PROTOCOLO Mapeo de tres puntos en D. melanogaster

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROTOCOLO Mapeo de tres puntos en D. melanogaster"

Transcripción

1 OBJETIVO PROTOCOLO Mapeo de tres puntos en D. melanogaster Coordinadora: Dra Beatriz Goñi Colaboradora: Lic. Ana María Soler Sección Genética Evolutiva Comprender la naturaleza del crossing over, y cómo este fenómeno afecta a los alelos ligados. Asignar posiciones de mapa de tres genes de D. melanogaster ligados al cromosoma X, utilizando frecuencias de crossing over. ALGUNOS CONCEPTOS (ver ANEXO) Mapa Genético y Fracción de Recombinación: Un mapa genético es una representación lineal de los genes de un cromosoma, descifrado a partir de las distancias entre loci marcadores. La distancia normalmente es una representación de la fracción de recombinación (F.R %) expresada como unidades de mapa. La unidad de medida es un centimorgan (cm). La fracción de recombinación es la proporción de cromosomas recombinantes encontrados entre los dos loci. Por lo tanto, la distancia entre dos loci en los que se ha encontrado 1% de recombinación es 1cM. Recombination fraction = numero de recombinates / total La relación entre la fracción de recombinación y la distancia entre los genes se puede aplicar a loci que están situados cerca uno del otro en un cromosoma. Sin embargo, cuando la distancia aumenta la posibilidad de entrecruzamiento es más alta y por lo tanto la adaptación simple no es suficiente para calcular la distancia entre los loci. El resultado de dobles o incluso de numerosos crossing-overs resulta en progenie cuyo fenotipo es de tipo parental, pasando desapercibidos y no registrándose como recombinantes. Esto en gran medida subestima la fracción de recombinación y por lo tanto distorsiona el mapa genético. Existen problemas para el mapeo de tres o más puntos en un genoma ya que las fracciones de recombinación no son de naturaleza aditiva. CERTEZA en los experimentos de mapeo : Como la frecuencia máxima de recombinación detectable entre pares de genes ligados es de 50 %, para genes con distancias mayores a las 20 unidades de mapa, la ocurrencia de múltiples crossing-overs no sería detectada y por lo tanto las distancias reales entre ellos estaría subestimada. Es así que, la construcción de mapas genéticos certeros provienen de análisis entre genes que están muy próximos unos de otros. 1

2 La predicción de las distancias de mapa entre pares de genes funciona para distancias menores a 10 ó 20 unidades de mapa. Existe otro factor que afecta los datos de mapeo. Este factor involucra la reducción del número de dobles crossing-over (DCO) cuando los genes están muy cerca unos de otros en el cromosoma. Esta reducción, de denomina INTERFERENCIA (I), y puede ilustrarse en experimentos de mapeo de tres puntos. La interferencia es el efecto por el cual la ocurrencia de un crossing over (c.o.) en cierta región reduce la probabilidad de otro c.o. en una región cercana. La interferencia puede ser cuantificada mediante la proporción entre los DCO observados (DCOobs) y esperados (DCOesp). Esta proporción se llama coeficiente de coincidencia (CC): CC = DCOobs /DCOesp I = CC Si la interferencia es completa, no se producen dobles crossing-overs, entonces I= 1.0. Si se observan menos dobles crossing over que los esperados, entonces I > 0, la Interferencia es positiva. Si se observan mas dobles crossing-overs que los esperados, entonces I < 0, la Interferencia es negativa. En los sistemas eucariotas, se observa interferencia positiva con mas frecuencia. Como determinar las distancias de mapa? El cruzamiento de tres puntos permite determinar el ORDEN de los genes. Los tipos de gametos parentales estarán necesariamente en mayor frecuencia. La habilidad de identificar en la progenie las clases fenotipicas recíprocas correspondientes a los cromosomas parentales y a los cromosomas recombinantes correspondientes al evento de doble crossing-over le permitirá determinar el orden de los genes. CRITERIOS para realizar mapeo clásico 1. El genotipo del organismo que produzca gametos portadores de eventos de crossing over debe ser HETEROCIGOTA para TODOS los LOCI de interés. 2. Los cruzamientos deben construirse de tal manera que el GENOTIPO de TODOS los GAMETOS pueda DETERMINARSE de manera precisa al observar el FENOTIPO de la PROGENIE. Cada clase fenotípica debe reflejar el genotipo de los gametos producidos por los parentales. 3. Debe producirse un número suficiente de progenie que recobre una MUESTRA REPRESENTATIVA de todas las clases fenotípicas correspondientes a la ocurrencia o no de crossing over. 2

3 ACTIVIDADES EXPERIMENTALES Cada participante recibirá cepas puras mutantes con una, dos o tres mutaciones ligadas al cromosoma X. Los datos de mapeo posibilitarán proponer el mapa genético de los genes (mutaciones) utilizadas. Procedimiento: El experimento de mapeo de tres puntos consta de DOS cruzamientos: Parental y F1xF1, observación de la F1 y el análisis de recombinación de la F2. SEMANA 1: Observación de las cepas marcadoras. Identificación mutantes. Primer cruzamiento EXAMINE las moscas de las cepas mutantes que le brinde el docente. Identifique para cada una de ellas el carácter mutante con respecto a moscas de fenotipo salvaje y anote su fenotipo. Realice el cruzamiento G0, utilizando individuos de las CEPAS PURAS (parentales). Para esto, cruce hembras vírgenes de una cepa con machos de la otra. Prepare un tubo por cada tipo de cruzamiento. Utilice 8-10 vírgenes (se las brinda el docente) y por cada tubo. Ud proporcionará los machos en este cruzamiento. Anote datos de las cepas, fecha y grupo (o estudiante) SEMANA 2: Elimine las moscas parentales entre 5 y 6 días posterior al cruzamiento. Tire las moscas a la morgue. Coloque papel absorbente en el medio de cultivo para proporcionar superficie seca para que pupen las larvas. SEMANA 3: Observación de la F1 y segundo cruzamiento Anestesie SUAVEMENTE la progenie del cruzamiento realizado en el práctico anterior. Cual es el fenotipo de los individuos (machos, hembras) de la F1, y a qué conclusiones llega, son los fenotipos esperados? Realice el 2do cruzamiento. Para esto, cruce F1 x F1 del cruzamiento anterior. Realice TRES tubos con 8-10 moscas de cada sexo. Que fenotipos espera en la F2 para cada sexo, cuales corresponden al producto de gametos recombinantes y no recombinantes de este cruzamiento? SEMANA 4: Elimine las moscas parentales (F1xF1) SEMANA 5: Observación y análisis de la F2. Propuesta de mapeo de los loci incógnitas. Anestesie la progenie F2 del cruzamiento anterior. Para examinar la progenie siga un orden establecido, examine UN TUBO por vez. Separe los sexos ( porque?). Luego clasifique los individuos (cuales?) según su fenotipo. COMO CLASIFICAR las moscas? Separe PRIMERO por UN carácter (mutante o salvaje?) más fácil de identificar. 3

