 6 cm. uánto mide su área? ) 40 cm2 D) 64 cm2 ) 48 cm2 E) 80 cm2
PRIMER ENSAYO EXAMEN DE GEOMETRIA Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es:
EJÉRITO E HILE OMNO E INSTITUTOS MILITRES cademia Politécnica Militar PRIMER ENSYO EXMEN E GEOMETRI 2005 1. Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es: a) 68cm b)
Líneas paralelas. Se llaman líneas paralelas las que se hallan en un mismo plano y no se intersectan por mas que se prolonguen.
1.1 ngulos entre paralelas. apítulo 1. onceptos ásicos de Geometría Líneas paralelas. Se llaman líneas paralelas las que se hallan en un mismo plano y no se intersectan por mas que se prolonguen. Si una
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
Clasificación de los triángulos
COLEGIO ITALO BOLIVIANO CRISTOFORO COLOMBO PROF. HEINS VEGA Clasificación de los triángulos Triángulo: Figura geométrica cerrada delimitada por tres segmentos de recta. Los segmentos son los lados del
Unidad 11. Figuras planas
Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares
Se utilizan diversos sistemas de medidas de ángulos. Los más utilizados son: a) El sistema sexagesimal. b) El radián.
ÁNGULOS Y SU MEDIDA. Llamamos ángulo (r,s) a la región del plano limitada por dos semirectas ordenadas (r,s) que tienen un origen común O, que llamamos vértice del ángulo. Notación: Sean A r, B s El ángulo
B5 Lugares geométricos
Geometría plana B5 Lugares geométricos Lugar geométrico Se llama así a la figura que forman todos los puntos que tienen una misma propiedad. Los lugares geométricos pueden ser del plano o del espacio,
La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro.
Geometría y Trigonometría Circunferencia 6. CIRCUNFERENCIA 6.1 Definición y notación de una circunferencia La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior
1. En cuál(es) de las siguientes figuras el triángulo F es siempre semejante con el triángulo G? 63º 31º
PROGRM GRSOS Guía: Semejanza de triángulos jercicios PSU 1. n cuál(es) de las siguientes figuras el triángulo es siempre semejante con el triángulo G? I) G 2º 2º II) 31º 86º G 31º 63º III) G Matemática
REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA
MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos
LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90
LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
2. Enlace de puntos que no están en línea recta por medio de arcos que sean tangentes entre sí
Unidad Nº 2. Dibujo Geométrico 1. Enlace de puntos y de líneas. Introducción 2. Enlace de puntos que no están en línea recta por medio de arcos que sean tangentes entre sí 3. Empalmar dos rectas perpendiculares
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1.- ÁNGULOS Un ángulo es la porción de plano limitada por dos semirrectas o rayos que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo
CIRCUNFERENCIA Y CÍRCULO
CIRCUNFERENCIA Y CÍRCULO 1. Circunferencia y círculo. Elementos. 2. Posiciones relativas de una recta y una circunferencia. 3. Posiciones relativas de dos circunferencias. 4. Ángulos centrales. 5. Ángulos
GEOMETRÍA Y TRIGONOMETRÍA
GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
G - 6. Guía Cursos Anuales. Matemática. Cuadriláteros I
G - 6 Guía ursos nuales Matemática 2008 uadriláteros I Guía ursos nuales Introducción La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza,.
Potencia y eje radical Carmela Acevedo
Potencia y eje radical Carmela Acevedo Potencia Definición: La potencia de un punto P respecto a una circunferencia Γ es el producto P A P B, donde A y B son los puntos de corte de una recta secante a
La circunferencia y el círculo
La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
INSTITUTO SALAMANCA Matematicas III Julio-Agosto 2009 APLI CACIONES DE LOS ÁNGULOS
APLI CACIONES DE LOS ÁNGULOS Ángulo: es la unión de dos rayos que tienen un punto en común llamado vértice Elementos de un ángulo : -lados -Vértice y -bisectriz Un ángulo divide al plano en dos subconjuntos
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS 1) En cada ejercicio hallar la ecuación de la circunferencia que cumple: 1) El radio es igual a 6 y las coordenadas de su centro son ( 1, 2). 2) Su centro es el origen de coordenadas
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 19 Explorando la esfera-2. Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual. Sin libros, ni cuadernos,
A) 21 cm B) 18 cm C) 17 cm D) 15 cm E) 12 cm. A) 48 cm B) 32 cm C) 24 cm
Geometría - 1 AEA Y PEIMETO 1.- ΔAB y ΔE son rectángulos congruentes. AB = 8 y B = 6. uánto mide AE? A) 10 E B) 12 ) 14 ) 16 E) 20 A B 2.- AB = B = a y A = AE. Entonces, BE mide: A) a 1 B) a 2 2 ) a( 2
CUADRILÁTEROS. En la configuración de la ciudad, los arquitectos diseñaron sus manzanas en forma de cuadriláteros.
