Más acerca de vectores
|
|
|
- Ana Pérez Soler
- hace 9 años
- Vistas:
Transcripción
1 APÉNDICE D Más acerca de vectores Vectores y escalares DIRECCIÓN TAMAÑO FIGURA D.1 Vectores Una cantidad vectorial es una cantidad dirigida, es decir, aquella para la que se debe especificar no sólo su magnitud (tamaño), sino también su dirección. Recuerda que en el capítulo 5 vimos que la velocidad es una cantidad vectorial. Otros ejemplos de cantidades vectoriales son fuerza, aceleración y cantidad de movimiento. En contraste, una cantidad escalar se puede especificar sólo con su magnitud. Ejemplos de cantidades escalares son rapidez, tiempo, temperatura y energía. Las cantidades vectoriales se representan con flechas. La longitud de la flecha representa la magnitud de la cantidad vectorial, y la punta de la flecha indica la dirección de esa cantidad. A una de esas flechas, trazada a escala y apuntando en forma correcta, se le llama vector. Suma de vectores Los vectores que se suman se llaman vectores componentes. Recuerda que en el capítulo 5 vimos que la suma de los vectores componentes se llama resultante. Para sumar dos vectores, traza un paralelogramo con los dos vectores componentes formando dos de los lados adyacentes (figura D.2). (Aquí, nuestro paralelogramo es un rectángulo.) Luego traza una diagonal a partir del origen del par de vectores; ésta es la resultante (figura D.3). RESULTADO FIGURA D.2 FIGURA D.3 Precaución: No intentes mezclar los vectores! No se pueden sumar peras con manzanas, así que el vector velocidad sólo se combina con otro vector velocidad; el vector fuerza sólo se combina con otro vector fuerza, y el vector aceleración se combina sólo con otro vector aceleración; cada uno en sus propios diagramas vectoriales. Si alguna vez muestras distintas clases de vectores en el mismo diagrama, usa distintos colores o algún otro método para diferenciar las distintas clases. 749
2 750 Apéndice D Más acerca de vectores Determinación de componentes de vectores En el capítulo 5 dijimos que para determinar un par de componentes perpendiculares de un vector, primero se traza una línea de puntos que pase por la cola de la flecha, que tenga la dirección de uno de los componentes que se busquen. Después, se traza otra línea de puntos que pase por la cola del vector y forme ángulo recto con la primera línea de puntos. El tercer paso consiste en formar un rectángulo cuya diagonal sea el vector dado. Traza los dos componentes. En este caso, sea F la fuerza total, U la fuerza hacia arriba y S la fuerza hacia la derecha. FIGURA D.4 FIGURA D.5 FIGURA D.6 Ejemplos 1. Al empujar una podadora de pasto, Eric Brown aplica una fuerza que impulsa la máquina hacia adelante, y también contra el piso. En la figura D.7, F representa la fuerza aplicada por Eric. Podemos separar esa fuerza en dos componentes. El vector D representa el componente hacia abajo, y S representa el componente horizontal, que es la fuerza que hace avanzar a la podadora. Si conocemos la magnitud y la dirección del vector F, se pueden estimar las magnitudes de los componentes, a partir del diagrama vectorial. FIGURA D.7 FIGURA D.8 2. Sería más fácil empujar o tirar de una carretilla para hacerla subir un escalón? La figura D.8 muestra un diagrama vectorial de cada caso. Cuando empujas la carretilla, parte de la fuerza se dirige hacia abajo, y dificulta la subida de la carretilla sobre el escalón. Sin embargo, cuando tiras de ella, parte de la fuerza de tracción se dirige hacia arriba, y ayuda a subir la rueda sobre el escalón. Observa que el diagrama vectorial parece indicar que si empujas la carretilla no podrás hacer que suba el escalón. Alcanzas a ver que la altura del escalón, el radio de la rueda y el ángulo de la fuerza aplicada determinan si al empujar la carretilla, ésta
3 Apéndice D Más acerca de vectores 751 FIGURA D.9 puede subir el escalón? Puedes ver cómo los vectores ayudan a analizar una situación y ver en qué consiste el problema! 3. Si se tienen en cuenta los componentes del peso de un objeto que rueda bajando por un plano inclinado, se puede ver por qué su rapidez depende del ángulo (figura D.9). Observa que cuanto más inclinado esté el plano, el componente S será mayor y el objeto rodará con más rapidez. Cuando el plano es vertical, S se vuelve igual al peso y el objeto alcanza su máxima aceleración: 9.8 metros por segundo al cuadrado. FIGURA D.10 FIGURA D.11 Hay dos vectores fuerza más que no se indican: la fuerza normal N, que es igual y con dirección opuesta a D, y la fuerza de fricción f, que actúa en el punto de contacto entre el barril y el plano inclinado. 