CAPÍTULO I INTRODUCCIÓN AL ANÁLISIS INSTRUMENTAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAPÍTULO I INTRODUCCIÓN AL ANÁLISIS INSTRUMENTAL"

Transcripción

1 CAPÍTULO I INTRODUCCIÓN AL ANÁLISIS INSTRUMENTAL Capítulo I Introducción al Análisis Instrumental 1

2 INTRODUCCION AL ANALISIS INSTRUMENTAL La Química Analítica trata acerca de los métodos de determinación de la composición química de la materia. Un método cualitativo proporciona información respecto a las especies atómicas o moleculares o a los grupos funcionales que existen en la muestra. Un método cuantitativo, por otra parte, suministra información numérica como, por ejemplo, la cantidad relativa de uno o varios de estos componentes. CLASIFICACIÓN DE LOS MÉTODOS ANALITICOS Los métodos analíticos se suelen clasificar en clásicos o instrumentales. Esta clasificación es en gran parte histórica, y los métodos clásicos precedieron en un siglo o más a los métodos instrumentales. 1. Métodos clásicos En los primeros años de la química, la mayor parte de los análisis se realizaban separando los componentes de interés de una muestra (los analitos) mediante precipitación, extracción o destilación. En los análisis cualitativos, los componentes separados se tratan seguidamente con reactivos originando así productos que podían identificarse por sus colores, sus puntos de ebullición o de fusión, sus solubilidades en una serie de disolventes, sus olores, sus actividades ópticas o sus índices de refracción. En los análisis cuantitativos, la cantidad de analito se determina por medidas gravimétricas o volumétricas. En las primeras se determina la masa del analito o la de algún compuesto producido a partir del mismo. En los procedimientos volumétricos se determina el volumen o el peso de un reactivo estándar que reacciona completamente con el analito. Estos métodos clásicos para la separación y determinación de analitos se usan en muchos laboratorios. Sin embargo, su grado de aplicación general está disminuyendo con el paso del tiempo. 2. Métodos instrumentales A mediados de los años treinta, o algo antes, los químicos empezaron a explotar otros fenómenos distintos de los ya descritos, para la resolución de los problemas analíticos. Así, para el análisis cuantitativo de una gran variedad de sustancias inorgánicas, orgánicas y bioquímicas se empezaron a utilizar mediciones de las propiedades físicas de los analitos -tales como conductividad, potencial de electrodo, absorción o emisión de la luz, razón masa a carga y fluorescencia. Además, algunas técnicas de separación cromatográficas muy eficaces empezaron a reemplazar a la destilación, extracción y precipitación en la separación de mezclas complejas como etapa previa a su determinación cualitativa o cuantitativa. A estos métodos más modernos para separar y determinar especies químicas se les conoce, en conjunto, como métodos instrumentales de análisis.. Muchos de los fenómenos en los que se basan los métodos instrumentales se conocen desde hace más de un siglo. Sin embargo su aplicación por la mayor parte de los químicos se retrasó por falta de una instrumentación sencilla y fiable. De hecho, el crecimiento de los métodos instrumentales modernos ha ido paralelo al desarrollo de las industrias electrónica e informática. TIPOS DE MÉTODOS INSTRUMENTALES Para este estudio, es conveniente describir propiedades físicas que puedan utilizarse como señales analíticas en el análisis cualitativo o cuantitativo. La Tabla 1-1 enumera la mayoría de las Capítulo I Introducción al Análisis Instrumental 2

3 señales analíticas que se suelen utilizar en el análisis instrumental. Obsérvese que las seis primeras están relacionadas con la radiación electromagnética. En la primera, el analito origina la señal radiante; las cinco restantes implican cambios en el haz de radiación producidos a su paso por la muestra. Las cuatro siguientes son eléctricas. Por último, cuatro señales diversas se agrupan conjuntamente. Estas son la razón masa a carga, la velocidad de reacción, las señales térmicas y la radiactividad. La segunda columna de la Tabla 1-1 indica los nombres de los métodos instrumentales basados en las distintas señales analíticas. Debería entenderse que excepto en la cronología, pocas peculiaridades distinguen a los métodos instrumentales de sus equivalentes clásicos. Algunas técnicas instrumentales son más sensibles que las técnicas clásicas, pero otras no. Un método instrumental puede ser más selectivo para ciertas clases de elementos o de compuestos; para otros, un planteamiento gravimétrico o volumétrico puede suponer una menor interferencia. Igualmente difíciles de establecer son las generalizaciones basadas en la exactitud, la conveniencia, o el tiempo empleados. Tampoco es necesariamente cierto que los procedimientos instrumentales utilicen aparatos más sofisticados o más costosos; en realidad, la moderna balanza analítica electrónica que se emplea en las determinaciones gravimétricas supone un instrumento más complejo y refinado que muchos de los usados en los otros métodos mencionados en la Tabla 1-1. Como ya se ha comentado anteriormente, además de los numerosos métodos indicados en la segunda columna de la Tabla 1-1, existe un grupo de procedimientos instrumentales que se utilizan para separar y resolver compuestos estrechamente relacionados. La mayoría de estos procedimientos se basan en la cromatografía. Para completar el análisis tras las separaciones cromatográficas se suele usar alguna de las señales de la Tabla 1-1. Con esta finalidad se han utilizado la conductividad térmica, la absorción infrarroja y ultravioleta, el índice de refracción y la conductancia eléctrica. Tabla 1.1 Señales utilizadas en los métodos instrumentales SEÑAL Emisión de radiación Absorción de radiación METODOS INSTRUMENTALES Espectroscopia de emisión (rayos X, UV, visible, de electrones) fluorescencia, fosforescencia y luminiscencia (rayos X,UV y visible) Espectrofotometría y fotometría (rayos X, UV,Visible, IR;) espectroscopia fotoacústica, resonancia magnética nuclear, y espectroscopia de resonancia de espín electrónico Dispersión de la radiación Turbidimetría, nefelometría, espectroscopia Raman Refracción de la radiación Refractometría, interferometría Difracción de la radiación Métodos de difracción de rayos X y de electrones. Rotación de la radiación Polarimetría, dispersión rotatoria óptica, dicroismo circular Potencial eléctrico Potenciometría, cronopotenciometría Carga eléctrica Coulombimetría Corriente eléctrica Polarografía, amperometría Resistencia eléctrica Conductimetría Razón masa a carga Espectrometría de masas Velocidad de reacción Capítulo I Introducción al Análisis Instrumental 3

