(ground. Coordenadas de la traza

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(ground. Coordenadas de la traza"

Transcripción

1 El punto subsatélite (ground track) Es la intersección sobre la superficie terrestre de la línea que une la posición del satélite en órbita con el centro de la Tierra La traza del satélite es la proyección de la órbita sobre la superficie terrestre Información sobre la órbita (inclinación, periodo, altura, etc.) La traza se suele representar sobre un mapamundi 2D CSAT 43 Coordenadas de la traza Pueden obtenerse a partir de los parámetros orbitales Latitud Longitud ( Φ( t) ) = sen( i) sen( ω + v( t) ) () t = Ω ( ω t + ϕ) + arctg( cos() i tg( ω + v() t )) sen λ i: Inclinación ω : velocidad de rotación terrestre (2π/86164seg) ω: Argumento del perigeo ϕ: Ascensión recta del meridiano de Greenwich en t=0 ν(t): Anomalía verdadera Ω: Ascensión recta del nodo ascendente La latitud máxima es igual a la inclinación (ó a 180-i, para órbitas retrógradas) La latitud es periódica con periodo igual al periodo orbital La diferencia de longitud geográfica entre las dos trazas de un satélite correspondientes a dos pasos del satélite por el nodo ascendente orbital viene dada por: λ = ω T CSAT 44 1

2 Órbita Tundra Órbita inclinada a 63.4 grados Apogeo a m Periodo de 24 horas a = km e = 0.25 ( ) ω= 270 deg m de altura CSAT 45 Órbita Tundra. Traza Punto Subsatélite Latitud Ls j 0 ls j Longitud 360 CSAT 46 2

3 Órbita Tundra. Punto Subsatélite según Ω Ω=180º Ω=0º Ω=45º Ω=º Ls j 0 ls j 360 CSAT 47 Órbita Tundra. Punto Subsatélite según ω ω=45º ω=º ω=180º ω=270º Ls j ω=45º 0 ls j 360 CSAT 48 3

4 Órbita Tundra. Punto Subsatélite según i i=63.4º Ls j i=45º i=20º i=0º i=0º 0 ls j 360 CSAT 49 Órbita MOLNIYA Órbita inclinada a 63.4 grados Periodo de 12 horas Apogeo a m a = km e = 0.71 ( ) ω= 270 deg 00 m de altura CSAT 50 4

5 Órbita Molniya.. Traza Punto Subsatélite Latitud Ls j 0 ls j Longitud 360 CSAT 51 Traza del eclipse anular ( ) Copyright: Fred Espenak, NASA's GSFC CSAT 52 5

6 Ángulos de Visión Vertical local El Norte Este Az Ángulo de Elevación: desde la horizontal local hasta la dirección del satélite Ángulo de Acimut: desde el Norte hacia el Este hasta la proyección sobre el horizonte local de la dirección al satélite (punto subsatélite) CSAT 53 Ángulos de Visión CSAT 54 6

7 β El d Horizonte local r s Cálculo de la Elevación β: nadir angle γ: central angle d: slant range Punto subsatélite r r, r y d forman un plano s e L ae Latitud Norte de la estación L oe Longitud Oeste de la estación L as Latitud Norte punto subsatélite L os Longitud Oeste punto subsatélite cos( γ ) = cos Lae cos Las cos( Loe Los ) + sin L sin L ae as Estación r e γ Centro Tierra d cos = rs El r 1 + e rs = 2 r 1 + e rs 2 re rs sin γ cos γ 2 r 2 e cos rs γ CSAT 55 Cálculo de la Elevación n GEO La particularización de las expresiones anteriores a la geometría de la órbita geoestacionaria (L as =0) resulta: cos ( γ ) = cos L cos ( L L ) ae oe os d = cos γ m cos El = sin γ d CSAT 56 7

8 Elevación n y Distancia (GEO) Elev ( γ ) d( γ ) γ γ CSAT 57 Cálculo del Acimut El ángulo de acimut entre la estación y el satélite es igual que con el punto subsatélite. Con el polo formamos un triángulo esférico. X γ Y α γ Conocemos dos lados (A, B) y el ángulo comprendido (C ángulo polar=f(l A,l B )). X e Y se calculan a partir de C, L A y L B. Para un satélite geoestacionario: llamando l a la diferencia de longitudes, L la latitud de la estación y γ al ángulo central entre la estación y el punto subsatélite se tiene: 1) SS al SO de la ET Az=180 + α 1 s = ( l + L+ γ ) 2 1 sin( s γ ) sin( s L) α = 2tan sin( s) sin( s l) 1 2 2) SS al SE de la ET Az=180 - α 3) SS al NO de la ET Az=360 - α 4) SS al NE de la ET Az= α CSAT 58 8

9 Cálculo del Acimut para GEO El punto subsatélite se encuentra sobre el Ecuador Ángulo entre el eje N-S y el rumbo al satélite (A ): SE(*) SO(*) tan A' = a tan sen ( θl θs ) ( φ ) φ l : latitud ET θ l : longitud ET θ s : longitud SS l NO(*) O E NE(*) (*) Posición relativa del SS respecto a la ET CSAT 59 Ábacos de Elevación n para GEO Latitud Estación EL Longitud relativa CSAT 60 9

10 Ábacos de Acimut para GEO Latitud Estación ) SS al SO de la ET Az=180 + α 2) SS al SE de la ET Az=180 - α 3) SS al NO de la ET Az=360 - α 4) SS al NE de la ET Az= α Longitud relativa α CSAT 61 Acimut y Elevación Azimut Elevación CSAT 62

11 Acimut y Elevación n hacia HISPASAT (30ºW) Azimut Elevación CSAT 63 Acimut y Elevación n hacia HISPASAT (30ºW) CSAT 64 11

12 Plano de Polarización n hacia HISPASAT (30ºW) Se ajusta girando el conversor LNB respecto a la vertical en el sentido de las agujas del reloj CSAT 65 Azimut y Elevación n para Astra e Hispasat Estación terrena Latitud Longitud Astra (28.20ºE) Azimut Elev. Hispasat (30ºW) Azimut Elev. Madrid 40.24N 3.41W º 33.33º 217.8º 36.07º Vigo 42.15N 8.43W º 28.95º 2.52º 36.66º Santa Cruz de Tenerife 28.3N 16.15W º 31.67º º 53.65º CSAT 66 12