4. Cuando el aire en movimiento golpea la cara superior del ala de un avión, la fuerza del impacto del aire con el ala se puede representar con un solo vector perpendicular a la cara inferior del ala (figura D.10). Representamos el vector fuerza como si actuara a la mitad de la cara inferior del ala, donde está el punto, y apuntando hacia arriba del ala, para indicar la dirección de la fuerza resultante de impacto del viento. Esta fuerza se puede descomponer en dos componentes, uno horizontal hacia la derecha y el otro vertical hacia arriba. Este último, U, se llama sustentación. El componente horizontal S se llama resistencia o fricción. Siel avión debe viajar a velocidad y altitud constantes, la sustentación debe ser igual al peso del avión y el empuje de los motores de la nave debe ser igual a la resistencia. La magnitud de la sustentación (y de la resistencia) se altera cambiando la rapidez del avión, o cambiando el ángulo (que se llama ángulo de ataque) formado entre el ala y la horizontal. 5. Examina el satélite que se mueve en sentido de las manecillas del reloj, en la figura D.11. En cada punto de su trayectoria orbital, la fuerza gravitacional F lo jala hacia el centro del planeta al que pertenece. En la posición A vemos a F separada en dos componentes: f que es tangente a la trayectoria del proyectil, y f que es perpendicular a esa trayectoria. Las magnitudes relativas de estos componentes, en comparación con la magnitud de F, se pueden ver en el rectángulo imaginario definido por ellas; f y f son los lados, y F es la diagonal. Se ve que el componente f está a lo largo de la trayectoria orbital, pero en contra de la dirección del movimiento del satélite. Esta fuerza componente reduce la rapidez del satélite. El otro componente, f, cambia la dirección del movimiento del satélite y lo aparta de su tendencia a seguir una línea recta. Así es como se desvía la trayectoria del satélite y forma una curva. El satélite pierde rapidez hasta que llega a la posición B. En este lugar, el más lejano (apogeo) del planeta, la fuerza gravitacional es algo más débil, pero perpendicular al movimiento del satélite, y el componente f se ha
4 752 Apéndice D Más acerca de vectores reducido a cero. Por otro lado, el componente f ha aumentado y ahora se combina totalmente y forma F. En este punto la rapidez no es suficiente para que la órbita sea circular, y el satélite comienza a caer hacia el planeta. Aumenta su rapidez porque el componente f vuelve a aparecer y tiene la dirección del movimiento, como se ve en la posición C. El satélite aumenta su rapidez hasta que pasa por la posición D (perigeo), donde de nuevo la dirección del movimiento es perpendicular a la fuerza gravitacional; f se combina y se identifica con F, y f no existe. La rapidez es mayor que la necesaria para la órbita circular a esa distancia, y al pasar por ese punto repite el ciclo. Su pérdida de rapidez al ir de D a B es igual a su ganancia de rapidez al ir de B a D. Kepler descubrió que las trayectorias de los planetas son elipses, pero nunca supo por qué. Lo sabes tú? 6. Como vimos en el ejemplo sobre los filtros polarizantes de Ludmila, en el capítulo 29, figura (página 573), en la primera fotografía a) se ve que la luz se transmite por el par de filtros, porque sus ejes están alineados. La luz que sale se puede representar por un vector alineado con los ejes de polarización de los filtros. Cuando los filtros están cruzados, en b), no pasa luz, porque la que pasa por el primero es perpendicular al eje de polarización del segundo, que no tiene componentes a lo largo de su eje. En la tercera fotografía, c), vemos que la luz se transmite cuando se intercala un tercer filtro polarizante formando un ángulo con los filtros que estaban cruzados. En la figura D.12 se ve la explicación de esto. Botes de vela FIGURA D.12 FIGURA D.13 Los marineros siempre han sabido que un velero puede navegar a sotavento, es decir, en la dirección del viento. Sin embargo, no siempre han sabido que también puede navegar a barlovento, es decir, contra el viento. Una razón de ello tiene que ver con una propiedad común no sólo en los veleros modernos: una quilla como aleta que se prolonga muy por abajo del fondo del bote, para asegurar que éste sólo surque el agua en dirección de avance (o de reversa) del bote. Sin una quilla, un bote sería impulsado hacia un lado por el viento. La figura D.13 muestra un velero que navega a sotavento. La fuerza del viento choca contra la vela y lo acelera. Aun cuando la resistencia del agua y todas las demás fuerzas de resistencia fueran despreciables, la rapidez máxima del bote sería la rapidez del viento. Esto se debe a que éste no chocará contra la vela si el bote se mueve con la rapidez del viento. El viento no tendría rapidez en relación con el bote, y la vela simplemente se colgaría. Si no hay fuerza, no hay aceleración. El vector fuerza de la figura D.13 disminuye conforme el bote viaja más rápido. El vector fuerza es máximo cuando el bote está en reposo, y el impacto total del viento hincha la vela, y es mínimo cuando el bote avanza tan rápido