4 Luego, dentro de cada grupo, identifique el siguiente carácter y así sucesivamente. Cuente las moscas de cada grupo y coloque los datos en la TABLA 1 (abajo), para la cual previamente se ha determinado las diferentes clases fenotípicas (y los genotipos) ESPERADAS en la progenie F2. En base a SUS DATOS, CALCULE las fracciones de recombinación entre los genes, estimada a partir de la proporción de gametos recombinantes. Para ello necesita determinar: a) La FASE de LIGAMIENTO (CIS o TRANS) de los PARENTALES, y b) el HAPLOTIPO de los gametos transmitidos por la hembra F1. - AGRUPE las CLASES RECOMBINANTES según la ocurrencia de uno o doble crossing-over en cada intervalo. - Determine el ORDEN de los GENES. Los datos que indiquen los gametos (clases) recombinantes correspondiente al DCO serán importantes. - Determine las DISTANCIAS entre los GENES. Calcule la F.R. (%) para cada región a partir de la proporción de los gametos (clases) recombinantes. - CALCULE el Coeficiente de Coincidencia y determine la Interferencia (positiva, neutra o negativa). Dibuje el mapa genético y muestre las distancias de recombinación entre los pares de genes adyacentes. - CONSTRUYA el mapa de recombinación PROBABLE integrando sus datos con los datos obtenidos por otros participantes utilizando los genes empleados en el práctico. Determine la posición en el mapa (propuesta) de cada gen (mutación) a partir de la posición del gen de referencia yellow (X-0.00). Considere las distancias relativas entre los genes y tenga en cuenta la PREDICCION de que las distancias de mapa (para distancias pequeñas) son aditivas. BIBLIOGRAFIA y material de consulta A Database of Drosophila Genes & Genomes. Klug WS and Cummings MR Concepts of Genetics. Essentials of Genetics(5th Edition) (Hay biblioteca) Ashburner, M. (1989). Drosophila: A Laboratory Handbook and Manual. Two volumes. : xliii pp; 434pp. VER. Chaper 5. MAPPING. (Genetic Linkage and Mapping) Chaper 5. Basics of Linkage and Gene Mapping. Julius van der Werf Chapter 1.+Glossary of Terms. Handbook of Statistical Genetics, Volumen 1 editado por David J. Balding, Martin Bishop,Chris Cannings. (COPIA subespacio) 4

5 TABLA 1. Resumen de los datos del cruzamiento de Tres Puntos G0, Cruzamiento x parental (genotipo) (genotipo) Fecha: Cruzamiento F1* x F1 x F1 (genotipo) (genotipo) Fecha: *Indique el genotipo de la hembra F1, mostrando el orden correcto de los genes: Progenie F2: Parentales (No crossing over) Crossing over Region I Crossing over Region II Doble crossing over RI + RII Genotipo Fenotipo Total Proponga el mapa genético de los mutantes utilizados en el práctico, mostrando distancias y orden de los genes (considere la posición del gen de referencia yellow, X-0.00). A que genes correspondería cada una de las mutaciones utilizadas? (ver mapa genético parcial, abajo) Detecto Interferencia? 5

6 FIGURA 1. Diagrama del mapa genético parcial de los cuatro cromosomas de D. melanogaster (Klug and Cummings 1997). 6

Mapeo genético en Drosophila. Mapeo de tres puntos

Mapeo genético en Drosophila. Mapeo de tres puntos Mapeo genético en Drosophila. Mapeo de tres puntos Coordinadora: Dra Beatriz Goñi Sección Genética Evolutiva OBJETIVOS: Determinar la posición de cada mutación incógnita en el mapa de recombinación de

Más detalles

Tema 6. Ligamiento y mapas genéticos

Tema 6. Ligamiento y mapas genéticos Tema 6. Ligamiento y mapas genéticos Genética CC. Mar 2005-06 Objetivos Establecer las relaciones entre genes situados en el mismo cromosoma. Explicar los principios básicos de elaboración de mapas genéticos

Más detalles

GENÉTICA Y BIOTECNOLOGÍA MARINA Profesores Beatriz Camara (UTFSM) José Gallardo (PUCV) Doctorado en Biotecnología I Semestre 2015

GENÉTICA Y BIOTECNOLOGÍA MARINA Profesores Beatriz Camara (UTFSM) José Gallardo (PUCV) Doctorado en Biotecnología I Semestre 2015 GENÉTICA Y BIOTECNOLOGÍA MARINA Profesores Beatriz Camara (UTFSM) José Gallardo (PUCV) Doctorado en Biotecnología I Semestre 2015 1 MARCADORES GENETICOS Debe ser polimórfico (Genetic variations occurring

Más detalles

LIGAMIENTO Y RECOMBINACIÓN TEMA 4

LIGAMIENTO Y RECOMBINACIÓN TEMA 4 LIGAMIENTO Y RECOMBINACIÓN TEMA 4 Cruzamientos de Bateson y Punnett > > P p A a PpAa x PpAa F1 Esperados Observados P_A_ 215 (9) 284 F2 P_aa ppa_ 71 (3) 71 (3) 21 21 ppaa 24 (1) 5 381 381 Los primeros

Más detalles

Ligamiento y Recombinación II

Ligamiento y Recombinación II Ligamiento y Recombinación II Base física de la recombinación El cromosoma es la unidad de transmisión en la meiosis C. Bridges: cr. X asociado al color de los ojos de Drosophila N. Stevens ye. Wilson:

Más detalles

Ejercicio para detectar ligamiento y frecuencias de recombinación:

Ejercicio para detectar ligamiento y frecuencias de recombinación: Ejercicio para detectar ligamiento y frecuencias de recombinación: Considere un cruce entre los genotipos hipotéticos AABB x aabb a la F1, AaBb, se le hace un cruce de prueba, suponiendo que los fenotipos

Más detalles

Ligamiento de Genes: Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT.