13 Ejemplo: Apuntamiento desde Madrid 89ºO 61ºO 30ºO G-28 (Intelsat) AmazonasHispasat 1c Hispasat 1D SpainSat Elev = 15.95º Az = º 29ºE XtarEur Elev = 32.53º Az = ºº Elev = 5.06º Azimut = º Elev = 36.03º Az = º CSAT 67 Ángulo de Visión n (GEO) β El d Horizonte local r s r e Punto subsatélite γ Centro Tierra sinβ sin = r e β = sin 1 ( + El) r s r e cos El r s α( β(γ) γ ) γ o 2 β max = 174. γ = 5 = 763. o ( El ) o CSAT 68 13

14 La Tierra vista desde el satélite Aplicaciones: Obtener los ángulos de apuntamiento Determinar la visibilidad de un objeto en Tierra desde la órbita del satélite Calcular el tiempo de visibilidad Ecuaciones básicas: r sin ρ = cosλ0 = e re + h π λ0 + ρ = 2 Dmáx = 2 2 ( r + h) + r = r tan( λ ) e e e 0 Notación: Ángulo de nadir (η) Ángulo central (λ) Ángulo de elevación (ε) Fuente: J. R. Wertz, ed., Comunicaciones Space Mission por Satélite. Analysis Curso 2009/. and Ramón Design, Martínez, 3rd. Miguel Ed, Microcosm/luwer,1999 Calvo CSAT 69 Relación n entre el punto subsatélite y un punto de la superficie Dado el punto subsatélite (L S, δ S ) y los ángulos de vista desde el satélite (Az, ε), determinar el punto de la superficie terrestre (L T, δ T ) r sin ρ = e re + h sinη cosε = sin ρ λ = η ε ' cosδt = cosλ sinδs + sin λ cosδs cos Az, ' δt < º cosλ sinδ L = S sinδ cos T cosδs cosδt, L = LS LT Fuente: J. R. Wertz, ed., Comunicaciones Space Mission por Satélite. Analysis Curso 2009/. and Ramón Design, Martínez, 3rd. Miguel Ed, Microcosm/luwer,1999 Calvo CSAT 70 14

15 Relación n entre el punto subsatélite y un punto de la superficie Dado el punto subsatélite (L S, δ S ) y un punto de la superficie terrestre (L T, δ T ), determinar los ángulos de vista desde el satélite (Az, ε) r sin ρ = e re + h L = LS LT cosλ = sinδs sinδt + cosδs cosδt cos L sinδ cosλ sinδ cos Az = T S sin λ cosδs sin ρ sin λ tanη = 1 sin ρ cosλ ε = º η λ, λ < 180º Fuente: J. R. Wertz, ed., Comunicaciones Space Mission por Satélite. Analysis Curso 2009/. and Ramón Design, Martínez, 3rd. Miguel Ed, Microcosm/luwer,1999 Calvo CSAT 71 Movimiento aparente del satélite (1) Determinar el tiempo de visibilidad T v y la elevación máxima (ε máx ) Datos iniciales: Orbitales: i, ε mín, L node (longitud de Ω) Posición de la estación: long gs, lat gs µ Cálculos previos: lat pole = º i long pole = Lnode º sinηmáx = sin ρ cosεmín λmáx = º εmín ηmáx sin λ D máx máx = re sinηmáx El satélite pasa directamente sobre la estación (λ mín =0) si y sólo si: ( long L ) tan latgs sin gs node = tan i Dos soluciones: desde el Norte y desde el Sur Para calcular el tiempo que tarda en pasar sobre la estación (órbita circular), calculamos : sin µ = sin lat gs sin i Fuente: J. R. Wertz, ed., Comunicaciones Space Mission por Satélite. Analysis Curso 2009/. and Ramón Design, Martínez, 3rd. Miguel Ed, Microcosm/luwer,1999 Calvo CSAT 72 15

16 Movimiento aparente del satélite (2) Determinar el tiempo de visibilidad T v y la elevación máxima (ε máx ) sin λmín = sin lat pole sin latgs + coslat pole coslatgs cos sin ρ sin λ tanηmín = 1 sin ρ cosλmín εmáx = º η mín λmín sin λ D mín mín = re sinηmín ( long long ) gs pole Tiempo de visibilidad desde la estación (P es el periodo orbital): P 1 cosλ T = máx v cos 180 cosλmín En el punto más próximo (λ mín ), la máxima velocidad angular vista desde la estación: & V sat 2π ( re + h) θ = = max Dmín PDmín Barrido de azimut ( φ) y azimut central (φ central ): φcentral = 180º φ pole φ tan λ cos = mín sin lat pole sin λmín sin latgs 2 tan λmáx cosφ pole = cosλmín coslatgs Fuente: J. R. Wertz, ed., Comunicaciones Space Mission por Satélite. Analysis Curso 2009/. and Ramón Design, Martínez, 3rd. Miguel Ed, Microcosm/luwer,1999 Calvo CSAT 73 Tiempo de visibilidad Tiempo de visibilidad (minutos) h=00 km Tiempo de visibilidad en función de la elevación h=5000 km h=22000 km Elevación mínima (º) Lat gs =40.24ºN Long gs =-3.55ºN inclinación=75º CSAT 74 16

17 Tiempo de visibilidad Tiempo de visibilidad (minutos) Tiempo de visibilidad en función de la altura ε min =5º ε min =15º ε min =25º ε min =35º Altura (km) x 4 Tiempo de visibilidad (minutos) Tiempo de visibilidad en función de la altura i=35º i=25º i=15º i=5º i=0º Lat gs =40.24ºN Long gs =-3.55ºN Altura (km) x 4 CSAT 75 17

Coordenadas de la traza

Coordenadas de la traza El punto subsatélite (ground track) Es la intersección sobre la superficie terrestre de la línea que une la posición del satélite en órbita con el centro de la Tierra La traza del satélite es la proyección

Más detalles

Perturbaciones orbitales

Perturbaciones orbitales Comunicaciones por Satélite Curso 8-9 9 Perturbaciones orbitales Ramón Martínez Rodríguez-Osorio Miguel Calvo Ramón Comunicaciones por Satélite. Curso 8-9. Ramón Martínez, Miguel Calvo CSAT 1 Perturbaciones.