4 Métodos cinéticos Propiedades térmicas Conductividad térmica y métodos de entalpía Radiactividad Métodos de activación y de dilución isotópica INSTRUMENTOS PARA EL ANÁLISIS En un sentido muy amplio, un instrumento para el análisis químico convierte una señal analítica que no suele ser detectable ni comprensible directamente por un ser humano, en una forma que sí lo es. Así, un instrumento analítico puede considerarse como un dispositivo de comunicación entre el sistema en estudio y el científico. Un instrumento para el análisis químico suele estar constituido como máximo por cuatro componentes fundamentales. Como se muestra en la Figura 1-1, estos componentes son un generador de señales, un transductor de entrada (denominado detector), un procesador de la señal y un transductor de salida o dispositivo de lectura. A continuación se da una descripción general de estos componentes. Fig 1.1: Componentes de un instrumento típico 1. Generadores de señales Un generador de señales produce una señal que denota la presencia y, con frecuencia también. la concentración del analito. En muchos casos, el generador de señales es simplemente un compuesto o un ión generado a partir del propio analito. Por ejemplo un análisis por emisión atómica, el generador de señales son los átomos excitados o los iones del analito que emiten fotones de radiación. Otro ejemplo en una determinación de ph, la señal es la actividad del ión hidrógeno de una disolución de la muestra. Sin embargo, en muchos otros instrumentos el generador de la señal está considerablemente más elaborado. Así, el generador de señales de un instrumento de análisis por absorción infrarroja incluye, además de la muestra, una fuente de radiación infrarroja, un monocromador, un divisor y un cortador (chop- per) del haz, un atenuador de la radiación y un recipiente de muestra. La segunda columna de la Tabla 1-2 lista unos pocos ejemplos típicos de generadores de señales. Capítulo I Introducción al Análisis Instrumental 4

5 Tabla 1.2 Algunos ejemplos de componentes de instrumentos Instrumento Fotómetro Espectrofotómetro de emisión atómica Coulombimetr o Generador de señal Lámpara de Tungsteno, filtro vidrio, muestra Llama, monocromador, cortador, muestra. Fuentecorriente contínua, muestra señal analítica Haz de luz atenuado Radiación UV o visible Corriente de la celda Transductor de entrada fotocélula Tubo fotomultiplicador. Electrodos Señal transducida Corriente eléctrica Potencial eléctrico Corriente eléctrica Procesador de señal ninguno Amplificador demodulador Amplificador Lectura Medidor de corriente Registrador sobre papel Registrador sobre papel Medidor de ph Difractómetro de rayos X para polvo Comparador de color Muestra Tubo de rayos X, muestra Luz solar, muestra Actividad del ion hidrógeno Radiación difractada Color Electrodos de vidrio y calomelanos Película fotográfica Ojo humano Potencial eléctrico Imagen latente Señal del nervioóptico Amplificador, digitalizador Revelador químico Cerebro humano Unidad digital Imágenes ennegrecidas en película Respuesta visual color 2. Detectores (transductores de entrada) Un transductor es un dispositivo que convierte un tipo de energía (o señal) en otro. Como ejemplos, pueden mencionarse el termopar, que convierte una señal de calor radiante en un voltaje eléctrico; la fotocélula, que convierte la luz en una corriente eléctrica; o el brazo de una balanza, que convierte una diferencia de masa en un desplazamiento del brazo de la balanza respecto a la horizontal. Los transductores que actúan sobre una señal química se denominan detectores. La mayor parte de los detectores convierten las señales analíticas en un voltaje o corriente eléctricos que se amplifican o modifican fácilmente para accionar un dispositivo de lectura. Sin embargo, hay que tener en cuenta que los dos últimos detectores de la Tabla 1-2 originan señales no eléctricas. Los modernos instrumentos analíticos generalmente emplean uno o varios dispositivos electrónicos sofisticados, tales como amplificadores operacionales, circuitos integrados, convertidores analógico-digitales y digital-analógicos, contadores, microprocesadores y ordenadores. Para poder estimar la potencia y las limitaciones de dichos instrumentos, hace falta que el científico comprenda como mínimo de forma cualitativa cómo funcionan estos sistemas y qué es lo que hacen. 3. Procesadores de señales El procesador de señales modifica la señal transducida procedente del detector de tal forma que se adecue al funcionamiento del dispositivo de lectura. Una señal puede definirse como la salida de un transductor respondiendo al sistema químico de interés. La señal puede dividirse en dos partes, una causada por el (los) analito (s) y la otra por los componentes de la matriz de la muestra, y por la instrumentación analizada en la medición. Esta última parte de la señal se conoce como ruido. Capítulo I Introducción al Análisis Instrumental 5