5 Apéndice D Más acerca de vectores 753 FIGURA D.14 FIGURA D.15 como el viento. Si el bote es impulsado de alguna forma con una rapidez mayor que la del viento (por ejemplo, con una hélice de motor), la resistencia del aire contra el lado delantero de la vela produciría un vector fuerza con dirección opuesta. Esa fuerza desacelerará al bote. Por consiguiente, el bote, cuando sólo lo impulsa el viento, no puede tener mayor rapidez que la de éste. Si la vela está orientada en ángulo, como se ve en la figura D.14, el bote se moverá hacia adelante, pero con menor aceleración. Hay dos razones para ello: 1. La fuerza sobre la vela es menor, ya que no intercepta tanto viento en esa posición inclinada. 2. La dirección de la fuerza del impacto del viento sobre la vela no tiene la dirección del movimiento del bote, sino que es perpendicular a la superficie de la vela. Generalmente hablando, siempre que cualquier fluido (líquido o gas) interactúa con una superficie lisa, la fuerza de interacción es perpendicular a la superficie lisa. * El bote no se mueve en la misma dirección que la fuerza perpendicular a la vela, sino está restringido a moverse en una dirección de avance (o de retroceso) por su quilla. Entenderemos mejor el movimiento del bote descomponiendo la fuerza del impacto del viento, F, en componentes perpendiculares. El componente importante es el que es paralelo a la quilla, que llamaremos K, y el otro componente es perpendicular a la quilla, al que llamaremos T. El componente K, como se ve en la figura D.15, es el responsable del movimiento de avance del bote. El componente T es una fuerza inútil que tiende a voltear el bote y a moverlo hacia un lado. Esta fuerza componente se compensa con la quilla profunda. De nuevo, la rapidez máxima del bote no puede ser mayor que la rapidez del viento. Muchos veleros que navegan en direcciones que no son exactamente a sotavento (figura D.16), con sus velas bien orientadas, pueden avanzar con mayor rapidez que la del viento. En el caso de un bote de vela que avanza perpendicular al viento, éste puede continuar chocando con la vela aun después de que el bote avance más rápido que el viento. En forma parecida, un surfista rebasa la velocidad de la ola que lo impulsa al poner la tabla inclinada con respecto a la ola. Los ángulos mayores respecto al medio impulsor (viento para el bote, ola de agua para el surfista) producen mayores rapideces. Un velero puede navegar con más rapidez cortando el viento que yendo a favor de él. Por extraño que parezca, la rapidez máxima para la mayoría de los veleros se alcanza avanzando contra el viento, es decir, poniendo el velero en una dirección contraria a él! Aunque un velero no puede navegar directamente contra el viento, sí puede llegar a un destino a barlovento avanzando en zigzag. FIGURA D.16 * Puedes hacer un ejercicio sencillo para comprobar esto. Trata de rebotar una moneda sobre otra en una superficie lisa, como se indica. Observa que la moneda golpeada se mueve en ángulo recto (perpendicular) a la orilla de contacto. Observa también que no importa si la moneda proyectada se mueve a lo largo de la trayectoria A o B. Consulta a tu maestro para que te explique esto más detenidamente, lo cual incluirá la conservación de la cantidad de movimiento.
6 754 Apéndice D Más acerca de vectores FIGURA D.17 A esto se le llama bordado. Imagina que el bote y la vela están como muestra la figura D. 17. El componente K impulsará al bote en dirección de avance, en ángulo con respecto al viento. En la posición que se ve, el bote puede avanzar con más rapidez que la del viento, Aquí, a medida que el bote viaja más rápido, aumenta el impacto del viento. Esto se parece a correr bajo la lluvia que baja en ángulo. Cuando corres hacia la lluvia, las gotas te golpean con más fuerza y con más frecuencia; pero cuando corres alejándote de la dirección de la lluvia, las gotas no te golpean con tanta fuerza ni con tanta frecuencia. Del mismo modo, un bote que navega contra el viento siente más la fuerza del impacto del viento, mientras que uno que navega a sotavento siente menos fuerza de impacto del viento. En cualquier caso, el bote alcanza la rapidez terminal cuando las fuerzas contrarias anulan la fuerza del impacto del viento. Las fuerzas que se oponen consisten principalmente en la resistencia del agua contra el casco del bote. Los cascos de los botes de competencias tienen una forma que minimiza esta fuerza de resistencia, que es la principal oposición a las altas rapideces. Los veleros para hielo (que tienen patines para deslizarse sobre éste) no se encuentran con la resistencia del agua y pueden avanzar con varias veces la rapidez del viento cuando se dirigen contra él. Aunque la fricción sobre el hielo casi no existe, este tipo de velero no acelera sin límites. La velocidad terminal de uno de estos veleros no sólo se determina por las fuerzas de fricción que se oponen, sino también por el cambio en la dirección relativa del viento. Cuando la orientación y la rapidez del viento son tales que parece que éste cambia de dirección, el viento avanza paralelo a la vela, en vez de ir a su encuentro; entonces cesa la aceleración hacia adelante, cuando menos en el caso de una vela plana. En la práctica, las velas son curvas y forman un perfil aerodinámico que es tan importante para un velero como lo es para un avión. Los efectos se describen en el capítulo 14.
PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (11h30-13h30)
PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN
PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (08h30-10h30)
PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN
UNIDAD N 2: VECTORES Y FUERZAS
PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. ESPACIO CURRICULAR : FÍSICA AÑO: 2010 PROFESORES: BERTONI, JUAN; ; CATALDO JORGE; ; GARCÍA,
3ª, 4ª, 5ª y 6ª Oportunidad
Universidad Autónoma de Nuevo León Preparatoria 23 Unidad de aprendizaje: FÍSICA 2 Portafolio de Física 2 Valor del Portafolio: 40 puntos 3ª, 4ª, 5ª y 6ª Oportunidad Período: Agosto Diciembre 2016 Coordinador:
Física I-Ingeniería. PROBLEMAS DE SEGUNDAS PRUEBAS Coordinación Asignatura física I. Física I Ingeniería
Física I-Ingeniería PROBLEMAS DE SEGUNDAS PRUEBAS 2007-2010 Coordinación Asignatura física I. Física I Ingeniería 2 Primer Semestre 2007 1.- Un proyectil es lanzado desde la cima de un cerro de 50[m] de
ÍNDICE TEMÁTICO 2. VECTORES
ÍNDICE TEMÁTICO 2. VECTORES 2.1. CANTIDADES VECTORIALES Y ESCALARES 2.2 COMPONENTES DE UN VECTOR 2.3 TIPOS DE VECTORES 2.4. SUMA DE VECTORES MEDIANTE MÉTODOS GRÁFICOS 2.4.1 Método del polígono 2.4.2 Método
2) Una hoja de papel podrá ser retirada de debajo de un envase de leche sin tirarlo si se jala el papel con rapidez. Esto demuestra que:
ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS EXAMEN PRIMER PARCIAL DE FISICA CONCEPTUAL NOMBRE PARALELO.41 FECHA.06072010 Las preguntas del 1 al 24 valen 2 puntos cada una. JUSTIFIQUE
COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No.
1 COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO CIENCIAS NATURALES Primer año Sección: Nombre del estudiante: No. UNIDAD No 3 Tema: Vectores Cuando vas en coche por una carretera, una autovía o una autopista,
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Preparatoria No. 23
PORTAFOLIO DE EVIDENCIAS PARA EXAMEN EXTRAORDINARIO DE FÍSICA II Nombre del Alumno: Grupo INSTRUCCIONES: El siguiente portafolio deberá de entregarse antes de recibir el examen extraordinario y cumplir
SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A (Abril 14 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización. En esta
Física I. TEMA I. Vectores. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA
Física I TEMA I. Vectores UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar TEMA I. VECTORES Magnitudes Una magnitud se define como toda aquella propiedad que
TRABAJO PRÁCTICO N 2: VECTORES Y FUERZAS
PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. ESPACIO CURRICULAR: FÍSICA AÑO: 2010 PROFESORES: BERTONI, JUAN; CATALDO, JORGE; GARCÍA, MIGUEL
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Preparatoria No. 23
FÍSICA 2 Portafolio de Física 2 Valor del Portafolio: 40 puntos SEGUNDA OPORTUNIDAD Período: Agosto Diciembre 2017 Coordinador: ING. JESUS DANIEL GARCIA GARCIA Alumno: Matrícula: Santa Catarina, Nuevo
Guía para oportunidades extraordinarias de Física 2
Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
Preguntas de opción múltiple (4 puntos c/u) TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 05 SOLUCIÓN ) Un auto y un camión parten del reposo y aceleran al mismo ritmo. Sin embargo, el auto acelera por
A) 40 m/s. B) 20 m/s. C) 30 m/s. D) 10 m/s.
ESPOL Actividades en clase Taller Nombre: Paralelo 1) Cuál de las siguientes no es una cantidad vectorial? 1) A) aceleración. B) rapidez. C) todas son cantidades vectoriales D) velocidad. 2) Un avión vuela
SEGUNDA EVALUACIÓN. FÍSICA Septiembre 10 del 2014 (08h30-10h30)
SEGUNDA EVALUACIÓN DE FÍSICA Septiembre 10 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA:
Test de revisión Unidad 6 Cinemática Conceptos básicos y magnitudes del movimiento
Test de revisión Unidad 6 Cinemática Conceptos básicos y magnitudes del movimiento En este test se revisan las presentaciones: FQ4ESO_6_1_Conceptos básicos del movimiento y FQ4ESO_6_2_Magnitudes del movimiento
fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación
C U R S O: FÍSICA MENCIÓN MATERIAL: FM-14 ENERGÍA II ENERGÍA CINÉTICA, POTENCIAL GRAVITATORIA Y MECÁNICA Aunque no existe una definición formal de energía, a este nivel la podemos entender simplemente
PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas, entre preguntas conceptuales y problemas
Tema 3. Magnitudes escalares y vectoriales
1 de 13 09/07/2012 12:51 Tema 3. Magnitudes escalares y vectoriales Algunos derechos reservados por manelzaera Como sabes, una magnitud es todo aquello que se puede medir. Por ejemplo, la fuerza, el tiempo,
a) En 1 b) En 2 c) En 3 d) En todas es el mismo. e) Depende del rozamiento del aire.