Más detalles

Perturbaciones orbitales

Perturbaciones orbitales Comunicaciones por Satélite Curso 9/1 Perturbaciones orbitales Ramón Martínez Rodríguez-Osorio Miguel Calvo Ramón CSAT 1 Perturbaciones. Clasificación Atendiendo a la naturaleza de la fuerza que las origina:

Más detalles

Misiones Geocéntricas(Planetocéntricas)

Misiones Geocéntricas(Planetocéntricas) Misiones Geocéntricas(Planetocéntricas) 1. 2. 3. 4. Órbitas de Aplicación Trazas Cobertura Visibilidad Mar-12-08 Rafael Vázquez Valenzuela Vehículos Espaciales y Misiles 1 1. Órbitas de Aplicación Órbita

Más detalles

Dpto. de Electrónica 2º GM E. Imagen. Tema 8 Orientación de Parábolas

Dpto. de Electrónica 2º GM E. Imagen. Tema 8 Orientación de Parábolas Dpto. de Electrónica 2º GM E. Imagen Tema 8 Orientación de Parábolas Introducción La orientación de antenas parabólicas permite calcular los ángulos necesarios para apuntar las antenas receptoras hacia

Más detalles

Ingeniería de Sistemas Espaciales

Ingeniería de Sistemas Espaciales Ingeniería de Sistemas Espaciales Aplicado a una misión CanSat Introducción a la mecánica orbital 2 Objetivos: Describir y explicar los elementos orbitales clásicos (EOCs). Usar los EOCs para describir

Más detalles

Solución a los problemas y cuestiones del Tema 9

Solución a los problemas y cuestiones del Tema 9 Solución a los problemas y cuestiones del Tema 9 1. Cuál es la velocidad de un satélite en una órbita circular a altitud 5 km? Cuál es su periodo? En primer lugar hay que pasar de altitud a radio: r =

Más detalles

MOVIMIENTOS DE LA TIERRA

MOVIMIENTOS DE LA TIERRA MOVIMIENTOS DE LA TIERRA Está sujeta a más m s de 10 movimientos Movimiento de rotación Movimiento de traslación 930 millones de km Distancia media al sol 1 U.A. (150 millones km) 30 km por segundo Órbita

Más detalles

Escuela de Agrimensura

Escuela de Agrimensura Escuela de Agrimensura Coordenadas Geográficas Meridianos y paralelos Ecuador Meridiano de Greenwich Coordenada ascendente Longitud: ángulo entre el meridiano de Greenwich y el meridiano del lugar. Coordenada

Más detalles

COORDENADAS ASTRONÓMICAS

COORDENADAS ASTRONÓMICAS COORDENADAS ASTRONÓMICAS Eje Fundamental Np P Plano Fundamental Coordenada Declinante celeste Coordenada Ascendente Sp Esfera SISTEMAS DE COORDENADAS ASTRONÓMICAS ELECCIÓN DEL PLANO FUNDAMENTAL Plano Ecuatorial

Más detalles

Coordenadas geográficas

Coordenadas geográficas Cálculos de radiación sobre superficies inclinadas Coordenadas geográficas Ingenieros Industriales 1 VARIABLES DEL SISTEMA Se definen a continuación todas las variables tanto geográficas como temporales-

Más detalles

RESUMEN GEODESIA ASTRONOMICA.-

RESUMEN GEODESIA ASTRONOMICA.- RESUMEN GEODESIA ASTRONOMICA.- Esfera Celeste: La esfera celeste es una superficie hipotética de forma abovedada sobre la cual se consideran proyectados todos los astros dispersos en el espacio. Esta bóveda

Más detalles

Problemas y cuestiones del Tema 3

Problemas y cuestiones del Tema 3 Problemas y cuestiones del Tema 3 (problemas marcados con *: para ampliar, con :problema teórico complementario a teoría) 1. (*) Demostrar las fórmulas de la trigonometría esférica. 2. ( ) Emplear la trigonometría

Más detalles

CAPITÁN DE YATE MÓDULO DE NAVEGACIÓN ENERO 2017

CAPITÁN DE YATE MÓDULO DE NAVEGACIÓN ENERO 2017 CAPITÁN DE YATE MÓDULO DE NAVEGACIÓN ENERO 2017 NOMBRE: APELLIDOS: D.N.I.: TEORÍA DE NAVEGACIÓN 01.- Cuáles de los siguientes puntos de la eclíptica del Sol tienen declinación igual a cero? a) Aries y

Más detalles

Sistemas de coordenadas celestes (resumen)

Sistemas de coordenadas celestes (resumen) istemas de celestes (resumen) suponiendo la tierra homogénea y esférica podemos dar las siguientes definiciones: esfera celeste: esfera imaginaria con centro en el observador y radio arbitrario donde,

Más detalles

Problemas y cuestiones del Tema 3

Problemas y cuestiones del Tema 3 Problemas y cuestiones del Tema 3 (problemas o partes de problema marcados con *: para ampliar, con :problema teórico complementario a teoría) Parte 1 1. (*) Demostrar las fórmulas de la trigonometría

Más detalles

resolución Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz resolución Ingeniería Técnica en Topografía lección 7 Teledetección

resolución Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz resolución Ingeniería Técnica en Topografía lección 7 Teledetección lección 7 1 sumario 2 Introducción. Tipos de. Resolución espacial. Resolución espectral. Resolución radiométrica. Resolución temporal. Relación entre las distintas resoluciones. introducción 3 Resolución

Más detalles

ovimiento de traslación de la tierra alrededor del sol

ovimiento de traslación de la tierra alrededor del sol ovimiento de traslación de la tierra alrededor del sol que observamos? el sol se desplaza 1 por día hacia el este con respecto a las estrellas fijas las estrellas salen 4 mas temprano cada día se mueve

Más detalles

Astrofísica - I Introducción. 2 - La Esfera Celeste

Astrofísica - I Introducción. 2 - La Esfera Celeste Astrofísica - I Introducción 2 - La Esfera Celeste Astrofísica - I Introducción 2 - La Esfera Celeste Astronomía de posición Sistema de coordenadas horizontales Movimiento diurno de las estrellas Sistema