Ligamiento de Genes: Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT. Ligamiento de Genes: 1 Definición. Relaciones numéricas. Fase de acoplamiento y fase de repulsión. Intercambio de genes ligados: crossing over. Detección citológica del crossing over. Medidas de ligamiento.

Más detalles

La meiosis comprende una replicación del ADN seguida de dos divisiones celulares sucesivas

La meiosis comprende una replicación del ADN seguida de dos divisiones celulares sucesivas LIGAMIENTO Ligamiento Ligamiento describe el fenómeno por el que alelos en genes vecinos, ubicados en el mismo cromosoma, serán transmitidos juntos más frecuentemente que por azar. La meiosis comprende

Más detalles

Genética II: el ligamiento y la teoría cromosómica

Genética II: el ligamiento y la teoría cromosómica Genética II: el ligamiento y la teoría cromosómica (Continuación de la 2º Ley de Mendel) Cada individuo tiene dos copias de cada unidad de herencia (gen). Estas dos copias se separan durante la formación

Más detalles

Universidad de Puerto Rico Recinto de Río Piedras Departamento de Biología. Modo de herencia de dos característica mutantes de Drosophila melanogaster

Universidad de Puerto Rico Recinto de Río Piedras Departamento de Biología. Modo de herencia de dos característica mutantes de Drosophila melanogaster Universidad de Puerto Rico Recinto de Río Piedras Departamento de Biología Dra. Yvette Pérez-Chiesa Laboratorio de Genética Modo de herencia de dos característica mutantes de Drosophila melanogaster A

Más detalles

25,4 23,7. Tema 8: Cartografía genética 1. Antonio Barbadilla

25,4 23,7. Tema 8: Cartografía genética 1. Antonio Barbadilla 25,4 b 5,9 pr 19,5 c 23,7 Tema 8: Cartografía genética 1 Objetivos tema 8: Cartografía (mapas) genéticos Deberán quedar bien claros los siguientes puntos En qué se fundamenta un mapa genético Cómo calcular

Más detalles

LIGAMIENTO GENETICO DRA. EGLE VILLEGAS CASTAGNASSO

LIGAMIENTO GENETICO DRA. EGLE VILLEGAS CASTAGNASSO LIGAMIENTO GENETICO DRA. EGLE VILLEGAS CASTAGNASSO REPASANDO LEYES DE MENDEL PRIMERA LEY SEGREGACION INDEPENDIENTE SEGUNDA LEY TRANSMISION INDEPENDIENTE A a A a Gametas Gametas A a A A a a Durante la formación

Más detalles

25,4 b 5,9 pr 19,5 c 23,7 1

25,4 b 5,9 pr 19,5 c 23,7 1 25,4 b 5,9 pr 19,5 c 23,7 1 Objetivos tema 8: Cartografía (mapas) genéticos Deberán quedar bien claros los siguientes puntos En qué se fundamenta un mapa genético Cómo calcular las frecuencias de recombinación

Más detalles

Definición. Relaciones numéricas. Fase de acoplamiento y fase de repulsión. Intercambio de genes ligados: crossing over. Detección citológica del

Definición. Relaciones numéricas. Fase de acoplamiento y fase de repulsión. Intercambio de genes ligados: crossing over. Detección citológica del Ligamiento de Genes: 1 Definición. Relaciones numéricas. Fase de acoplamiento y fase de repulsión. Intercambio de genes ligados: crossing over. Detección citológica del crossing over. Medidas de ligamiento.

Más detalles

25,4 23,7. Tema 8: Cartografía genética 1. Antonio Barbadilla

25,4 23,7. Tema 8: Cartografía genética 1. Antonio Barbadilla 25,4 b 5,9 pr 19,5 c 23,7 Tema 8: Cartografía genética 1 Objetivos tema 8: Cartografía (mapas) genéticos Deberán quedar bien claros los siguientes puntos En qué se fundamenta un mapa genético Cómo calcular

Más detalles

Desviaciones de la herencia Mendeliana

Desviaciones de la herencia Mendeliana Desviaciones de la herencia Mendeliana DESVIACIONES DE LA HERENCIA MENDELIANA Dominancia Incompleta Codominancia Alelos Múltiples Alelos letales Pleiotropismo Interacciones génicas Herencia citoplasmática

Más detalles

LIGAMIENTO Y RECOMBINACIÓN. Dra. María Teresa Lemus Valdés Especialista de I y II Grado en Genética Clínica Profesora e Investigadora Auxiliar

LIGAMIENTO Y RECOMBINACIÓN. Dra. María Teresa Lemus Valdés Especialista de I y II Grado en Genética Clínica Profesora e Investigadora Auxiliar LIGAMIENTO Y RECOMBINACIÓN Dra. María Teresa Lemus Valdés Especialista de I y II Grado en Genética Clínica Profesora e Investigadora Auxiliar En la clase de hoy vamos a ver: Cómo se puede conocer la distancia

Más detalles

EL PROBLEMA DE LOS TRES PUNTOS

EL PROBLEMA DE LOS TRES PUNTOS EL PROBLEMA DE LOS TRES PUNTOS Planteamiento inverso Planteamiento directo Planteamiento inverso En primer lugar es necesario demostrar la existencia de ligamiento entre los tres loci analizados. Suponiendo

Más detalles

Tema 27. LIGAMIENTO I

Tema 27. LIGAMIENTO I Tema 27. LIGAMIENTO I Genes independientes o ligados. Sobrecruzamiento y recombinación. * frecuencia de recombinación y Distancia entre genes. * Estudio del ligamiento en la especie humana. * Puntuación

Más detalles

Proporciones mendelianas modificadas

Proporciones mendelianas modificadas Proporciones mendelianas modificadas Dominancia incompleta ó intermedia Co-dominancia Alélos múltiples Pleiotropismo Interacciones génicas Genes ligados y recombinación Herencia ligada al sexo Herencia

Más detalles

Desviaciones de la herencia Mendeliana

Desviaciones de la herencia Mendeliana Desviaciones de la herencia Mendeliana Proporciones mendelianas modificadas Dominancia incompleta ó intermedia Co-dominancia Alélos múltiples Pleiotropismo Interacciones génicas Genes ligados y recombinación

Más detalles

Genética grupo B. Examen Final Primera Parte. 19 de Mayo de Apellidos Nombre Firma:

Genética grupo B. Examen Final Primera Parte. 19 de Mayo de Apellidos Nombre Firma: Genética grupo B. Examen Final Primera Parte. 19 de Mayo de 2017. Apellidos Nombre Firma: 1/6- Los individuos marcados en negro en la genealogía presenta una anomalía muy infrecuente en la población. Establezca

Más detalles

LIGAMIENTO Y MAPEO GENICO

LIGAMIENTO Y MAPEO GENICO LIGAMIENTO Y MAPEO GENICO Ms. MARIA CRUZ BRICEÑO AREA DE GENETICA Y BIOLOGÍA CELULAR DEPARTAMENTO DE MORFOLOGIA HUMANA LIGAMIENTO GENICO En el ligamiento, se cumple el principio de segregación independiente?