1. Se desea llevar un objeto de masa M desde el punto A hasta el punto B, siguiendo 3 trayectorias diferentes, en un medio que presenta rozamiento, determine en cuál de las trayectorias el trabajo realizado
C O M P R O M I S O D E H O N O R
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL, ESPOL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS EXAMEN DE INGRESO PARA EL ÁREA DE CIENCIAS E INGENIERÍAS EXAMEN DE FÍSICA Segundo semestre 2016 GUAYAQUIL, 28
Antecedentes históricos
Dinámica Antecedentes históricos Aristóteles (384-322 AC) formuló una teoría del movimiento de los cuerpos que fue adoptada durante 2 000 años. Explicaba que había dos clases de movimiento: Movimiento
C O M P R O M I S O D E H O N O R
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL, ESPOL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS EXAMEN DE INGRESO PARA EL ÁREA DE CIENCIAS E INGENIERÍAS EXAMEN DE FÍSICA Segundo semestre 2016 GUAYAQUIL, 28
PREGUNTAS DE OPCION MULTIPLE (Deben presentar su respectiva justificación, caso contrario no tendrán validez) (Del 1 al 11, 3 puntos c/u)
ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS PRIMERA EVALUACION DE FISICA GENERAL I II TERMINO 2011-2012 Nombre: Paralelo: 01 Ing. Francisca Flores N. PREGUNTAS DE OPCION MULTIPLE
EXAMEN DE RECUPERACIÓN. FÍSICA Marzo 26 del 2015 (08h30-10h30)
EXAMEN DE RECUPERACIÓN DE FÍSICA Marzo 26 del 2015 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA:
Cinemática de la partícula, movimiento curvilíneo
Cinemática de la partícula, movimiento curvilíneo Introducción En este documento se estudiará el movimiento de partículas (cuerpos cuyas dimensiones no son tomadas en cuenta para su estudio) que siguen
MAGNITUDES ESCALARES Y VECTORIALES
MAGNITUDES ESCALARES Y VECTORIALES En física se distinguen dos tipos de magnitudes, las escalares y las vectoriales. -Una magnitud escalar se describe completamente con un valor numérico con una unidad
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA FÍSICA A Ing. José Sacarelo M., MEF 1 Ing. José Sacarelo M., MEF 2 Energía potencial gravitacional
T.P.N 4: Vectores en el plano
T.P.N 4: Vectores en el plano Matemática - Tercer Año Piensa que, por casualidad, te encuentras sentado junto a un físico durante una larga travesía en micro. Supón además que el físico tiene ganas de
C O M P R O M I S O D E H O N O R
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL, ESPOL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS EXAMEN DE INGRESO PARA EL ÁREA DE CIENCIAS E INGENIERÍAS EXAMEN DE FÍSICA Segundo semestre 2016 GUAYAQUIL, 28
EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (11h30-13h30)
EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:
F= 2 N. La punta de la flecha define el sentido.
DIÁMICA rof. Laura Tabeira La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos.
EXAMEN DE RECUPERACIÓN. FÍSICA Marzo 26 del 2015 (08h30-10h30)
EXAMEN DE RECUPERACIÓN DE FÍSICA Marzo 26 del 2015 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA:
MOVIMIENTO BIDIMENSIONAL MOVIMIENTO PARABÓLICO
MOVIMIENTO BIDIMENSIONAL MOVIMIENTO PARABÓLICO HERNAN FISICA 3 20 24 de junio de 2016 HECHOS Proyectiles: Big Bertha, una pieza de artillería que utilizaron los alemanes durante la Primera Guerra Mundial;
2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta?
1. Una persona de masa 70 kg se encuentra sobre una báscula en el interior de un ascensor soportado por un cable. Cuál de las siguientes indicaciones de la báscula es correcta?. a) La indicación es independiente
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL
Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que
La navegación a vela
La navegación a vela Cómo funciona una vela? El viento corre más rápido por encima de la vela que por debajo, produciendo un vacío que la succiona Lifting Vacío, área de menor presión Area de mayor presión
10. Cuánto vale la fuerza de rozamiento que actúa sobre un objeto en reposo? Justifica tu respuesta.
Leyes de la Dinámica 1. Enuncia la segunda ley de la Dinámica y contesta a las siguientes cuestiones: a) Cómo influye la masa en la aceleración que adquiere un cuerpo cuando actúa sobre él una fuerza impulsora?
EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 24 del 2015 (08h30-10h30)
EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 24 del 2015 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:
UNIDAD EDUCATIVA MONTE TABOR-NAZARET No. de Hojas TAI # 1 DE FÍSICA I PARCIAL - II QUINQUEMESTRE
UNIDAD EDUCATIVA MONTE TABOR-NAZARET No. de Hojas TAI # 1 DE FÍSICA I PARCIAL - II QUINQUEMESTRE 2014-2015 Contenido: ALUMNO: AÑO DE BACHILLERATO: 2DO PARALELO: Caligrafía y FECHA: PROFESOR: Christian
CINEMÁTICA. El periodo de un péndulo sólo depende de la longitud de la cuerda ( l ) y la aceleración de la gravedad ( g ).