Universidad Peruana de iencias plicadas (UP) Matemáticas M 111 URILÁTEROS L IU E LIM, conocida tamién como iudad de los Reyes, fue fundada por Francisco Pizarro el 18 de enero de 1535 en la margen derecha
Geometría en el plano
1 Geometría en el plano Para empezar Muchas veces nos encontramos con imágenes que parecen una cosa pero en realidad son otra, o que nos confunden y parecen cambiar según cómo se las mire. Imagen 1 Imagen
Polígono. Superficie plana limitada por una línea poligonal cerrada.
POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la
Matemáticas II Magisterio (Primaria) Curso Problemas de repaso
Matemáticas II Magisterio (rimaria) urso 2013-2014 1. alcula la medida del ángulo a de la figura. roblemas de repaso 116 105 a Sol: a = 49. 2. Sabiendo que los puntos, y R están sobre una circunferencia
Dibujo Técnico Curvas cónicas-parábola
22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS
b) Trapezoides Asimetricos.-Es un cuadrilátero irregular que no tiene ningún lado paralelo al otro.
ROF: JI UIS SS URILTROS URILTROS FIIIÓ.- Son polígonos que tienen cuatro lados, y pueden ser: = + y lementos 1) Vértices: Son los puntos de intersección,, y, de las rectas que forman el cuadrilátero. )
Ángulos 1º = 60' = 3600'' 1' = 60''
Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para
8. LA CIRCUNFERENCIA Y EL CÍRCULO. 8.1. La Circunferencia. 8.2. El circulo. Dibujo Técnico La Circunferencia y el círculo
8. LA CIRCUNFERENCIA Y EL CÍRCULO 8.1. La Circunferencia. Una circunferencia es una línea curva, cerrada y plana, cuyos puntos están a la misma distancia de otro interior al que llamamos centro, es decir:
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.
Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo
Geometría Plana Conceptos Primitivos de la Geometría Axiomas Principales de la Geometría Euclidiana
Capítulo 9 Geometría Plana L a palabra geometría tiene sus raíces en la composición de las palabras geo que significa tierra, y la palabra metrein que significa medida, por lo tanto en su significado más
NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA
UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS
Dirección General del Bachillerato Centro de Estudios de Bachillerato 5/3 José Vasconcelos Calderón
1 Problema 1. os piezas cuadradas y tres piezas rectangulares se acomodan para formar un rompecabezas cuadrado como muestra la figura. Si cada una de las dos piezas cuadradas tiene 72cm de perímetro y
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO.
1. INCENTRO Y ORTOCENTRO ❶ Sitúate en el ortocentro como punto de partida. ❷ Recorre la altura hasta el lado más alejado. ❸ Desplázate por el perímetro hasta el vértice más próximo. ❹ Dirígete al incentro.
Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica
Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un
MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas
MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 2: TANGENCIAS EN LAS CIRCUNFERENCIAS 1. TANGENCIAS EN LAS CIRCUNFERENCIAS Decimos que dos elementos geométricos son tangentes cuando tienen un punto en común. Las tangencias
Unidad 1: Ángulos. Ángulos entre rectas paralelas
Ángulos entre rectas paralelas Cuando se presentan dos rectas paralelas distintas quedan delimitadas 3 regiones: Si las dos rectas paralelas son cortadas por otra (llamada transversal o secante), quedan
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
Círculo y Circunferencia
03 Lección Círculo y Circunferencia Estudio Identifica y traza las rectas y segmentos de la circunferencia. En Presentación de Contenidos se estudia la diferencia entre circunferencia y círculo y las rectas
1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?
Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares
Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.
GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos
*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.
*DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al
INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO
CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos
TRIGONOMETRÍA ESFÉRICA 2001 Kepler C k Ikastegia
TRIGNMETRÍ ESFÉRI 2001 Kepler k Ikastegia 2 1.1 Introducción La Trigonometría es una rama de la Matemática en la que se analiza la medida de las partes de los triángulos, tanto de los triángulos planos
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia
G - 7. Guía Cursos Anuales. Matemática. Cuadriláteros II
G - 7 Guía ursos nuales Matemática 2008 uadriláteros II Guía ursos nuales Introducción La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de
Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas
Guía 2: Puntos, rectas y circunferencias notables en el triángulo. Teorema de Pitágoras. Ternas Pitagóricas duardo Sarabia 27 de enero de 2011 Puntos, rectas y circunferencias notables en el triángulo.
TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:
TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.
PSU Matemática NM-4 Guía 16: Ángulos en la circunferencia
entro ducacional San arlos de ragón. pto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía 6: Ángulos en la circunferencia Nombre: urso: Fecha: - ontenido: Geometría. prendizaje sperado: Utiliza
Cap. 3: relaciones en un triángulo
PROBLEMAS DE TRIGONOMETRÍA (Traducido del libro de Israel M. Gelfand & Mark Saul, Trigonometry ) Cap. 3: relaciones en un triángulo Notas: 1. Los ejercicios marcados con * están resueltos en el libro.
B7 Cuadriláteros. Geometría plana
Geometría plana B7 Cuadriláteros Cuadrilátero es un polígono de cuatro lados. Lados opuestos son los que no tienen punto común. Ejemplo AB y CD, AD y BC. Lados contiguos son los que tienen un extremo común.
UNIDAD 7 Trazo de curvas
UNIDAD 7 Trazo de curvas El trazo de curvas se emplea en la construcción de vías para conectar dos líneas de diferente dirección o pendiente. Estas curvas son circulares y verticales. CURVAS CIRCULARES:
CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS
OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.
UNIDAD II Polígonos y Circunferencia.
UNIDAD II Polígonos y Circunferencia. Objetivo de la unidad: El estudiante: Resolverá problemas relacionados con polígonos y circunferencia, de tipo teórico o prácticos en distintos ámbitos, mediante la
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees
f(x) = sen x f(x) = cos x
www.matemáticagauss.com Trigonometría f(x) = sen x f(x) = cos x Función tangente f(x) = tan x Dominio: Ámbito: Periodo: Siempre crece 1 Prof. Orlando Bucknor Masís tel.: 9 9990 1) Un intervalo en el que
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360
Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud
Actividades y ejercicios Mat II 6 I- Prof. Freire 2016
Selección de actividades y ejercicios Matemática II- Prof. Elena Freire Para los ejercicios propuestos se diseñará una carpeta con imágenes geogebra y con el nombre del alumno impreso dentro de cada imagen.
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto
21.3. Rectas tangentes exteriores a dos circunferencias.
21. TANGENCIAS 21.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.
Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180
CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
TEMA 6. ECUACIONES DE LA RECTA
TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
Tutorial MT-b5. Matemática Tutorial Nivel Básico. Triángulos I
134567890134567890 M ate m ática Tutorial MT-b5 Matemática 006 Tutorial Nivel ásico Triángulos I Matemática 006 Tutorial Triángulos 1 Marco Teórico 1. efinición: polígono de 3 lados.. lementos primarios:
Club GeoGebra Iberoamericano 3 ÁNGULOS EN LA CIRCUNFERENCIA
3 ÁNGULOS EN LA CIRCUNFERENCIA ÁNGULOS EN LA CIRCUNFERENCIA INTRODUCCIÓN Comenzamos la publicación de un nuevo tema, dedicado en esta ocasión al trabajo con ángulos en la circunferencia. La estructura
SGUICES029MT22-A16V1. SOLUCIONARIO Teorema de Thales y división de segmentos
SGUIS09MT-1V1 SOLUIONRIO Teorema de Thales y división de segmentos 1 TL ORRIÓN GUÍ PRÁTI TORM THLS Y IVISIÓN SGMNTOS Ítem lternativa 1 omprensión 5 7 8 9 10 11 1 1 1 S 15 1 S 17 18 S 19 0 S 1 S S 5 S 1.
1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C.
1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la