Más detalles

Mapa Genético de Caracteres Medelianos

Mapa Genético de Caracteres Medelianos Mapa Genético de Caracteres Medelianos Cap 11 Hum Mol Gen Mapeo Genético Objetivo: determinar la frecuencia con que 2 loci son separados por recombinación meiótica. Fracción de recombinación: es la proporción

Más detalles

Seminario VI. APLICACIONES DEL LIGAMIENTO

Seminario VI. APLICACIONES DEL LIGAMIENTO Seminario VI. APLICACIONES DEL LIGAMIENTO * 1) Resolver problemas básicos de ligamiento con cruces dirigidos. * 2) Analizar árboles de familias en las que se hereda una enfermedad, con el fin de llegar

Más detalles

EJERCICIOS ADICIONALES TEMA 7

EJERCICIOS ADICIONALES TEMA 7 EJERCICIOS ADICIONALES TEMA 7 TEMA 7. RECOMBINACIÓN En un individuo F1 heterocigoto para cuatro genes no ligados (AaBbCcDd) procedente del cruce de dos líneas puras, qué proporción de sus gametos serán

Más detalles

Universidad de Puerto Rico Recinto de Río Piedras Departamento de Biología

Universidad de Puerto Rico Recinto de Río Piedras Departamento de Biología Universidad de Puerto Rico Recinto de Río Piedras Departamento de Biología Laboratorio de Genética Biol 3350 Incidencia de moscas con tumores melanóticos en dos cepas de Drosophila melanogaster; tu (1)

Más detalles

Capítulo 13. Extensión de la genética mendeliana

Capítulo 13. Extensión de la genética mendeliana 1 de 12 04/07/2010 01:45 p.m. Capítulo 13. Extensión de la genética mendeliana Los trabajos de Mendel fueron redescubiertos en Europa en 1900 por Hugo de Vries y otros científicos y atrajeron una gran

Más detalles

V Olimpiada Española de Biología: Fase Nacional

V Olimpiada Española de Biología: Fase Nacional Código de Identificación 4 últimos dígitos- letra DNI V Olimpiada Española de Biología: Fase Nacional PRÁCTICA 1: MENDELISMO: ESTUDIO DE CRUZAMIENTOS EN Drosophila melanogaster OBJETIVO A partir del contaje

Más detalles

Soluciones de la serie de ejercicios 2 (Curso 7.012)

Soluciones de la serie de ejercicios 2 (Curso 7.012) Soluciones de la serie de ejercicios 2 (Curso 7.012) Pregunta 1 En los unicornios, el color del pelo (marrón o blanco) está controlado por un único gen con dos alelos, A y a. El fenotipo marrón es dominante

Más detalles

WVNM

WVNM GENETICA MENDELIANA http://www.youtube.com/watch?v=2uxbyb- WVNM GREGORIO MENDEL Se considera el Padre de la genética. Las bases de la genética moderna las sentó un monje austríaco, Gregor Mendel (822-884),

Más detalles

LIGAMIENTO Y RECOMBINACIÓN

LIGAMIENTO Y RECOMBINACIÓN LIGAMIENTO Y RECOMBINACIÓN Los principales apartados de este tema serán: Introducción n y Estimación n de la fracción n de recombinación Ánálisis del ligamiento: Planteamiento directo Planteamiento inverso

Más detalles

GENÉTICA Mendel Hugo de Vries identificación de los cromosomas como los portadores de la herencia.

GENÉTICA Mendel Hugo de Vries identificación de los cromosomas como los portadores de la herencia. GENÉTICA Los trabajos de Mendel fueron redescubiertos en Europa en 1900 por Hugo de Vries y otros científicos y atrajeron una gran atención en todo el mundo, estimulando muchos estudios de investigadores

Más detalles

Pregunta 1. Elija una de las siguientes: enlace iónico, fuerza van der Waal, enlace covalente, enlace de hidrógeno.

Pregunta 1. Elija una de las siguientes: enlace iónico, fuerza van der Waal, enlace covalente, enlace de hidrógeno. Pregunta 1 Usted está estudiando una enzima denominada sinasa. Su sustrato es la tripéptida, Ala Lys Thr, con una molécula poco común en su término C, la molécula GLOW. Cuando esta molécula GLOW se escinde

Más detalles

Resumen de la clase anterior

Resumen de la clase anterior Resumen de la clase anterior Factores heredables Genética mendeliana Homocigoto Heterocigoto Genotipo Fenotipo Monohibridismo. Ley de la segregación Dihibridismo. Ley de la segregación independiente Los

Más detalles

El Patrón de herencia Mendeliana puede estar influído por

El Patrón de herencia Mendeliana puede estar influído por Herencia Mendeliana El Patrón de herencia Mendeliana puede estar influído por Ligamiento Relaciones de dominancia / recesividad Interacciones alélicas Interacciones génicas Sexo Medio ambiente Otros genes

Más detalles

Genética. Examen Parcial. 17 de Enero de Apellidos Nombre Firma:

Genética. Examen Parcial. 17 de Enero de Apellidos Nombre Firma: Genética. Examen Parcial. 17 de Enero de 2011. Apellidos Nombre Firma: 1/6-La enfermedad de Tay-Sachs, en su forma infantil, está determinada por el alelo recesivo no funcional de un gen autosomico (a).