CINEMÁTICA Es la rama de la mecánica que estudia el movimiento de los cuerpos sin tomar en cuenta las causas. Distancia: es una magnitud escalar que mide la separación entre dos cuerpos o entre dos lugares.
En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.
TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,
VECTORES Y SUS ELEMENTOS
VECTORES Y SUS ELEMENTOS Los conjuntos de números naturales, enteros y racionales estudiados, te han permitido expresar distintas situaciones y resolver muchos problemas. En este sentido, algunas cantidades
TALLER DE TRABAJO Y ENERGÍA
TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un bloque de 9kg es empujado mediante una fuerza de 150N paralela a la superficie, durante un trayecto de 26m. Si el coeficiente de fricción entre la
TEMA 1: ROZAMIENTO POR DESLIZAMIENTO
TEMA 1: ROZAMIENTO POR DESLIZAMIENTO Objetivo de aprendizaje. 1.Calcular el coeficiente de fricción estática y la fuerza de rozamiento estática máxima. Criterio de aprendizaje 1.1 Estructurar los datos
Guía Nº 5: Trabajo y Energía
Guía Nº 5: Trabajo y Energía Ejercicio 1. Un hombre debe mover 15 m una caja de 20 kg realizando una fuerza de 40 N. Si la caja se encuentra apoyada sobre el suelo. Calcule el trabajo que realiza el hombre
Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores VECTORES
Resumen teórico de los conceptos necesarios para resolver el práctico 1. Vectores En física algunas cantidades se pueden representar mediante un valor y su correspondiente unidad (1 litro, 10 kilogramos).
INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A:
INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A: DOCENTE: ING. ALEXANDER CABALLERO FECHA DE ENTREGA:
PUCMM FIS 101 Prof. Remigia cabrera Genao 2014
Posición (m) Unidad II. Cinemática Rectilínea PROBLEMAS PARA RESOLVER EN LA CLASE 1. Para el móvil del gráfico determine lo que se le pide abajo, si se mueve en una recta nortesur: 7.00 6.00 5.00 4.00
DOBLE CURSADO GUIA DE PROBLEMAS N 3
SIGNTUR: DOLE URSDO GUI DE PROLEMS N 3 2018 UNIVERSIDD NIONL DE SN JUN DEPRTMENTO DE FISI GUI DE PROLEMS Nº3 PROLEM N 1 Un cuerpo de 2 kg de masa se mueve hacia arriba por un plano inclinado 30º con respecto
c.) Eso depende de otras variables. d.) Eso depende de la distancia recorrida. e.).
OLIMPIADA PANAMEÑA DE FÍSICA SOCIEDAD PANAMEÑA DE FÍSICA UNIVERSIDAD TECNOLÓGICA DE PANAMÁ - UNIVERSIDAD DE PANAMÁ - UNIVERSIDAD AUTONÓMA DE CHIRIQUÍ PRUEBA NACIONAL DEL XI GRADO 2012 SELECCIÓN MÚLTIPLE
PROBLEMAS PROPUESTOS
PROBLEMAS PROPUESTOS En los problemas que a continuación se proponen, el campo gravitacional de intensidad g actúa verticalmente en el plano que coincide con la hoja de papel. 1.- La esfera A de radio
R h=186.37m realiza el desarrollo
Tarea 3, parcial 1. Una persona camina 1.5 km al sur y después, en forma continua camina otros 1.5 km al norte; Cuánto se desplazó? 0 km, porque?? Un barco navega 3 km al norte y después 4 km al este.
3.- Si la suma de tres números impares consecutivos es 21, entonces el producto de los tres números es igual a:
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 2015 (1S) EXAMEN SEGUNDO PARCIAL DE MATEMATICAS/FÍSICA PARA ACUICULTURA
B. REPASO DE MECÁNICA ÍNDICE
BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos
MAGNITUDES ESCALARES Y VECTORIALES VECTORES
MGNITUES ESLRES Y VETORILES VETORES HERNN FISI 3 27 Junio 01 Julio del 2016 Escalares y vectores Ya hemos mencionado que el término velocidad no se refiere sólo a la rapidez con el que un objeto se está
MOVIMIENTO RECTILINEO UNIFORMEMENTE ACELERADO
MOVIMIENTO RECTILINEO UNIFORMEMENTE ACELERADO Unidades: [v] = [ ] = L/T m/s o ft/s RAPIDEZ Y VELOCIDAD La RAPIDEZ es una cantidad escalar, únicamente indica la magnitud de la velocidad La VELOCIDAD e
Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador)
Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento
Módulo Física- INGRESO 2018
I. UNIDADES Y SISTEMAS DE UNIDADES. Módulo Física- INGRESO 2018 La introducción al tema se debe leer el de Introducción al curso de Física Universitaria. MG Bertoluzzo y otros Ed Corphus 1.1. SISTEMA DE
Profesor: Carlos Arroyave Valencia GUÍA 2 TEMA: VECTORES - OPERACIONES MAGNITUDES FÍSICAS
INSTITUTO TECNICO INDUSTRIAL PASCUAL BRAVO ÁREA: CIENCIAS NATURALES Y EDUCACIÓN AMBIENTAL (FÍSICA) GRADO: 10 JORNADA: Tarde PERÍODO: II Profesor: Carlos Arroyave Valencia GUÍA 2 TEMA: VECTORES - OPERACIONES
Entregar al Coordinador el día del examen a las 12:00 del día en la Recepción de Subdirección Académica
Universidad Autónoma de Nuevo León Preparatoria 8 Requisitos para presentar en 4ª, 5ª y/o 6ª Oportunidad Semestre: Agosto - Diciembre 2016 Materia: Coordinador: Física II M.A. Martín Ramírez Martínez Entregar
CAMPO MAGNÉTICO. El origen del magnetismo.