6 Aunque la capacidad para separar las señales - que contienen datos significativos- del ruido sin sentido siempre ha sido una propiedad deseable en cualquier instrumento, con la demanda creciente de mediciones más sensibles se ha convertido en algo indispensable. La cantidad de ruido presente en un sistema instrumental determina la concentración de analito más pequeña que puede medirse con exactitud, y también fija la precisión de la medición a concentraciones más grandes. Los dos métodos principales de acentuación de la señal son 1) el uso de dispositivos electrónicos, tales como filtros para reducir el ruido; la amplificación (un proceso en el cual la señal se multiplica por una constante mayor que la unidad); se atenúan (proceso en el cual la señal se multiplica por una constante menor que uno); se integran, se derivan ó se aumentan exponencialmente; o algoritmos de programas computacionales equivalentes para procesar señales a partir de la medición mientras pasan a través del instrumento, y 2) el tratamiento matemático de los datos, posterior a la medición. Entre los métodos posteriores a la medición más útiles están las técnicas estadísticas; a demás de la acentuación de la señal, estas técnicas ayudan a identificar las fuentes de error y a determinar la precisión, a la vez que proporcionan un método de comparación objetiva de los resultados. 4. Dispositivos de lectura Un dispositivo de lectura es un transductor que convierte una señal procesada en una señal que puede ser entendida por un observador humano. Por lo general, la señal transducida toma la forma de la posición de una aguja en un medidor de escala, de una salida de un tubo de rayos catódicos, de un trazo en un registrador de papel, de una serie de números en una pantalla digital, o del ennegrecimiento de una placa fotográfica. En algunas ocasiones, el dispositivo de lectura da directamente la concentración de analito. LA SELECCIÓN DE UN MÉTODO ANALITICO La segunda columna de la Tabla 1-1 pone de manifiesto que el químico moderno dispone de una serie enorme de herramientas para realizar los análisis tantas, de hecho, que la elección entre ellas es a menudo difícil. 1. Definición del problema Para poder seleccionar de modo inteligente un método analítico, es esencial definir con claridad la naturaleza del problema analítico. Dicha definición requiere la contestación de las siguientes cuestiones: 1. Qué exactitud y precisión se requiere? 2. De cuánta muestra se dispone? 3. Cuál es el intervalo de concentración del analito? 4. Qué componentes de la muestra interferirán? 5. Cuáles son las propiedades físicas y químicas de la matriz de la muestra? 6. Cuántas muestras deben analizarse? La respuesta a la pregunta 1 es de vital importancia ya que determina cuánto tiempo y esmero se precisará para el análisis. Las respuestas a las preguntas 2 y 3 determinan cuán sensible debe ser el método y a qué intervalo de concentraciones debe adaptarse. La respuesta a la pregunta 4 determina la selectividad que requiere el método. Las respuestas a la 5 son Capítulo I Introducción al Análisis Instrumental 6

7 importantes porque algunos de los métodos analíticos de la Tabla 1-1 se aplican a disoluciones (normalmente acuosas) del analito. Otros se aplican con mayor facilidad a muestras gaseosas, mientras que unos terceros son adecuados para el análisis directo de sólidos. Desde un punto de vista económico, una consideración importante es el número de muestras que se tienen que analizar (pregunta 6). Si este número es elevado, se puede invertir una cantidad considerable de tiempo y dinero en la instrumentación, en el desarrollo del método y en la calibración. Además, si el número fuera muy elevado, debería elegirse un método que precisara del mínimo tiempo de operador por muestra. Por otro lado, si sólo se tienen que analizar unas pocas muestras, la elección prudente suele ser la de un método más sencillo aunque sea más largo pero que requiera poco o ningún trabajo preliminar. Teniendo en cuenta las respuestas a las seis cuestiones anteriores, puede escogerse un método -siempre que se conozcan las características de funcionamiento de los distintos métodos instrumentales indicados en la Tabla 1-1. CARACTERÍSTICAS DE FUNCIONAMIENTO DE LOS INSTRUMENTOS; PARÁMETROS DE CALIDAD Tabla 1.3 Criterios numéricos para seleccionar métodos analíticos Criterio A - Precisión B - Exactitud C - Sensibilidad D - Límite de detección E - Intervalo de concentración F - Selectividad Parámetro de calidad Desviación estándar absoluta, desviación estándar relativa, coeficiente de variación, varianza. Error absoluto sistemático, error relativo sistemático Sensibilidad de calibración, sensibilidad analítica Blanco más tres veces la desviación estándar del blanco Concentración entre el límite de cuantificación (LOQ) y el límite de linealidad (LOL) Coeficiente de selectividad En la Tabla 1-3 se enumeran los criterios cuantitativos de funcionamiento de los instrumentos, criterios que pueden usarse para decidir si un determinado método instrumental es o no adecuado para resolver un problema analítico. Estas características se expresan en términos numéricos que se denominan parámetros de calidad A. PrecisióN: La precisión de los datos analíticos se define como el grado de concordancia mutua entre los datos que se han obtenido de una misma forma. La precisión mide el error aleatorio, o indeterminado, de un análisis. Los parámetros de calidad de la precisión son la desviación estándar absoluta, la desviación estándar relativa, la desviación estándar relativa de la media, el coeficiente de variación y la varianza. B. Exactitud: La exactitud mide el error sistemático, o determinado, de un método analítico. La exactitud se define por la ecuación exactitud = u - x, (1-1) donde u es la media de la población para la concentración de un analito de una muestra cuya concentración verdadera es x t. Para determinar la exactitud hay que analizar uno o varios materiales estándar de referencia cuyas concentraciones de analito se conozcan. Capítulo I Introducción al Análisis Instrumental 7