Más detalles

Recombinación y Ligamiento Génico

Recombinación y Ligamiento Génico Recombinación y Ligamiento Génico Recombinación y Ligamiento Génico Teoría cromosómica de la herencia Evidencias citológicas de Sutton-Boveri Evidencias adicionales (Carothers, Blakeslee, etc.) Caracteres

Más detalles

Examen de Genética. 7 de junio de 2010

Examen de Genética. 7 de junio de 2010 Examen de Genética. 7 de junio de 2010 Apellidos Nombre 1.- En una especie vegetal, los genes A,a, B,b y C,c se transmiten de forma independiente. Se cruza una planta homozigota dominante para los tres

Más detalles

Trabajo Práctico en Matlab Segregación de Genes modelado mediante un Random-Walk San Martín, Alvaro

Trabajo Práctico en Matlab Segregación de Genes modelado mediante un Random-Walk San Martín, Alvaro Trabajo Práctico en Matlab Segregación de Genes modelado mediante un Random-Walk San Martín, Alvaro Objetivos El objetivo del siguiente trabajo es modelar mediante un Random-Walk el entrecruzamiento entre

Más detalles

Trabajo Práctico 7.1. Ligamiento y recombinación génica INTRODUCCIÓN

Trabajo Práctico 7.1. Ligamiento y recombinación génica INTRODUCCIÓN Trabajo Práctico 7.1 Ligamiento y recombinación génica INTRODUCCIÓN La segunda ley de Mendel postula la segregación independiente de alelos de diferentes genes ubicados en distintos loci. Sin embargo,

Más detalles

Tema 28. LIGAMIENTO II

Tema 28. LIGAMIENTO II Tema 28. LIGAMIENTO II LIGAMIENTO EN LA ESPECIE HUMANA * Marcadores polimórficos para el estudio del ligamiento. * Haplotipo familiar y cambio de fase de ligamiento. QUÉ SON LOS LOCI MARCADORES? Los loci

Más detalles

Si el heterocigota para el gen de la primasa tiene fenotipo normal, entonces el alelo mutado es recesivo y el normal es dominante:

Si el heterocigota para el gen de la primasa tiene fenotipo normal, entonces el alelo mutado es recesivo y el normal es dominante: BIOLOGÍA 54 - CUADERNILLO 13 - PROBLEMAS DE GENÉTICA RESUELTOS 1 1. DATOS Si el heterocigota para el gen de la primasa tiene fenotipo normal, entonces el alelo mutado es recesivo y el normal es dominante:

Más detalles

Genética Mendeliana. Las leyes de la herencia

Genética Mendeliana. Las leyes de la herencia Genética Mendeliana. Las leyes de la herencia Gregor Mendel, 1860 Monasterio de Sto. Tomás, Rep. Checa Los Experimentos de Gregor Mendel (1865) Material experimental: Semillas de plantas de chícharo (Pisum

Más detalles

Trabajo Práctico 10 Principios de genética cuantitativa

Trabajo Práctico 10 Principios de genética cuantitativa Trabajo Práctico 10 Principios de genética cuantitativa Los caracteres mendelianos con los que hemos trabajado en el módulo anterior son de naturaleza cualitativa, es decir, caracteres de fácil clasificación

Más detalles

Pontificia Universidad Católica del Ecuador Facultad de Ciencias Exactas y Naturales Escuela de Ciencias Biológicas

Pontificia Universidad Católica del Ecuador Facultad de Ciencias Exactas y Naturales Escuela de Ciencias Biológicas Apartado postal 17-01-218 1. DATOS INFORMATIVOS: FACULTAD: Ciencias Exactas y Naturales CARRERA: : Ciencias Biológicas Asignatura/módulo: Genética I Código: 186 Plan de estudios 011 Nivel: Tercero Prerrequisitos:

Más detalles

PRINCIPIOS BÁSICOS DE LA HERENCIA

PRINCIPIOS BÁSICOS DE LA HERENCIA PRINCIPIOS BÁSICOS DE LA HERENCIA HERENCIA Transmisión de información genética de progenitor a descendientes CIENCIA GENÉTICA Estudia las similitudes y variaciones genéticas, entre progenitores y descendientes

Más detalles

Genética mendeliana. Año Año Sin preguntas. Año Sin preguntas. Año Año 2005

Genética mendeliana. Año Año Sin preguntas. Año Sin preguntas. Año Año 2005 Año 2001 En Drosophila (la mosca del vinagre) los genes que determinan el color del cuerpo y el tamaño de las alas van en el mismo cromosoma. Consideremos una hembra heterocigótica para ambas características,

Más detalles

CUESTIONES DE SELECTIVIDAD TEMA 12. GENÉTICA MENDELIANA.

CUESTIONES DE SELECTIVIDAD TEMA 12. GENÉTICA MENDELIANA. CUESTIONES DE SELECTIVIDAD TEMA 12. GENÉTICA MENDELIANA. CUESTIONES DE TEORÍA 1. Explique la diferencia entre los siguientes pares de conceptos: gen-alelo [0,5], homocigotoheterocigoto [0,5], herencia

Más detalles

Tema 13. Los caracteres cuantitativos

Tema 13. Los caracteres cuantitativos Tema 13. Los caracteres cuantitativos Genética CC. Mar 2004-05 Objetivos Comprender los patrones de la herencia de los caracteres poligénicos Describir el modo de análisis de los caracteres cuantitativos

Más detalles

UNIVERSIDAD DE COSTA RICA ESCUELA DE BIOLOGIA SECCIÓN DE GENÉTICA Y BIOTECNOLOGÍA

UNIVERSIDAD DE COSTA RICA ESCUELA DE BIOLOGIA SECCIÓN DE GENÉTICA Y BIOTECNOLOGÍA UNIVERSIDAD DE COSTA RICA ESCUELA DE BIOLOGIA SECCIÓN DE GENÉTICA Y BIOTECNOLOGÍA B-345 Genética General para Biología I Semestre del 2014 Créditos: 3 Horario: Lunes y martes de 2 a 4 p.m., Aula 180 Requisitos:

Más detalles

1. Ligamiento Detección 46 del Ligamiento 3. Frecuencias 51 de Recombinación

1. Ligamiento Detección 46 del Ligamiento 3. Frecuencias 51 de Recombinación LIGMIENTO Y RECOMBINCIÓN El principio de Mendel según el cual los genes que controlan diferentes caracteres son heredados de forma independiente uno de otro es cierto sólo cuando los genes existen en cromosomas

Más detalles

BASES CROMOSÓMICAS DE LA HERENCIA SESIÓN 9

BASES CROMOSÓMICAS DE LA HERENCIA SESIÓN 9 Biología BASES CROMOSÓMICAS DE LA HERENCIA SESIÓN 9 Si observamos cualquier tipo de población biológica, observaremos que a pesar de las apreciables similitudes entre un individuo y otro, no hay dos que

Más detalles

MEDICINA Primer Cuatrimestre

MEDICINA Primer Cuatrimestre U.N.P.S.J. B. BIOLOGÍA MEDICINA Primer Cuatrimestre 2017 REPASAMOS 1. En el siguiente esquema aparecen desordenadas las fases de la meiosis. Indica qué imagen corresponde a: a. Anafase I. b. Anafase II.