CAMPO MAGNÉTICO. El origen del magnetismo. Los imanes atraen fuertemente a metales como el hierro, esto es debido a que son materiales que tienen un campo magnético propio. Vamos a tener en los imanes
Las fuerzas son interacciones entre cuerpos, que modifican su estado de movimiento o producen deformaciones.
LAS FUERZAS. COMPOSICIÓN DE FUERZAS CONCURRENTES Las fuerzas son interacciones entre cuerpos, que modifican su estado de movimiento o producen deformaciones. Las fuerzas pueden ejercerse por contacto o
Examen de Ubicación. Física del Nivel Cero Enero / 2009
Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles
EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME:
EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: 1.-Un carro de juguete que se mueve con rapidez constante completa una vuelta alrededor de una pista circular (una distancia de 200 metros) en 25 seg. a) Cual
EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30)
EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:
tan Cuando se tienen dos o más vectores que deben ser sumados o restados, recordar que:
1 VECTORES PARA RECORDAR Si A = (a, b) y B = (c, d) entonces: A B ( a c, b d), A B ( a c, b d), V x V cos, V y V sen x A x ( a, b) ( xa, xb), R x y V = V + V, donde i (1,0,0 ) j (0,1,0 ) k = (0, 0, 1)
SEGUNDA EVALUACIÓN FÍSICA
SEGUNDA EVALUACIÓN DE FÍSICA Septiembre 17 del 2015 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA:
Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.
æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
OPERACIONES GEOMÉTRICAS CON VECTORES
GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en
MAGNITUDES FÍSICA. Todo aquello que se pueda medir, es decir, cuantificar. MAGNITUD FÍSICA. Longitud Masa Volumen Temperatura.
MAGNITUDES FÍSICA MAGNITUD FÍSICA Todo aquello que se pueda medir, es decir, cuantificar. Longitud Masa Volumen Temperatura Velocidad Fuerza SON MAGNITUDES FÍSICAS? Alegría Miedo Enfado MAGNITUDES FÍSICAS
4-. Sean u = (2, 0, -1, 3), v = (5, 4, 7, -2), w = (6, 2, 0, 9). Determine el vector x que satisface a: 2u v + x = 7x + w.
EJERCICIOS VECTORES. 1-. Calcule la dirección de los siguientes vectores: a) v = (2, 2) d) v = (-3, -3) b) v = (-2 3, 2) e) v = (6, -6) c) v = (2, 2 3 ) f) v = (0,3) 3-. Para los siguientes vectores encuentre
TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO
TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO 1. Introducción. 2. La fuerza es un vector. 2.1. Fuerza resultante. 2.2. Composición de fuerzas. 2.3. Descomposición de una fuerza sobre dos ejes perpendiculares.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO TERCERA EVALUACIÓN DE FÍSICA A.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 TERCERA EVALUACIÓN DE FÍSICA A Nombre: Paralelo: PRIMERA PARTE: Preguntas de opción múltiple (3 puntos c/u) 1)
GUÍA DE APRENDIZAJE Introducción al álgebra vectorial
Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales
INSTITUTO SANTA CECILIA INTRODUCCION A LA FISICA 4 AÑO. PROFESORA: Jorgelina Anabel Ferreiro ALUMNO:
INSTITUTO SANTA CECILIA INTRODUCCION A LA FISICA 4 AÑO PROFESORA: Jorgelina Anabel Ferreiro ALUMNO: MODULO DE RECUPERACION DE CONTENIDOS SEGUNDO TRIMESTRE 1 CINEMATICA Instituto Santa Cecilia 1) La velocidad
GUÍA DE PROBLEMAS PROPUESTOS N 3: TRABAJO Y ENERGÍA
Premisa de Trabajo: GUÍA DE PROBLEMAS PROPUESTOS N 3: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas que actúan sobre el cuerpo o sistema de cuerpos en estudio, la identificación
Apéndice A. Vectores: propiedades y operaciones básicas.