8 En general, al desarrollar un método analítico, todos los esfuerzos se dirigen hacia la identificación de la fuente de error y a su eliminación o corrección mediante el uso de blancos y la calibración del instrumento. C. Sensibilidad: La mayoría de los químicos están de acuerdo en que la sensibilidad de un instrumento o de un método mide su capacidad de discriminar entre pequeñas diferencias en la concentración del analito. Las propiedades físicas y químicas del analito, la respuesta del transductor de entrada al analito y los componentes de la matriz de la muestra, son algunos de los factores más importantes que determinan la sensibilidad. La sensibilidad se define como la razón del cambio en la respuesta del instrumento (Iº, señal de salida) al cambio correspondiente en el estímulo (C, concentración del analito ): S=dl 0 dc La sensibilidad también puede expresarse como la concentración del analito necesaria para causar una respuesta dada en el instrumento. Las pendientes de las curvas de calibración se usan para determinar los valores de sensibilidad (fig. 1.2 y 1.3) Usualmente es deseable maximizar el valor de la sensibilidad, a menos que se quiera extender el intervalo de la respuesta del instrumento sin diluir la muestra. Fig. 1.2: Respuesta lineal Fig. 1.3: Respuesta no lineal La Fig. 2.1 muestra una respuesta lineal (sensibilidad constante) en todo el intervalo de concentraciones medidas, para las sustancias A y B. De las pendientes de las curvas se ve que la sensibilidad del método es mucho mayor para la sustancia B que para la A. La respuesta no lineal en la Fig. 2.2 indica un cambio en el valor de la sensibilidad como función de la concentración. Las mediciones de sustancia C, como función de la concentración, se van haciendo menos sensibles. La sensibilidad también puede expresarse como la concentración del analito necesaria para causar una respuesta dada en el instrumento. D. Límite de detección: La definición cualitativa más aceptada del límite de detección viene dada por la concentración o el peso mínimos de analito que pueden detectarse para un nivel de confianza dado. Este límite depende de la relación entre la magnitud de la señal analítica y el valor de las fluctuaciones estadísticas de la señal del blanco. Capítulo I Introducción al Análisis Instrumental 8

9 E. Intervalo de concentración aplicable: La Figura 1.4 ilustra la definición del intervalo útil de un método analítico, que va desde la concentración más pequeña con la que pueden realizarse medidas cuantitativas (límite de cuantificación, LOQ) hasta la concentración a la que la curva de calibrado se desvía de la linealidad (límite de linealidad, LOL). Figura 1.4 intervalo útil de un método analítico LOD = límite de detección LOG = límite de cuantificación LOL =límite de respuesta lineal F. Selectividad: La selectividad de un método analítico denota el grado de ausencia de interferencias debidas a otras especies contenidas en la matriz de la muestra. Desafortunadamente, ningún método analítico está totalmente inafectado por otras especies y, con frecuencia, diversas etapas se deben realizar para minimizar los efectos de estas interferencias. Para un problema analítico dado, los parámetros de calidad permiten al químico reducir la elección de los instrumentos a tan sólo unos pocos. La selección entre éstos puede entonces basarse en los criterios cualitativos de funcionamiento señalados en la Tabla 1-4. Tabla 1.4 Otras características a tener en cuenta en la elección del método 1. Velocidad 2. Facilidad y comodidad 3. Habilidad del operador 4. Coste y disponibilidad del equipo 5. Coste por muestra EVALUACIÓN DE RESULTADOS El control de las variables experimentales es usualmente difícil y a menudo imposible. Los métodos de muestreo, las técnicas de los analistas y las respuestas instrumentales, son las fuentes potenciales de error. Los métodos estadísticos proporcionan un medio de evaluar, objetivamente, la fuente y la magnitud del error en los métodos analíticos. La frase común, dentro del error experimental, carece de sentido si la magnitud del error no es definida mediante el uso de técnicas estadísticas. TIPOS DE ERRORES Para obtener resultados confiables a partir de un método analítico, deben identificarse las fuentes de error y cada una de ellas debe eliminarse o minimizarse. Los errores pueden ser Capítulo I Introducción al Análisis Instrumental 9