Más detalles

PROGRAMA. 2. MATERIA/ SEMINARIO/OBLIGACION ACADEMICA: Genética. 4. SEDE: Delegación Provincia de Corrientes Campus San Roque González de Santa Cruz

PROGRAMA. 2. MATERIA/ SEMINARIO/OBLIGACION ACADEMICA: Genética. 4. SEDE: Delegación Provincia de Corrientes Campus San Roque González de Santa Cruz UNIVERSIDAD DEL SALVADOR Delegación Provincia de Corrientes Campus San Roque González de Santa Cruz Plan. Res. Rec. 260/2006 PROGRAMA 1. CARRERA: Agronomía 2. MATERIA/ SEMINARIO/OBLIGACION ACADEMICA: Genética

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE AGRONOMIA DIRECCIÓN DE ESCUELA DE AGRONOMÍA CURSO PROPEDÉUTICO ASIGNATURA: ELEMENTOS DE BIOLOGÍA

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE AGRONOMIA DIRECCIÓN DE ESCUELA DE AGRONOMÍA CURSO PROPEDÉUTICO ASIGNATURA: ELEMENTOS DE BIOLOGÍA UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE AGRONOMIA DIRECCIÓN DE ESCUELA DE AGRONOMÍA CURSO PROPEDÉUTICO 2-2012 ASIGNATURA: ELEMENTOS DE BIOLOGÍA ÁCIDOS NUCLEICOS (1953) Son macromoléculas compuestas

Más detalles

FACULTAD DE CIENCIAS VETERINARIAS Departamento de Producción Animal Introducción a la Mejora Genética

FACULTAD DE CIENCIAS VETERINARIAS Departamento de Producción Animal Introducción a la Mejora Genética RESOLUCIÓN GUÍA DE TRABAJOS PRÁCTICOS Nº1 HERENCIA MENDELIANA 2017 Ejercicio 1 Datos del ejercicio Dominante = A alto Recesivo = a bajo a. A a x a a ½ A ½ a 100% a a ½ Aa ½ aa Proporción fenotípica = 50%

Más detalles

CARACTERES LIGADOS AL SEXO

CARACTERES LIGADOS AL SEXO CARACTERES LIGADOS AL SEXO Caracteres producidos por genes ubicados en los segmentos diferenciales de los cromosomas sexuales X-Y 1. CARACTERES LIGADOS AL CROMOSOMA X 2. CARACTERES LIGADOS AL CROMOSOMA

Más detalles

Herencia ligada al sexo

Herencia ligada al sexo Herencia ligada al sexo Cromosoma sexual: es un cromosoma en organismos eucariontes que esta representado de manera diferencial en los dos sexos. Un sexo posee un par de cromosomas idéntico (XX) mientras

Más detalles

Si consideramos los siguientes genotipos, cuántos y cuáles gametos se pueden obtener? Cada gen está en un cromosoma diferente. AABBCcDdee.

Si consideramos los siguientes genotipos, cuántos y cuáles gametos se pueden obtener? Cada gen está en un cromosoma diferente. AABBCcDdee. Si consideramos los siguientes genotipos, cuántos y cuáles gametos se pueden obtener? Cada gen está en un cromosoma diferente AABBCcDdee AaBbccDdEE aabbccddee Diagrama Ramificado Análisis de dos características

Más detalles

IES Santa Clara. PAU/EBAU BIOLOGÍA 2º BACHILLER

IES Santa Clara.   PAU/EBAU BIOLOGÍA 2º BACHILLER GENÉTICA MENDELIANA Jun 01 1. Comenta brevemente la relación existente entre variedad alélica y evolución, de qué forma se originan nuevas variantes alélicas a partir de un alelo original? 2. Describe,

Más detalles

o Y Cromosomas autosómicos: 22 pares Cromosoma sexual: 1 par (X o Y)

o Y Cromosomas autosómicos: 22 pares Cromosoma sexual: 1 par (X o Y) Cromosomas autosómicos: 22 pares o Y Cromosoma sexual: 1 par (X o Y) Un alelo es dominante cuando su presencia se manifiesta siempre en el fenotipo, y el fenotipo es igual para el homocigótico que para

Más detalles

ESTRUCTURA FINA DEL GEN: CONCEPTO DE GEN

ESTRUCTURA FINA DEL GEN: CONCEPTO DE GEN ESTRUCTURA FINA DEL GEN: CONCEPTO DE GEN Seymour Benzer Fago T4 Puntos calientes Concepto mendeliano de gen Concepto molecular de gen Experimentos de Benzer con mutantes de lisis rápida del fago T4 Unidad

Más detalles

SYLLABUS SEMESTRE ACADEMICO : 2017-I 1.1. NOMBRE DE LA ASIGNATURA : GENETICA GENERAL

SYLLABUS SEMESTRE ACADEMICO : 2017-I 1.1. NOMBRE DE LA ASIGNATURA : GENETICA GENERAL Universidad NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, Decana de América) FACULTAD DE CIENCIAS BIOLÓGICAS ESCUELA PROFESIONAL DE CIENCIAS BIOLOGICAS SYLLABUS SEMESTRE ACADEMICO : 2017-I I. DATOS

Más detalles

La expansión binomial

La expansión binomial La expansión binomial Tomando como base los conceptos y ejemplos relacionados con probabilidad analizados en el subtema 1; en este subtema se incluirá el estadístico de la expansión binomial, para poder

Más detalles

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA NOMBRE DEL CURSO: GENÉTICA MENDELIANA Y DE POBLACIONES GRADO EN QUE SE CURSA: SEXTO SEMESTRE CARGA HORARIA: 3 HORAS SEMANALES DE TEORÍA

Más detalles

UNIVERSIDAD AUTONOMA CHAPINGO PROGRAMA DE ASIGNATURA: BIO-642 ESTADÍSTICA GENÓMICA. Bio 642 Estadística Genómica

UNIVERSIDAD AUTONOMA CHAPINGO PROGRAMA DE ASIGNATURA: BIO-642 ESTADÍSTICA GENÓMICA. Bio 642 Estadística Genómica UNIVERSIDAD AUTONOMA CHAPINGO PROGRAMA DE ASIGNATURA: BIO-642 ESTADÍSTICA GENÓMICA I. DATOS GENERALES Departamento: Programa educativo: Nivel educativo: Área del conocimiento: Asignatura: Carácter: Tipo

Más detalles

3. Caracteres cuantitativos y variación continua Objetivos. Tema 3. Caracteres cuantitativos y variación continua

3. Caracteres cuantitativos y variación continua Objetivos. Tema 3. Caracteres cuantitativos y variación continua 3. Caracteres cuantitativos y variación continua Objetivos Tema 3. Caracteres cuantitativos y variación continua Fundamentos de Genética Grado en Bioquímica Universidad de Granada Prof. Ángel Martín Alganza

Más detalles

Genética mendeliana. Nombre todos los genotipos posibles de los parentales de cada cruzamiento. Razone las respuestas.