Más detalles

RECOMENDACIÓN UIT-R S.1256

RECOMENDACIÓN UIT-R S.1256 Rec. UIT-R S.1256 1 RECOMENDACIÓN UIT-R S.1256 METODOLOGÍA PARA DETERMINAR LA DENSIDAD DE FLUJO DE POTENCIA TOTAL MÁXIMA EN LA ÓRBITA DE LOS SATÉLITES GEOESTACIONARIOS EN LA BANDA 6 700-7 075 MHz PRODUCIDA

Más detalles

ovimiento de traslación de la tierra alrededor del sol

ovimiento de traslación de la tierra alrededor del sol ovimiento de traslación de la tierra alrededor del sol que observamos? el sol se desplaza 1 por día hacia el este con respecto a las estrellas fijas las estrellas salen 4 mas temprano cada día se mueve

Más detalles

RECURSO SOLAR. Primera Clase. Ing. Diego Oroño Ing. Gonzalo Hermida

RECURSO SOLAR. Primera Clase. Ing. Diego Oroño Ing. Gonzalo Hermida RECURSO SOLAR Primera Clase Ing. Diego Oroño Ing. Gonzalo Hermida Objetivos Posicionamiento del Sol Ubicación de sombras en el diagrama solar Distancia entre paneles Inclinación óptima Estimación de irradiación

Más detalles

RECURSO SOLAR. Primera Clase. Ing. Diego Oroño Ing. Gonzalo Hermida Ing. Marcelo Aguiar

RECURSO SOLAR. Primera Clase. Ing. Diego Oroño Ing. Gonzalo Hermida Ing. Marcelo Aguiar RECURSO SOLAR Primera Clase Ing. Diego Oroño Ing. Gonzalo Hermida Ing. Marcelo Aguiar Objetivos Posicionamiento del Sol Ubicación de sombras en el diagrama solar Distancia entre paneles Inclinación óptima

Más detalles

Constelaciones de satélites

Constelaciones de satélites Constelaciones de satélites Mejora de la cobertura en tiempo y periodicidad Objetivo de diseño: Reducir el número de satélites que proporcionen la cobertura adecuada para cada altura Reducir el coste total

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) α = 5 b) β = 170 c) γ = 0 d) δ = 75 e) ε = 10 f ) η = 50 g) θ = 0

Más detalles

Determinación de la Longitud

Determinación de la Longitud Tema 7 Determinación de la Longitud Geográfica DETERMINACION DE LA LONGITUD DE UNA ESTACION. El objeto de la Astronomía de Posición es la determinación de las coordenadas geográficas terrestres de un Punto

Más detalles

ACTIVIDADES DE AUTOEVALUACIÓN

ACTIVIDADES DE AUTOEVALUACIÓN Unidad 1 ACTIVIDADES DE AUTOEVALUACIÓN 1. A partir de los conocimientos adquiridos y observando un mapa planisferio, subrayar la respuesta correcta. a. La forma de la Tierra es: Esférica Cilíndrica Geoide

Más detalles

RECOMENDACIÓN UIT-R S Repercusiones de la interferencia producida por el Sol en un enlace del servicio fijo por satélite geoestacionario

RECOMENDACIÓN UIT-R S Repercusiones de la interferencia producida por el Sol en un enlace del servicio fijo por satélite geoestacionario Rec. UIT-R S.1525 1 RECOMENDACIÓN UIT-R S.1525 Repercusiones de la interferencia producida por el en un enlace del servicio fijo por satélite geoestacionario (Cuestión UIT-R 236/4) (21) La Asamblea de

Más detalles

Anexo A: Relaciones astronómicas en la Cuenca de Cajamarca

Anexo A: Relaciones astronómicas en la Cuenca de Cajamarca Relaciones astronómicas en la Cuenca de Cajamarca Pág. 1 Anexo A: Relaciones astronómicas en la Cuenca de Cajamarca A. RELACIONES ASTRONÓMICAS. CONCEPTOS 3 B. TIEMPO SOLAR 9 C. SEGUIMIENTO SOLAR 11 C.1.

Más detalles

Ingeniería de Sistemas Espaciales

Ingeniería de Sistemas Espaciales Ingeniería de Sistemas Espaciales Aplicado a una misión CanSat Ejercicio: introducción a la mecánica orbital. Instrucciones: Revise cuidadosamente el material que a continuación se presenta y resuelva

Más detalles

2 / INTRODUCCIÓN A LA TOPOGRAFÍA. NOCIONES BÁSICAS. Geodesia. Estudio global de la forma y dimensiones de la Tierra.

2 / INTRODUCCIÓN A LA TOPOGRAFÍA. NOCIONES BÁSICAS. Geodesia. Estudio global de la forma y dimensiones de la Tierra. 2 / INTRODUCCIÓN A LA TOPOGRAFÍA. NOCIONES BÁSICAS. 1. DEFINICIONES BÁSICAS Geodesia. Estudio global de la forma y dimensiones de la Tierra. Cartografía. Ciencia que trata de la representación del modelo

Más detalles

sin a sin B = sin c Ley de los cosenos para los ángulos cos A = cos B cos C + sin B sin C cos a (3)

sin a sin B = sin c Ley de los cosenos para los ángulos cos A = cos B cos C + sin B sin C cos a (3) P. Universidad Católica de Chile FIA0111: Astronomía Profesor: Nelson David Padilla Primer Semestre de 2011 Ayudantía 1- Coordenadas Celestes Ayudante: Felipe Garrido Goicović (fagarri1@uc.cl) Coordenadas

Más detalles

Astronomía General Taller 1: Determinación de las coordenadas del lugar

Astronomía General Taller 1: Determinación de las coordenadas del lugar Astronomía General Taller 1: Determinación de las coordenadas del lugar Objetivo: Estimar los valores de la latitud (φ) y la longitud (λ) del lugar de observación a partir de la medida de las alturas de

Más detalles

Pruebas del movimiento de rotación de la tierra 1) péndulo de Foucault

Pruebas del movimiento de rotación de la tierra 1) péndulo de Foucault Pruebas del movimiento de rotación de la tierra 1) péndulo de Foucault plano de oscilación de un péndulo simple: plano que contiene a las fuerzas no varía con el tiempo! que actúan sobre él tensión en

Más detalles

meridiano de referencia: círculos máximos que

meridiano de referencia: círculos máximos que coordenadas geográficas meridianos terrestres: meridiano de referencia: círculos máximos que meridiano de Greenwich contienen al eje de P rotación terrestre λ(longitud geográfica)=0h 0h λ 24h + hacia el