Vectores 145 Apéndice A. Vectores: propiedades y operaciones básicas. Una clasificación básica de las distintas propiedades físicas medibles, establece que estas pueden dividirse en dos tipos: a) Aquellas
SEGUNDA EVALUACIÓN. FÍSICA Marzo 12 del 2014 (08h30-10h30)
SEGUNDA EVALUACIÓN DE FÍSICA Marzo 12 del 2014 (08h30-10h30) COMPROMISO DE HONOR Yo,. (Escriba aquí sus cuatro nombres) al firmar este compromiso, reconozco que el presente examen está diseñado para ser
PRIMERA EVALUACIÓN. FÍSICA Enero 8 del 2014
PRIMERA EVALUACIÓN DE FÍSICA Enero 8 del 2014 Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSION CERO (0)
Unidad II. Cinemática
Unidad II. Cinemática Ref. Capítulos II y III. Física Tipler-Mosca, 6a ed. 18 de marzo de 018 1. Introducción La mecánica estudia el movimiento de los cuerpos. La cinemática describe el movimiento, explica
Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial. Temas Selectos de Física I. Grupo: Fecha: Firma:
Centro de Estudios de Bachillerato 4/1 Maestro Moisés Sáenz Garza Segundo Examen Parcial Temas Selectos de Física I Atividades para preparar Portafolio de evidencias Elaboro: Enrique Galindo Chávez. Nombre:
PROBLEMAS DE DINÁMICA
PROBLEMAS DE DINÁMICA 1.- Un bloque de 450 kg de masa se encuentra en reposo sobre un plano horizontal, cuando comienzan a actuar sobre él las fuerzas F 1 = 7000 N ( en dirección horizontal) y F 2 = 4000
Rpta. (a) W = J. (b) W = 600 J. (c) W (neto) = J, V B = 6.98 m/s
ENERGÍ 1. Un resorte sin deformación de longitud 20cm es suspendido de un techo. Si en su extremo libre se le suspende un bloque de 1kg de masa se deforma 10 cm. a) Determinar la constante k del resorte.
Capítulo 6A. Aceleración PRESENTACIÓN POWERPOINT DE PAUL E. TIPPENS, PROFESOR DE FÍSICA SOUTHERN POLYTECHNIC STATE UNIVERSITY
Capítulo 6A. Aceleración PRESENTACIÓN POWERPOINT DE PAUL E. TIPPENS, PROFESOR DE FÍSICA SOUTHERN POLYTECHNIC STATE UNIVERSITY 007 El cheetah (guepardo): Un gato diseñado para correr. Su fortaleza y agilidad
Escriba la función vectorial dada r(t) como ecuaciones paramétricas.
Nota: las respuestas al ejercicio 8 de los problemas se encuentran en la parte inferior. Ejercicio 8. Escriba las ecuaciones paramétricas dadas como una función vectorial r(t). 1. x = sen πt, y = cos πt,
Movimiento Circular. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Física Común - Tercero Medio.
Liceo de Hombres Manuel Montt Física Común - Tercero Medio SEMESTRE I 2018 Movimiento circular uniforme Cuando una partícula se mueve en una trayectoria curva, la dirección de su velocidad cambia. Cuando
COMO LO REPRESENTAMOS? VECTORES
Fuerzas COMO LO REPRESENTAMOS? Dado que las fuerzas tienen: DIRECCIÓN SENTIDO INTENSIDAD (módulo o magnitud) PUNTO DE APLICACIÓN dirección sentido intensidad Las representamos con flechas, que las denominamos
Unidad 4. Dinámica de la partícula
Unidad 4. Dinámica de la partícula Qué es una fuerza? Una influencia externa sobre un cuerpo que causa su aceleración con respecto a un sistema de referencia inercial. La fuerza F se define en función
EXAMEN DE PRÁCTICA. Física
EXAMEN DE PRÁCTICA El Examen de práctica tiene como propósito te familiarices con el tipo de preguntas que integran la prueba; es decir, su función es la de ser un recurso de apoyo. Por esta razón, el
FÍSICA INGENIERÍA AGRONÓMICA AÑO DOBLE CURSADO
GUÍA DE PROBLEMAS Nº 2: DE LA PARTÍCULA Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: el diagrama de fuerzas que actúan sobre el cuerpo o sistema de cuerpos en estudio,
COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO PLANTEL 7 EL MARQUÉS
GUIA DE ESTUDIOS DE FÍSICA I CONVERSIÓN DE UNIDADADES. (Realiza los procedimientos) 1. La distancia que existe entre la Cd. de Querétaro y la Cd. de México, es de 215,000 m, a cuántos kilómetros corresponden:
10. Fuerza resultante, métodos gráficos de suma vectorial
10. Fuerza resultante, métodos gráficos de suma vectorial BIMESTRE 1 Sumando fuerzas Es posible que alguna vez hayas visto en la calle a personas que ayudan a un conductor a empujar su automóvil, también