Genética mendeliana. Nombre todos los genotipos posibles de los parentales de cada cruzamiento. Razone las respuestas. Genética mendeliana MODELO 2007 En la mosca de la fruta (Drosophila melanogaster) existen individuos de cuerpo negro y otros que presentan el cuerpo gris: a) Se cruzan dos moscas grises y se obtiene una

Más detalles

Bases cromosómicas de la herencia. Blanca Cifrián

Bases cromosómicas de la herencia. Blanca Cifrián Bases cromosómicas de la herencia Blanca Cifrián El nº de genes en una célula es muy superior al nº de cromosomas que posee Cada cromosoma tiene cientos/miles de genes Los genes localizados en el mismo

Más detalles

IES Santa Clara. PAU/EBAU BIOLOGÍA 2º BACHILLER

IES Santa Clara.  PAU/EBAU BIOLOGÍA 2º BACHILLER GENÉTICA MENDELIANA Jun 01 1. Comenta brevemente la relación existente entre variedad alélica y evolución, de qué forma se originan nuevas variantes alélicas a partir de un alelo original? 2. Describe,

Más detalles

Tema 4 Ampliaciones de la Genética Mendeliana I: T ma m a 5 5 Ampliaciones de la Genética Mendeliana II: Ampliaciones de la Genética

Tema 4 Ampliaciones de la Genética Mendeliana I: T ma m a 5 5 Ampliaciones de la Genética Mendeliana II: Ampliaciones de la Genética Tema 4: Ampliaciones de la Genética Mendeliana I: Árboles genealógicos. Rasgos autosómicos recesivos. Rasgos autosómicos dominantes. Dominancia incompleta. Alelos codominantes. Alelos múltiples. Tema 5:

Más detalles

GENÉTICA MENDELIANA POR FERNANDO CUTIRE

GENÉTICA MENDELIANA POR FERNANDO CUTIRE GENÉTICA MENDELIANA POR FERNANDO CUTIRE IMPORTANTE LEER Información sacada de las diapositivas del profesor, un libro de genética mendeliana y los videos citados en las diapositivas Link del libro: https://ecofisiologia.files.wordpress.com/2009/08/genmendelianaapuntesene2004.pdf

Más detalles

Genética mendeliana. Año Año Año Año Año 2005

Genética mendeliana. Año Año Año Año Año 2005 Año 2001 En Drosophila (la mosca del vinagre) los genes que determinan el color del cuerpo y el tamaño de las alas van en el mismo cromosoma. Consideremos una hembra heterocigótica para ambas características,

Más detalles

Pregunta PSU, Demre Modelo de admisión 2018

Pregunta PSU, Demre Modelo de admisión 2018 Pregunta PSU, Demre Modelo de admisión 2018 La ley de la segregación de los caracteres de Mendel es una ley porque A) debe ser sometida a prueba cada vez que se hagan cruzamientos entre individuos que

Más detalles

BASES FÍSICAS DE LA HERENCIA

BASES FÍSICAS DE LA HERENCIA BASES FÍSICAS DE LA HERENCIA Objetivos Explicar la teoría cromosómica de la herencia. Analizar el papel de los cromosomas sexuales en la determinación del sexo. Determinar el sexo de la progenie y la herencia,

Más detalles

FACULTAD DE CIENCIAS VETERINARIAS Departamento de Producción Animal Introducción a la Mejora Genética

FACULTAD DE CIENCIAS VETERINARIAS Departamento de Producción Animal Introducción a la Mejora Genética RESOLUCIÓN GUÍA DE TRABAJOS PRÁCTICOS Nº1 HERENCIA MENDELIANA 2016 Ejercicio 1 Datos del ejercicio Dominante = A alto Recesivo = a bajo a. A a x a a ½ A ½ a 100% a a ½ Aa ½ aa Proporción fenotípica = 50%

Más detalles

Genética I. 2ª Parte: Cruces dihíbridos y ligamiento de genes. Tema 6 de Biología NS Diploma BI Curso

Genética I. 2ª Parte: Cruces dihíbridos y ligamiento de genes. Tema 6 de Biología NS Diploma BI Curso Genética I 2ª Parte: Cruces dihíbridos y ligamiento de genes Tema 6 de Biología NS Diploma BI Curso 2012-2014 Antes de comenzar Pregunta guía Por qué no se cumple siempre la proporción 9:3:3:1 en un cruce

Más detalles

CARACTERES LIGADOS E INFLUENCIADOS POR EL SEXO 2011

CARACTERES LIGADOS E INFLUENCIADOS POR EL SEXO 2011 CARACTERES LIGADOS AL SEXO Estos caracteres son producidos por genes ubicados en los segmentos diferenciales de los cromosomas sexuales. Caracteres ligados al cromosoma X Color de ojos en Drosophila melanogaster:

Más detalles

CARACTERES LIGADOS E INFLUENCIADOS POR EL SEXO 2013

CARACTERES LIGADOS E INFLUENCIADOS POR EL SEXO 2013 CARACTERES LIGADOS AL SEXO Estos caracteres son producidos por genes ubicados en los segmentos diferenciales de los cromosomas sexuales. Caracteres ligados al cromosoma X Color de ojos en Drosophila melanogaster:

Más detalles

Johann Gregor Mendel

Johann Gregor Mendel Genética mendeliana Johann Gregor Mendel 1865: Experiments in Plant Hybridization Natural Science Society (Brno, Rep. Checa) Entre 1856 y 1863 experimentó con líneas puras de Pisum sativum Planta anual,