Más detalles

ENERGÉTICA SOLAR Y TRANSMISIÓN DE LA ENERGÍA

ENERGÉTICA SOLAR Y TRANSMISIÓN DE LA ENERGÍA ENERGÉTICA SOLAR Y TRANSMISIÓN DE LA ENERGÍA CONCEPTOS ELEMENTALES DE ASTRONOMÍA EN CUANTO A LA POSICIÓN SOLAR. La cantidad de radiación solar que llega a la tierra es inversamente proporcional al cuadrado

Más detalles

Mecánica Orbital y Vehículos Espaciales

Mecánica Orbital y Vehículos Espaciales Mecánica Orbital y Vehículos Espaciales Tema 5: Trigonometría esférica. Círculos esféricos. Aplicaciones: trazas, cobertura, visibilidad. Rafael Vázquez Valenzuela Departmento de Ingeniería Aeroespacial

Más detalles

Tema 8.4 Geometría solar

Tema 8.4 Geometría solar Módulo 8 Eficiencia energé4ca en edificios Tema 8.4 Geometría solar Eficiencia energé4ca en edificios Geometría solar La geometría solar es uno de los elementos más importantes dentro del proceso de diseño

Más detalles

SOL DEL 20 DE MARZO DE 2015

SOL DEL 20 DE MARZO DE 2015 CÁLCULO DEL ECLIPSE TOTAL DE SOL DEL 20 DE MARZO DE 2015 Por Alberto Martos, coordinador del Grupo de Estudios Lunares Enrique Silva NOTA: el cálculo de las tablas y de los gráficos, así como el levantamiento

Más detalles

RECOMENDACIÓN UIT-R BO.1506

RECOMENDACIÓN UIT-R BO.1506 Rec. UIT-R BO.156 1 RECOMENDACIÓN UIT-R BO.156 Metodología para evaluar la repercusión de la interferencia solar en la calidad de funcionamiento de los enlaces del servicio de radiodifusión por satélite

Más detalles

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS F. Javier Gil Chica UNIVERSIDAD DE ALICANTE Edita: Publicaciones Universidad de Alicante ISBN: 84-7908-270-4 Depósito Legal: MU-1.461-1996 Edición a cargo de

Más detalles

Nº DNI: F 1º Apellido: Márquez 2º Apellido: Quintanilla Nombre: Manuel Luis TRABAJO JUNIO

Nº DNI: F 1º Apellido: Márquez 2º Apellido: Quintanilla Nombre: Manuel Luis TRABAJO JUNIO Astronáutica y Vehículos Espaciales. Ingenieros Aeronáuticos Escuela superior de Ingenieros Universidad de Sevilla Nº DNI: 28831197F 1º Apellido: Márquez 2º Apellido: Quintanilla Nombre: Manuel Luis TRABAJO

Más detalles

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS F. Javier Gil Chica UNIVERSIDAD DE ALICANTE Edita: Publicaciones Universidad de Alicante ISBN: 84-7908-270-4 Depósito Legal: MU-1.461-1996 Edición a cargo de

Más detalles

MLM1300. Geometría I Ejercicios de Trigonometría

MLM1300. Geometría I Ejercicios de Trigonometría PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA Segundo semestre 00 MLM300. Geometría I Ejercicios de Trigonometría I En el triángulo rectángulo. Dos lugares

Más detalles

Mecánica Orbital y Vehículos Espaciales

Mecánica Orbital y Vehículos Espaciales Mecánica Orbital y Vehículos Espaciales Tema 6: Misiones geocéntricas órbitas de aplicación. Rafael Vázquez Valenzuela Departmento de Ingeniería Aeroespacial Escuela Superior de Ingenieros, Universidad

Más detalles

Introducción a la observación astronómica

Introducción a la observación astronómica Introducción a la observación astronómica Esfera Celeste Werner Omar Chanta Bautista Licenciatura en Física Aplicada, USAC www. astronomia. org. gt 22 de junio de 2012 Werner Chanta (USAC) Observación

Más detalles

ASPECTOS ORBITALES DE UN SATELITE DE COMUNICACIONES

ASPECTOS ORBITALES DE UN SATELITE DE COMUNICACIONES GUIA DE LECTURA PARA LA ASPECTOS ORBITALES DE UN SATELITE DE COMUNICACIONES Orbitas Características Transferencias Lanzamientos POR SILCAR PÉREZ APONTE 2012 BIBLIOGRAFÍA Uso eficiente de la órbita de los

Más detalles

RECOMENDACIÓN UIT-R S Repercusiones de la interferencia producida por el Sol en un enlace del servicio fijo por satélite geoestacionario

RECOMENDACIÓN UIT-R S Repercusiones de la interferencia producida por el Sol en un enlace del servicio fijo por satélite geoestacionario Rec. UIT-R S.1525-1 1 RECOMENDACIÓN UIT-R S.1525-1 Repercusiones de la interferencia producida por el Sol en un enlace del servicio fijo por satélite geoestacionario (Cuestión UIT-R 236/4) (21-22) La Asamblea

Más detalles

EXAMEN DEL MÓDULO DE NAVEGACIÓN CAPITÁN DE YATE (RD 875/2014) CONVOCATORIA ENERO 2016

EXAMEN DEL MÓDULO DE NAVEGACIÓN CAPITÁN DE YATE (RD 875/2014) CONVOCATORIA ENERO 2016 EXAMEN DEL MÓDULO DE NAVEGACIÓN CAPITÁN DE YATE (RD 875/2014) CONVOCATORIA ENERO 2016 TEORÍA DE NAVEGACIÓN. 01.-La altura de un astro se define como un arco de: a) Círculo vertical contado desde el horizonte

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 3.- MOVIMIENTO RELATIVO 3 Movimiento Relativo

Más detalles

Navegación Pesca Y Transporte Marítimo Gobierno del Buque. Tema 2 Coordenadas celestes.

Navegación Pesca Y Transporte Marítimo Gobierno del Buque. Tema 2 Coordenadas celestes. ÍNDICE 1.1 INTRODUCCIÓN 1.2 COORDENADAS HORIZONTALES 1.3 COORDENADAS HORARIAS 1.4 COORDENADAS URANOGRÁFICAS O ECUATORIALES 1.5 RELACIÓN ENTRE LOS DISTINTOS SISTEMAS DE COORDENADAS QUE SE MIDEN EN EL ECUADOR.