10 clasificados en dos tipos: aleatorios (indeterminados) o sistematizados (determinados). Ya que la fuente del error aleatorio está en la naturaleza intrínsecamente incierta de las técnicas de medición, este tipo de error se presenta en cada análisis. Los ruidos térmico, de golpeteo y de fluctuación, son fuentes de error aleatorio. La magnitud del error citado es pequeña, generalmente y por lo tanto puede minimizarse por métodos de filtrado (ya sea por equipo o por programas). El segundo tipo de error, sistemático o de procedimiento, hace que los resultados se desvíen de manera constante respecto de los valores esperados. Sus fuentes incluyen procedimientos de calibración inadecuados, pureza insuficiente de los reactivos y operación incorrecta de los instrumentos de medición. Este tipo de error no puede reducirse por la aplicación de métodos estadísticos. A menudo, los errores sistemáticos pueden identificarse y minimizarse modificando el procedimiento analítico. PUESTA A PUNTO DE LA METODOLOGÍA ANALÍTICA En términos generales, se denomina calibración al conjunto de operaciones que tienen por objeto establecer la relación que hay, en condiciones especificadas, entre los valores indicados por un instrumento de medida y los valores conocidos correspondientes. En el análisis químico, calibrar significa determinar la relación entre la concentración del analito y la respuesta de la técnica de medida. No hay que confundir calibración con validación: el último término implica determinar si una metodología analítica específica puede usarse de modo satisfactorio, sea que la realice un solo analista o por varios laboratorios y analistas. Una calibración adecuada de los instrumentos es esencial para obtener análisis exactos. La elección de una técnica de calibración depende del método instrumental, de la respuesta del instrumento, de las interferencias presentes en la matriz de la muestra y del número de muestras por analizar. El término matriz incluye, además del analito, todos los demás componentes de la muestra. Los estándares o patrones químicos se utilizan para determinar factores de recuperación y para la etapa de calibración. Los métodos de calibración pueden dividirse en dos tipos: A) los que utilizan estándares externos (calibración externa) B) los que utilizan estándares añadidos a la muestra: método de la adición estándar método del estándar interno A) ESTÁNDARES EXTERNOS - Curva de calibración En el análisis cuantitativo es muy raro tener la certeza de que se cumple la ley de Beer, por lo cual no es justificable utilizar un solo patrón para determinar la absortividad molar, y menos aún que los resultados se basen en los datos de absortividad molar tomados de la literatura. En la mayoría de los métodos espectrofotométricos se hace una calibración con el método de los estándares externos. Un estándar externo es aquel que se analiza separadamente de la muestra que se está ensayando. Para ello, se prepara una serie de soluciones patrón que contienen distintas concentraciones conocidas de analito, junto a la matriz que es similar o idéntica a la de la muestra. Luego se mide su absorbancia y se construye una curva de calibración de absorbancia frente a concentración. Los estándares externos pueden usarse para calibrar un procedimiento de medida; cuando los componentes de la matriz, incluyendo los reactivos que se requieren en el preparado, no causan interferencias. También pueden usarse para calibrar un análisis en el cual se tiene suficiente control sobre las condiciones como para que la contribución producida por los Capítulo I Introducción al Análisis Instrumental 10

11 interferentes sobre las medidas puedan mantenerse constantes; así puede realizarse la oportuna corrección del error determinado por el interferente. Muchas veces no se pueden eliminar todos los elementos interferentes durante la preparación de la muestra. A pesar de todo, los estándares, cuidadosamente preparados, posibilitan la evaluación de los efectos de cualquier elemento interferente y permiten corregir su influencia sobre los resultados. De otra forma, no se podría hacer ninguna calibración. Si varía cualquier condición o cualquiera de los pasos de la preparación, los instrumentos deben ser recalibrados y quizás se tengan que preparar nuevos estándares externos. Ejemplo 1. Quiere determinarse la concentración de glucosa en una muestra que leída en el espectrofotómetro obtuvo una Absorbancia de 0,250. Por otra parte, se prepararon una serie de soluciones patrón de glucosa cuyas concentraciones se miden en g%ml. Las lecturas obtenidas de esta serie de estándares se presentan en la tabla 1. Tabla1. Lectura de soluciones estándar de glucosa de distintas concentraciones. Concentración Absorbancia de glucosa (g %ml) 250 0, , , , , ,1 Absorbancia 0,6 0,4 0, Concentración g/100 ml Figura 1.5. Gráfica de los datos de calibración para estándares de glucosa. a) Resolución en forma gráfica: Una vez obtenida la Curva de calibración con los estándares externos puede determinarse la concentración de la muestra. Se busca en la gráfica el valor de 0,250 de Absorbancia leído para el analito. Al interceptar en la curva se puede observar que corresponde a una concentración de 125 g/100 ml de glucosa. b) Resolución matemática: Para trazar una recta son suficientes dos puntos, lo buscamos matemáticamente. Estos corresponden a: - Un patrón de concentración exactamente conocida que llamaremos C p el cual tiene una absorbancia A p. - La muestra, de la cual del cual queremos saber su concentración C x y conocemos su absorbancia A x, porque la hemos leído en el espectrofotómetro. Apliquemos la Ley de Lambert Beer para el problema: para el patrón: A p = a. b. C p para el problema: A x = a. b. C x Como queremos saber la concentración de glucosa en la muestra (C x), los demás datos son conocidos, si los substituímos: Capítulo I Introducción al Análisis Instrumental 11