Más detalles

GENÉTICA MENDELIANA POR FERNANDO CUTIRE

GENÉTICA MENDELIANA POR FERNANDO CUTIRE GENÉTICA MENDELIANA POR FERNANDO CUTIRE IMPORTANTE LEER Información sacada de las diapositivas del profesor, un libro de genética mendeliana y los videos citados en las diapositivas Link del libro: https://ecofisiologia.files.wordpress.com/2009/08/genmendelianaapuntesene2004.pdf

Más detalles

Eligiendo a los descendientes por los caracteres deseados, el hombre ha modificado muchas especies, e incluso ha creado razas nuevas, mediante la

Eligiendo a los descendientes por los caracteres deseados, el hombre ha modificado muchas especies, e incluso ha creado razas nuevas, mediante la I GENÉTICA Eligiendo a los descendientes por los caracteres deseados, el hombre ha modificado muchas especies, e incluso ha creado razas nuevas, mediante la selección artificial. Mostaza silvestre Col

Más detalles

GUÍA DOCENTE CURSO: DATOS BÁSICOS DE LA ASIGNATURA DISTRIBUCIÓN HORARIA DE LA ASIGNATURA SEGÚN NORMATIVA DATOS DEL PROFESORADO

GUÍA DOCENTE CURSO: DATOS BÁSICOS DE LA ASIGNATURA DISTRIBUCIÓN HORARIA DE LA ASIGNATURA SEGÚN NORMATIVA DATOS DEL PROFESORADO GUÍA DOCENTE CURSO: 2017-18 DATOS BÁSICOS DE LA ASIGNATURA Asignatura: Genética Código de asignatura: 49151108 Plan: Grado en Biotecnología (Plan 2015) Año académico: 2017-18 Ciclo formativo: Grado Curso

Más detalles

República Bolivariana de Venezuela U. E. Colegio Cruz Vitale. Prof. Francisco Herrera R.

República Bolivariana de Venezuela U. E. Colegio Cruz Vitale. Prof. Francisco Herrera R. República Bolivariana de Venezuela U. E. Colegio Cruz Vitale É Prof. Francisco Herrera R. LA GENÉTICA es la ciencia que estudia los genes, la herencia, la variación de los organismos. El término Genética

Más detalles

CONCEPTOS DE GENÉTICA

CONCEPTOS DE GENÉTICA CONCEPTOS DE GENÉTICA INTRODUCCIÓN Genética significa raza, generación. Es el campo de la biología que comprende la herencia, que se transmite de generación en generación. Las bases de la genética son

Más detalles

República Bolivariana de Venezuela U. E. Colegio Cruz Vitale. Prof. Francisco Herrera R.

República Bolivariana de Venezuela U. E. Colegio Cruz Vitale. Prof. Francisco Herrera R. República Bolivariana de Venezuela U. E. Colegio Cruz Vitale É Prof. Francisco Herrera R. Theodor Boveri Boveri resumió sus estudios (1888 a 1907) en sus Resultados sobre la constitución de la sustancia

Más detalles

Unidad: Genética GUÍA: Conceptos de genética y ejercicios de monohibridismo Curso: Segundo Medio

Unidad: Genética GUÍA: Conceptos de genética y ejercicios de monohibridismo Curso: Segundo Medio Unidad: Genética GUÍA: Conceptos de genética y ejercicios de monohibridismo Curso: Segundo Medio Nombre: Existen unos conceptos fundamentales en Genética que permiten la adecuada comprensión de los mecanismos

Más detalles

Genética y herencia. Profesora: Marcela Saavedra

Genética y herencia. Profesora: Marcela Saavedra Genética y herencia Profesora: Marcela Saavedra Objetivos Identificar mecanismos de herencia no mendeliana Resolver problemas de genética.?? Teoría cromosómica de la herencia Gregory Mendel no conocía

Más detalles

ManuelGVS Problemas de Genética

ManuelGVS Problemas de Genética ManuelGVS 2007 Problemas de Genética PROBLEMAS DE GENÉTICA Problema 1 Problema 2 Problema 3 Problema 4 Problema 5 Problema 6 Problema 7 Problema 8 Problema 9 Problema 10 Problema 11 Problema 12 Problema

Más detalles

Genética y herencia. Miss Marcela Saavedra

Genética y herencia. Miss Marcela Saavedra Genética y herencia Miss Marcela Saavedra Variabilidad Los individuos de una misma especie no son idénticos. Si bien, son reconocibles como pertenecientes a la misma especie, existen muchas diferencias

Más detalles

Genética Básica y Principios de Mejoramiento (203028) Problemas de la Unidad 1

Genética Básica y Principios de Mejoramiento (203028) Problemas de la Unidad 1 Genética Básica y Principios de Mejoramiento (203028) Problemas de la Unidad 1 1. En el ganado vacuno la ausencia de cuernos es un carácter dominante sobre la presencia de cuernos. Un toro sin cuernos

Más detalles

Identificación de loci de caracteres. cuantitativos implicados en la morfogénesis. foliar en Arabidopsis thaliana

Identificación de loci de caracteres. cuantitativos implicados en la morfogénesis. foliar en Arabidopsis thaliana Universidad Miguel Hernández de Elche Identificación de loci de caracteres cuantitativos implicados en la morfogénesis foliar en Arabidopsis thaliana Salvador Bernal Torres Elche, 2003 JOSÉ LUIS MICOL

Más detalles

Recombinación y entrecruzamiento en Sordaria fimicola. marzo 2006

Recombinación y entrecruzamiento en Sordaria fimicola. marzo 2006 Recombinación y entrecruzamiento en Sordaria fimicola N. Rodríguez marzo 2006 Sordaria fimicola Hongo filamentoso que pertenece a la clase Ascomycetes Como organismo experimental se utiliza para estudiar

Más detalles

LOS EXPERIMENTOS DE MENDEL

LOS EXPERIMENTOS DE MENDEL LOS EXPERIMENTOS DE MENDEL Gregor J. Mendel nació en 1822 en Austria, en 1843 entró en la orden de los Agustinos donde interesado en la genética estudió los resultados de los cruzamientos entre dos variedades

Más detalles

UNIVERSIDAD DE GUADALAJARA FORMATO GENERAL

UNIVERSIDAD DE GUADALAJARA FORMATO GENERAL UNIVERSIDAD DE GUADALAJARA FORMATO GENERAL PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA GENETICA CODIGO DE MATERIA 102 DEPARTAMENTO PRODUCCION AGRICOLA CODIGO DE DEPARTAMENTO BC CENTRO UNIVERSITARIO CIENCIAS

Más detalles