Más detalles

Seguimiento orbital de satélites

Seguimiento orbital de satélites Seguimiento orbital de satélites Título: Seguimiento orbital de satélites. Target: Bachillerato de Ciencias y Tecnología. Asignatura: Tecnología, Informática y Física. Autor: Cristian Fernández Torrecillas,

Más detalles

U.T.N. F.R.C.U. Seminario Universitario Matemática EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes

U.T.N. F.R.C.U. Seminario Universitario Matemática EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes U.T.N. F.R.C.U. Seminario Universitario Matemática EJERCICIOS MÓDULO 6 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) α = 5 b) β = 170 c) γ = 0 d ) δ = 75 e) ε = 160

Más detalles

Aeronaves y Vehículos Espaciales

Aeronaves y Vehículos Espaciales Aeronaves y Vehículos Espaciales Tema 8 Mecánica Orbital Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Superior de Ingenieros Universidad

Más detalles

Teoría de navegación 1. Se denomina hora civil del lugar: 2. La eclíptica corta al ecuador celeste en:

Teoría de navegación 1. Se denomina hora civil del lugar: 2. La eclíptica corta al ecuador celeste en: Teoría de navegación 1. Se denomina hora civil del lugar: a) El tiempo que ha transcurrido desde que el sol medio pasó por el meridiano superior de Greenwich. b) El tiempo que ha transcurrido desde que

Más detalles

AST0111 Astronomía Clase 4

AST0111 Astronomía Clase 4 AST0111 Astronomía Clase 4 El tiempo en Astronomía Próxima Centauri: red dwarf star T=3050K L=0.001 L R=0.14 R M=0.12 M Próxima-b : Msini=1.3 M P=11.2 d a=0.05 AU P=11.2d CALENDARIOS División de años

Más detalles

Parámetros orbitales Formato TLE de NORAD

Parámetros orbitales Formato TLE de NORAD Comunicaciones por Satélite Curso 2009/10 Parámetros orbitales Formato TLE de NORAD Ramón Martínez Rodríguez-Osorio CSAT 1 Parámetros orbitales Para especificar las coordenadas inerciales de un satélite

Más detalles

2.7.1 Movimientos de los planos fundamentales a los que se refieren las coordenadas de los astros

2.7.1 Movimientos de los planos fundamentales a los que se refieren las coordenadas de los astros .7 Precesión y Nutación.7. Movimientos de los planos fundamentales a los que se refieren las coordenadas de los astros La acción perturbatriz del Sol, la Luna y los planetas sobre la Tierra da lugar a

Más detalles

Problemas y cuestiones resueltos del Tema 1

Problemas y cuestiones resueltos del Tema 1 Problemas y cuestiones resueltos del Tema. Conocida la inclinación de la eclíptica ε = 23 o 26, hallar la latitud de los trópicos y de los círculos polares. 2. El sistema geocéntrico eclíptico se suele

Más detalles

ESQUEMA TEMAS 7,8,910. REDUCCIÓN DE POSICIONES DE ESTRELLAS

ESQUEMA TEMAS 7,8,910. REDUCCIÓN DE POSICIONES DE ESTRELLAS ESQUEMA TEMAS 7,8,91. REDUCCIÓN DE POSICIONES DE ESTRELLAS 1.-CATÁLOGOS. SISTEMA DE REFERENCIA FUNDAMENTAL EN EL CATÁLOGO FK5. 2.-REDUCCIÓN DE POSICIONES. 3.-PRECESIÓN. (COORDENADAS MEDIAS). 4.-NUTACIÓN.

Más detalles

RECOMENDACIÓN UIT-R S.1593

RECOMENDACIÓN UIT-R S.1593 Rec. UIT-R S.1593 1 RECOMENDACIÓN UIT-R S.1593 Metodología para la compartición de frecuencias entre ciertos tipos de sistemas homogéneos del servicio fijo por satélite no geoestacionario en órbitas elípticas

Más detalles

RECOMENDACIÓN UIT-R M.1642

RECOMENDACIÓN UIT-R M.1642 Rec. UIT-R M.1642 1 Resumen RECOMENDACIÓN UIT-R M.1642 Metodología para evaluar el valor máximo de la densidad de flujo de potencia equivalente combinada de una estación del servicio de radionavegación

Más detalles

Solución a los problemas y cuestiones del Tema 3

Solución a los problemas y cuestiones del Tema 3 Solución a los problemas y cuestiones del Tema 3 1. Demostrar las fórmulas de la trigonometría esférica. En primer lugar, es suficiente encontrar una de las leyes de senos y una de cada tipo de las leyes

Más detalles

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS F. Javier Gil Chica UNIVERSIDAD DE ALICANTE Edita: Publicaciones Universidad de Alicante ISBN: 84-7908-270-4 Depósito Legal: MU-1.461-1996 Edición a cargo de

Más detalles

La Esfera Celeste. Constelaciones: 88 regiones semi-rectangulares en el cielo. Cuadrante y Sextante. Ángulos

La Esfera Celeste. Constelaciones: 88 regiones semi-rectangulares en el cielo. Cuadrante y Sextante. Ángulos La Esfera Celeste Constelaciones: 88 regiones semi-rectangulares en el cielo Las constelaciones del hemisferio norte llevan nombres de mitología griega: Orion, Cygnus, Leo, Ursa Major, Canis Major, Canis

Más detalles

Examen de Capitán de Yate, Vigo Septiembre 2015 Autor: Pablo González de Villaumbrosia García

Examen de Capitán de Yate, Vigo Septiembre 2015 Autor: Pablo González de Villaumbrosia García Examen de Capitán de Yate, Vigo Septiembre 2015 Autor: Pablo González de Villaumbrosia García. 18.03.2016 http://www.villaumbrosia.es Teoría de navegación 1. Cómo se llama el círculo máximo perpendicular

Más detalles

La Esfera Celeste. Constelaciones: 88 regiones. Cuadrante y Sextante. Ángulos. Las 13 constelaciones del zodíaco:

La Esfera Celeste. Constelaciones: 88 regiones. Cuadrante y Sextante. Ángulos. Las 13 constelaciones del zodíaco: La Esfera Celeste Las 13 constelaciones del zodíaco: Constelaciones: 88 regiones Recorrido del Sol durante el año semi-rectangulares en el cielo Las constelaciones del hemisferio norte llevan nombres de

Más detalles

DIBUJO EN DOS DIMENSIONES DIBUJO EN DOS DIMENSIONES EN INGENIERIA

DIBUJO EN DOS DIMENSIONES DIBUJO EN DOS DIMENSIONES EN INGENIERIA DIBUJO EN DOS DIMENSIONES EN INGENIERIA PLANOS TOPOGRÁFICOS CONCEPTOS BÁSICOS PARA ELABORACIÓN DE PLANOS TOPOGRÁFICOS AZIMUT: Angulo que se mide a partir del meridiano norte en sentido dextrógiro (mismo

Más detalles

Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea 1

Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea 1 Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea. Completa las igualdades usando el dibujo. γ β = α β = β + θ = θ + ε + ω = θ + ε = β + θ + ω = α + ε = β + δ =.