12 Se puede observar que el resultado coincide con el obtenido de la gráfica. B) ESTÁNDARES AÑADIDOS (internos): Hay tres supuestos en los que la estandarización se efectúa añadiendo un estándar a la misma muestra: 1. Cuando la matriz, sólida o líquida de una muestra sea, desconocida o tan compleja que no podría emplearse un estándar externo con suficiente garantía. 2. Cuando el proceso de preparación de la muestra o la técnica de ensayo sea compleja o muy variable. 3. Cuando la medida dependa de condiciones instrumentales muy precisas y difícilmente controlables. En algunos casos pueden presentarse los tres problemas en un mismo análisis. Por ejemplo, la muestra puede ser complicada, la preparación difícil y la medida puede implicar introducir la muestra en una llama. Las reacciones de las tres etapas son bastante complejas y algunas veces las condiciones de la llama son difíciles de regular con la precisión deseada. B.1- Método de adiciones estándares: Cuando es imposible suprimir interferencias físicas o químicas en la matriz de la muestra puede usarse el método de adiciones estándares. La respuesta del instrumento debe ser función lineal de la concentración del analito, en el intervalo de concentraciones y también debe tener una ordenada en cero (señal cero para concentración cero). Una pequeña cantidad de solución del analito, de concentración conocida, se añade a una alícuota de una solución muestra analizada previamente, y el análisis se repite usando reactivos, parámetros de instrumento y procedimientos idénticos. Las lecturas pueden ser corregidas para cualquier señal de fondo. Siempre es aconsejable revisar el resultado con al menos otra adición estándar. Las adiciones estadísticamente óptimas de analito son iguales al doble o a la mitad de la cantidad de analito en la muestra original. Todas las soluciones deben ser diluidas al mismo volumen final, para que cualquier interferente en la matriz de la muestra tenga un efecto idéntico en cada solución. Debe dejarse transcurrir suficiente tiempo entre la adición del estándar y el análisis final, para que el estándar agregado alcance el equilibrio con los interferentes de la matriz. El método de adiciones estándares es ampliamente utilizado en la química electroanalítica, para obtener resultados más exactos que los que resultan usando curvas de calibración. La absorción atómica y la espectrofotométrica de emisión de llama, usan este método con matrices de muestra complejas, en donde la viscosidad, la tensión superficial, los efectos de la llama y otras propiedades de la solución muestra, no pueden reproducirse con exactitud en las soluciones de calibración. Ejemplo 2. Se pipetean alícuotas de 10 ml de una muestra de agua mineral en matraces aforados de 50 ml. Se adicionan a cada uno 0; 5;10; 15 y 20 ml de una solución estándar 11,1 ppm de Fe +3, con exceso de SCN - para dar Fe (SCN) Después de diluir a 50 ml las Absorbancias para las 5 diluciones fueron: 0,240; 0,437 ; 0,621 ; 0,809 y 1,009 respectivamente. Se trabajó con un espesor de cubeta (b) de 0,982 cm. Calcular por los distintos métodos la concentración de Fe +3 en la muestra de agua. Capítulo I Introducción al Análisis Instrumental 12

13 Cálculo de las concentraciones de los estándares añadidos: Este problema aplica el método de la adición estándar que se basa en analizar la muestra desconocida y luego adicionar a esa muestra una cantidad conocida del material que se quiere analizar. El aumento observado en la señal es proporcional a la cantidad conocida del material agregado, y a partir de éste es posible calcular la cantidad de un material inicialmente presente en la incógnita. Tabla 2a. Absorbancias obtenidas luego de adicionar solución estándar de hierro a la muestra de agua. Muestra Volumen de estándar absorbancia 10 ml 0 ml 0, ml 5 ml 0, ml 10 ml 0, ml 15 ml 0, ml 20 ml 1,009 Para calcular la concentración del estándar se procede así: C 1 V 1 = C 2 V 2 C 2 = C 1 V 1 C 2 =11,1 ppm x 5 ml = 1,1 ppm 50 ml Teniendo en cuenta la dilución 1 : 5 de la muestra: 1,1 ppm x 5 (dilución) = 5,55 ppm V 2 Dilución de la muestra: 10 ml ml sol. diluída 1 ml --x = 50 ml = 5mL sol. diluída 10 ml Así se obtienen todos los valores de concentración que figuran en la tabla 2b: Tabla 2b. Concentraciones y lecturas obtenidas luego de adicionar solución estándar de hierro a la muestra de agua. Muestra Volumen de estándar Concentración Intensidad 10 ml 0 ml 0 ppm 0, ml 5 ml 5,55 ppm 0, ml 10 ml 11,1 ppm 0, ml 15 ml 16,65 ppm 0, ml 20 ml 22,2 ppm 1,009 a) Resolución por fórmula: A x = K C x A T = K ( C s + C x) Sustituyendo en la ecuación ( 2), el valor de K despejado de la ( 1 ) y reordenando obtenemos: Capítulo I Introducción al Análisis Instrumental 13

14 Cx = Cs Ax. Vs (AT - Ax ) Vx Ax = Absorbancia de la muestra AT = Absorbancia Total Cx = concentración de la muestra. Cs = concentración del estándar. Vs = volúmen del estándar. Vx = volúmen de la muestra. Para el ejemplo panteado se resolvería: C x = 11,1 ppm x 0,240 x 10 6,99 ppm ml = (0, 621-0,240 ) 10 ml b) Resolución Gráfica: La resolución gráfica, usando el método de las adiciones estándares, se muestra en la figura 2. La escala de concentración se encuentra sobre el eje de abscisas y en el eje de ordenadas se encuentran las concentraciones de las soluciones estándar del analito agregadas a la soluciones de muestra. La concentración desconocida está dada por el punto en el cuál la línea extrapolada corta el eje de concentración. En este caso corresponde a 7 ppm y coincide con los datos obtenidos por los otros métodos. Figura 2. Gráfica de los valores de absorbancia vs. concentración de Fe +3 en ppm.2- Método del estándar interno: Se emplea un estándar interno para minimizar las diferencias en las propiedades físicas de un conjunto de soluciones muestra que contiene el mismo analito. En este método, una cantidad fija de una sustancia pura se añade tanto a las soluciones muestra como a las soluciones estándares, se determinan luego las respuestas del analito y del estándar interno, cada una corregida por el fondo y se calcula el cociente de las dos respuestas. Si se controlan los parámetros que afectan las respuestas medidas, la respuesta de la línea del estándar interno será constante, puesto que la concentración del estándar interno es fija, sin embargo si varía uno o más de los parámetros Capítulo I Introducción al Análisis Instrumental 14