Más detalles

CAPÍTULO I COMUNICACIONES VÍA SATÉLITE

CAPÍTULO I COMUNICACIONES VÍA SATÉLITE CAPÍTULO I COMUNICACIONES VÍA SATÉLITE I.1 Introducción Para comenzar con este capítulo, se va a definir el concepto de comunicación vía satélite. Una comunicación vía satélite es cualquier tipo de comunicación

Más detalles

intersección de dicho meridiano sobre el Ecuador.

intersección de dicho meridiano sobre el Ecuador. Tema 6 Determinación de la Latitud Geográfica 5.1 Definiciones De acuerdo a la [Figura 5.1a] siguiente pueden darse tres diferentes definiciones de Latitud (): a) es el arco de meridiano comprendido entre

Más detalles

( 2x) Guía de Trigonometría. 1. Determine si las siguientes igualdades determinan identidades trigonométricas. + =. (a) x =. = 2. (b) cos. 2cos.

( 2x) Guía de Trigonometría. 1. Determine si las siguientes igualdades determinan identidades trigonométricas. + =. (a) x =. = 2. (b) cos. 2cos. Guía de Trigonometría Determine si las siguientes igualdades determinan identidades trigonométricas (a) (b) (c) (d) cos + cos + sen + sen = tg sen cos x = tg cos cos π sen xsec π csc cot x tg π x + 6 =

Más detalles

Material didáctico de apoyo para Geografía Realización: Mtra. Ligia Kamss Paniagua

Material didáctico de apoyo para Geografía Realización: Mtra. Ligia Kamss Paniagua Material didáctico de apoyo para Geografía Realización: Mtra. Ligia Kamss Paniagua La forma de la Tierra: GEOIDE DE REVOLUCIÓN, es un elipsoide de forma irregular, aplastado por los polos y deformado por

Más detalles

CARTERA DE COORDENADAS ESTACION DISTANCIA AZIMUTH N (+) S (-) E (+) W (-) NORTE ESTE Δ Δ Δ Δ

CARTERA DE COORDENADAS ESTACION DISTANCIA AZIMUTH N (+) S (-) E (+) W (-) NORTE ESTE Δ Δ Δ Δ EJERCICIO PRACTICO Se realizó un levantamiento topográfico de la finca del señor XXX, pero por un descuido, la información obtenida en campo se perdió. Solo se tiene la información que se pudo deducir

Más detalles

Propedéutico Feb/2009

Propedéutico Feb/2009 Propedéutico Feb/2009 IAUNAM-OAN Sistemas de Coordenadas 1. Sistema Horizontal 2. Sistema Ecuatorial 3. Coordenadas Galácticas Sistemas de Coordenadas Astronómicas 4 Febrero 2009 IAUNAM - OAN - Ensenada

Más detalles

Examen de Capitán de Yate, Asturias Enero 2016 Autor: Pablo González de Villaumbrosia García

Examen de Capitán de Yate, Asturias Enero 2016 Autor: Pablo González de Villaumbrosia García Examen de Capitán de Yate, Asturias Enero 2016 Autor: Pablo González de Villaumbrosia García. 11.03.2016 http://www.villaumbrosia.es Teoría de navegación 1. La altura de un astro se define como el arco

Más detalles

ÍNDICE GENERAL. Introducción 9. Tema 1. La esfera celeste 13. Tema 2. Órbitas 25. Tema 3. Movimientos geocéntricos 37

ÍNDICE GENERAL. Introducción 9. Tema 1. La esfera celeste 13. Tema 2. Órbitas 25. Tema 3. Movimientos geocéntricos 37 ÍNDICE GENERAL Introducción 9 PARTE I ASTRONOMÍA Tema 1. La esfera celeste 13 Tema 2. Órbitas 25 Tema 3. Movimientos geocéntricos 37 Tema 4. Corrección de coordenadas 45 Tema 5. El Tiempo en Astronomía

Más detalles

INDICE. Conceptos Generales de la Proyección UTM 2. Transformación de Coordenadas Geográficas a Planas UTM 12

INDICE. Conceptos Generales de la Proyección UTM 2. Transformación de Coordenadas Geográficas a Planas UTM 12 INDICE Conceptos Generales de la Proyección UTM 2 Formulas de Proyección UTM 9 Transformación de Coordenadas Geográficas a Planas UTM 12 Transformación de Coordenadas Planas UTM a Geográficas 15 Acimut

Más detalles

PRÁCTICA Nº 1. LA RADIACION SOLAR: ASPECTOS BÁSICOS.

PRÁCTICA Nº 1. LA RADIACION SOLAR: ASPECTOS BÁSICOS. PRÁCTICA Nº 1. LA RADIACION SOLAR: ASPECTOS BÁSICOS. Objetivo: Conocer los parámetros básicos de la posición del sol, y las magnitudes de radiación solar, con objeto de determinar la posición óptima de

Más detalles

Comunicaciones Vía Satélite

Comunicaciones Vía Satélite Comunicaciones Vía Satélite Introducción a los Sistemas Satelitales M.C. Enrique Stevens Navarro Facultad de Ciencias Satélite: cuerpo celeste que gira en órbita en torno a un planeta. En terminos aeroespaciales,

Más detalles

Sol 23,5º. 38º 52º Observador en Alicante latitud: 38º N

Sol 23,5º. 38º 52º Observador en Alicante latitud: 38º N Al mediodía solar, en los equinoccios; 21 de marzo y 23 de septiembre, el está justo en el Ecuador Celeste, su declinación es 0. En ese momento, en Alicante, vemos al a 52º por encima de nuestro horizonte.

Más detalles

Rec. UIT-R S RECOMENDACIÓN UIT-R S

Rec. UIT-R S RECOMENDACIÓN UIT-R S Rec. UIT-R S.157-1 1 RECOMENDACIÓN UIT-R S.157-1 MÉTODO ANALÍTICO PARA CALCULAR LAS ESTADÍSTICAS DE VISIBILIDAD Y DE INTERFERENCIA A CORTO PLAZO DE LOS SATÉLITES NO GEOESTACIONARIOS VISTOS DESDE UN PUNTO

Más detalles

2. ELEMENTOS GEOGRÁFICOS

2. ELEMENTOS GEOGRÁFICOS 1. CONCEPTO DE TOPOGRAFÍA (topo = lugar, grafos = descripción). La topografía es la ciencia que estudia el conjunto de principios y procedimientos que tienen por objeto la representación gráfica de la

Más detalles

Variación de las coordenadas ecuatoriales del Sol

Variación de las coordenadas ecuatoriales del Sol Variación de las coordenadas ecuatoriales del Sol La variación de las coordenadas ecuatoriales del Sol durante su movimiento por la eclíptica transcurre de la manera siguiente. Cuando el Sol se encuentra

Más detalles

Coordenadas horizontales

Coordenadas horizontales Primer vertical Coordenadas horizontales Acimut (a) : 0º a 360º en sentido retrógrado desde el Sur (SONE) (Criterio astronómico) desde el Norte (NESO) (Criterio topográfico) Altura (h) : de 90º (cénit))

Más detalles

29. FUNDAMENTOS DEL SISTEMA AXONOMÉTRICO

29. FUNDAMENTOS DEL SISTEMA AXONOMÉTRICO 137 29. FUNDAMENTOS DEL SISTEMA AXONOMÉTRICO 29.1. Generalidades El sistema axonométrico es un conjunto de reglas que permiten representar un objeto mediante una única proyección y de forma muy clara,

Más detalles

4. Debemos ir desde el punto A, de coordenadas: l=13º37,6 S, L=78º25 W, hasta el punto B, de coordenadas l=45º20,3 N L=155º11,5 E.

4. Debemos ir desde el punto A, de coordenadas: l=13º37,6 S, L=78º25 W, hasta el punto B, de coordenadas l=45º20,3 N L=155º11,5 E. ANDALUCIA, SEPTIEMBRE 2009 - CALCULOS DE NAVEGACIÓN. 1. A la hora de la puesta de sol del 31 de enero de 2009, nos encontramos en situación estimada le=45º 11 N y Le= 37º 21 W, navegamos al rumbo de giroscópica=

Más detalles

ENERGÍA SOLAR Y EÓLICA. ANEXO C Pérdidas por orientación, inclinación y sombras

ENERGÍA SOLAR Y EÓLICA. ANEXO C Pérdidas por orientación, inclinación y sombras ENERGÍA SOLAR Y EÓLICA ANEXO C Pérdidas por orientación, inclinación y sombras Formação Aberta ÍNDICE DESARROLLO DE LOS CONTENIDOS... 3 1. CÁLCULO DE LAS PÉRDIDAS POR ORIENTACIÓN E INCLINACIÓN DEL GENERADOR...3

Más detalles

Según puede deducirse del triángulo esférico inferior, la ecuación de esta circunferencia sobre la superficie esférica de la tierra es:

Según puede deducirse del triángulo esférico inferior, la ecuación de esta circunferencia sobre la superficie esférica de la tierra es: Supongamos que desde un barco en una situación cualquier de la superficie marítima O, observamos en un instante HCG determinado, un astro A con una altura verdadera a va. La recta que une el centro del

Más detalles

Cálculo de la radiación solar extraterrestre en función de la latitud y la declinación solar

Cálculo de la radiación solar extraterrestre en función de la latitud y la declinación solar Cálculo de la radiación solar extraterrestre en función de la latitud y la declinación solar Apellidos, nombre Departamento Centro Bautista Carrascosa, Inmaculada (ibautista@qim.upv.es) Química Universitat

Más detalles

Términos y definiciones relativos a radiocomunicaciones espaciales

Términos y definiciones relativos a radiocomunicaciones espaciales Términos y definiciones relativos a radiocomunicaciones espaciales Los términos y definiciones concernientes a los sistemas, servicios y estaciones espaciales no se incluyen en el presente Anexo, por figurar

Más detalles

Examen de Capitán de Yate, Pais Vasco Febrero 2016 Autor: Pablo González de Villaumbrosia García

Examen de Capitán de Yate, Pais Vasco Febrero 2016 Autor: Pablo González de Villaumbrosia García Examen de Capitán de Yate, Pais Vasco Febrero 2016 Autor: Pablo González de Villaumbrosia García. 19.03.2016 http://www.villaumbrosia.es Teoría de navegación 21. El horario en Greenwich de un astro cualquiera

Más detalles

Movimientos de la Tierra. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Movimientos de la Tierra. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Movimientos de la Tierra. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 81 Indice. 1. Movimiento de Rotación de la Tierra. 2. Movimiento Aparente de la Bóveda Celeste. 3. Orto y Ocaso.

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA I PROBLEMAS PROPUESTOS 2.- CINEMÁTICA DE LA PARTÍCULA 2 Cinemática de la partícula PROBLEMA PROPUESTO 2.1. Para la curva de ecuación

Más detalles

COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS

COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS GUÍA N DE TRIGONOMETRÍA IV MEDIO DIFERENCIADO MATEMÁTICO )Completa la siguiente tabla que indica la relación entre valores en radianes y

Más detalles

Astronáutica/Mecánica Orbital y Vehículos Espaciales

Astronáutica/Mecánica Orbital y Vehículos Espaciales Astronáutica/Mecánica Orbital y Vehículos Espaciales Tema 3:Análisis y Diseño de Misiones Geocéntricas Rafael Vázquez Valenzuela Departmento de Ingeniería Aeroespacial Escuela Superior de Ingenieros, Universidad

Más detalles

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS F. Javier Gil Chica UNIVERSIDAD DE ALICANTE Edita: Publicaciones Universidad de Alicante ISBN: 84-7908-270-4 Depósito Legal: MU-1.461-1996 Edición a cargo de

Más detalles