15 que afectan las respuestas medidas, dichas respuestas del analito y del estándar interno deben ser afectadas por igual. Por lo tanto, el cociente de respuestas (del analito al estándar interno) depende solamente de la concentración del analito. Una gráfica de la relación o cociente de respuestas como función de la concentración del analito, da una curva de calibración. El estándar debe añadirse al comienzo de un análisis para permitir su disolución, mezclado y que ocurra cualquier reacción antes de efectuar cualquier medición. Todos los equilibrios deben haberse establecido (y algunos pueden ser dependientes del tiempo). La adición de los estándares a la muestra disuelta puede llevar a una interpretación deficiente de los resultados si no se consideran las posibles reacciones entre la sustancia estándar y otros componentes. El estándar interno debe ser una sustancia similar al analito con una señal fácilmente medible que no interfiere con la respuesta del analito, debe responder de manera similar a él, para cualquiera de las variables que pudieran afectar la respuesta del detector. La concentración del estándar interno tiene que ser del mismo orden de magnitud que la del analito a fin de minimizar el error al calcular los cocientes de respuestas. Este método se usa ampliamente en los análisis por cromatografia de gases y por absorción atómica y en menor grado, en las determinaciones espectroscópicas de infrarrojo y de emisión. Ejemplo 3. Se determinó un compuesto C x en una muestra por fotometría de llama. Se empleó el método del estándar interno, agregando cantidades crecientes del analito C x y cantidades iguales del estándar C s.b Los resultados obtenidos se muestran en la tabla 3. Calcular la concentración de C x de la muestra cuyas Intensidades fueron 33 para C x y 9 para C s. Tabla 3. Absorbancias obtenidas en distintas soluciones del analito y la muestra luego de añadir patrón interno. Volumen de muestra Cantidades crecientes de Cx Cantidad constante de patrón interno Cs Intensidad de C x Intensidad de C s 10 ml 0 ppm 1 ppm ml 1 ppm 1 ppm ml 2 ppm 1 ppm 14,3 9,5 10 ml 3 ppm 1 ppm 21,2 8,5 10 ml 4 ppm 1 ppm 34,4 9 a) Resolución por método gráfico: Calcular las relaciones: I x / I s y luego graficar como se indica a continuación: Volumen de muestra Cantidades crecientes de C x Cantidad constante de patrón interno C s Intensida d de C x Intensida d de C s Relación I x /I s 10 ml 0 ppm 1 ppm ,67 10 ml 1 ppm 1 ppm 9 9 1,00 10 ml 2 ppm 1 ppm 14,3 9,5 1,51 10 ml 3 ppm 1 ppm 21,2 8,5 2,49 10 ml 4 ppm 1 ppm 34,4 9 3,82 Capítulo I Introducción al Análisis Instrumental 15

16 4 3 Relación Ix/Is ,5 1 1,5 2 2,5 3 3,5 4 4,5 ppm de Cx Figura 1.6. Gráfica de los valores de relación I x/i s vs. concentración de en ppm b) Método de los cocientes matemáticos: Se establecen las relaciones entre la muestra y el valor de la escala más cercano: Capítulo I Introducción al Análisis Instrumental 16

17 GUÍA TEÓRICA INTRODUCCIÓN AL ANALISIS INSRTUMENTAL 1- Teniendo en cuenta las propiedades físicas que se pueden utilizar como señales analíticas en los métodos instrumentales, complete el siguiente cuadro: Propiedades físicas Método instrumental 2- Complete el siguiente cuadro teniendo en cuenta los diferentes componentes de los instrumentos. Generador de Señal Transductor Señal Procesador Instrumento Lectura señal analítica de entrada transducida de señal Fotómetro Espectrofotómetro de emisión atómica Coulombimetr o Medidor de ph Difractómetro de rayos X para polvo Capítulo I Introducción al Análisis Instrumental 17

18 Comparador de color 3- Qué consideraciones debe tener en cuenta al seleccionar un método analítico? Criterio Parámetro de calidad 4- Completar el siguiente cuadro teniendo en cuenta los diferentes métodos de calibración. Método de Calibración Fundamento Formas de resolución Estándar externo Estándar interno Adición estándar Capítulo I Introducción al Análisis Instrumental 18

INTRODUCCION ANALISIS INSTRUMENTAL. Clasificación de los Métodos Analíticos. Tipos de Metodos Instrumentales CLASIFICACION DE LOS METODOS ANALITICOS

INTRODUCCION ANALISIS INSTRUMENTAL. Clasificación de los Métodos Analíticos. Tipos de Metodos Instrumentales CLASIFICACION DE LOS METODOS ANALITICOS ANALISIS INSTRUMENTAL INTRODUCCION CLASIFICACION DE LOS METODOS ANALITICOS Departamento de Química Q420 TIPOS DE METODOS INSTRUMENTALES E INSTRUMENTOS SELECCION DE UN METODO ANALITICO: CRITERIOS Clasificación

Más detalles

ANÁLISIS CUANTITATIVO POR WDFRX

ANÁLISIS CUANTITATIVO POR WDFRX ANÁLISIS CUANTITATIVO POR WDFRX El análisis cuantitativo se obtiene mediante la medida de las intensidades de las energías emitidas por la muestra. Siendo la intensidad de la emisión (número de fotones)

Más detalles

S.E.P. S.E.I.T DIRECCION GENERAL DE INSTITUTOS TECNOLOGICOS

S.E.P. S.E.I.T DIRECCION GENERAL DE INSTITUTOS TECNOLOGICOS S.E.P. S.E.I.T DIRECCION GENERAL DE INSTITUTOS TECNOLOGICOS NOMBRE DE LA ASIGNATURA: QUIMICA ANALITICA II (4-2-10) NIVEL: LICENCIATURA. CARRERA: INGENIERIA BIOQUIMICA INGENIERIA QUIMICA CLAVE: ACC-9331

Más detalles

TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO

TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO TERMINOLOGÍA ANALÍTICA - PROCESO ANALÍTICO - TÉCNICA ANALÍTICA - MÉTODO ANALÍTICO - PROCEDIMIENTO ANALÍTICO - PROTOCOLO ANALÍTICO PROCESO ANALÍTICO Conjunto de operaciones analíticas intercaladas que se

Más detalles

Química Biológica TP 1: ESPECTROFOTOMETRIA.

Química Biológica TP 1: ESPECTROFOTOMETRIA. TP 1: ESPECTROFOTOMETRIA. Introducción Al observar una solución acuosa de un colorante a trasluz, observamos una leve coloración, la cual se debe a la interacción entre las moléculas del colorante y la

Más detalles

CURSO de ANÁLISIS INSTRUMENTAL I. Catedrática: Dra. Silvia Echeverría, Ph.D., Escuela de Química, Facultad Ciencias Químicas y Farmacia, USAC

CURSO de ANÁLISIS INSTRUMENTAL I. Catedrática: Dra. Silvia Echeverría, Ph.D., Escuela de Química, Facultad Ciencias Químicas y Farmacia, USAC CURSO de ANÁLISIS INSTRUMENTAL I Catedrática: Dra. Silvia Echeverría, Ph.D., Escuela de Química, Facultad Ciencias Químicas y Farmacia, USAC QUÍMICA ANALÍTICA Comprende la metodología para determinar la

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS ANALISIS INSTRUMENTAl I

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS ANALISIS INSTRUMENTAl I PRIMERA RELACIÓN DE PROBLEMAS. CALIBRACIÓN EN QUÍMICA ANALÍTICA 1.- En la determinación de una especie X por un método instrumental en el que la señal analítica se define como P = kc x, se obtuvieron los

Más detalles

Universidad de Antioquia F.Q.F. Ingeniería de Alimentos Lab. Análisis Instrumental

Universidad de Antioquia F.Q.F. Ingeniería de Alimentos Lab. Análisis Instrumental Universidad de Antioquia F.Q.F. Ingeniería de Alimentos Lab. Análisis Instrumental 2. CONCENTRACIÓN Y CALIBRACIÓN: LEY DE BEER Profesor: Lucas Blandón Deymer Gómez Emilson León Florian PRÁCTICA 2: Concentración

Más detalles

Métodos de Calibrado. Dra. María Angélica Sánchez Palacios. F a c u l t a d d e C i e n c i a s D e p a r t a m e n t o d e Q u í m i c a

Métodos de Calibrado. Dra. María Angélica Sánchez Palacios. F a c u l t a d d e C i e n c i a s D e p a r t a m e n t o d e Q u í m i c a Métodos de Calibrado Dra. María Angélica Sánchez Palacios Se presenta una descripción matemática y gráfica de los métodos de calibrado utilizados en un análisis químico. F a c u l t a d d e C i e n c i

Más detalles

PRACTICO N 1: ESPECTROFOTOMETRIA

PRACTICO N 1: ESPECTROFOTOMETRIA UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE TECNOLOGIA MEDICA BIOQUIMICA PRACTICO N 1: ESPECTROFOTOMETRIA 1.- INTRODUCCIÓN Utilizando términos quizás excesivamente simplistas puede definirse la espectrofotometría

Más detalles

UNIVERSIDAD SANTO TOMAS SECCIONAL BUCARAMANGA. División de Ingenierías - Facultad de Química Ambiental

UNIVERSIDAD SANTO TOMAS SECCIONAL BUCARAMANGA. División de Ingenierías - Facultad de Química Ambiental UNIVERSIDAD SANTO TOMAS SECCIONAL BUCARAMANGA División de Ingeniería Facultad de Química Ambiental Nombre de Asignatura: QUÍMICA INSTRUMENTAL II Àrea: Básicas de Química / Química Analítica Créditos: 4

Más detalles

UNIVERSIDAD TECNOLÓGICA METROPOLITANA INGENIERIA EN QUIMICA LABORATORIO ANALISIS INSTRUMENTAL. INFORME N 1: ESPECTROFOTOMETRÍA UV VISIBLE INTRODUCCION

UNIVERSIDAD TECNOLÓGICA METROPOLITANA INGENIERIA EN QUIMICA LABORATORIO ANALISIS INSTRUMENTAL. INFORME N 1: ESPECTROFOTOMETRÍA UV VISIBLE INTRODUCCION UNIVERSIDAD TECNOLÓGICA METROPOLITANA INGENIERIA EN QUIMICA LABORATORIO ANALISIS INSTRUMENTAL. INFORME N 1: ESPECTROFOTOMETRÍA UV VISIBLE INTRODUCCION En este laboratorio utilizaremos el método de la espectrofotometría

Más detalles

Rosamil Rey, Ph.D. CHEM 4160

Rosamil Rey, Ph.D. CHEM 4160 Rosamil Rey, Ph.D. CHEM 4160 Los métodos analíticos se pueden clasificar en: Métodos Clásicos Métodos Instrumentales Métodos Clásicos Precipitación Extracción Destilación Medidas gravimétricas Medidas

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

Para lograr una radiación de las características necesarias la fuente más común son las lámparas de cátodo hueco.

Para lograr una radiación de las características necesarias la fuente más común son las lámparas de cátodo hueco. Fundamento teórico El fundamento más elemental de los métodos espectrométricos es la Teoría Cuántica, propuesta en 1900 por Max Planck, que postula que los átomos, iones y moléculas sólo pueden existir

Más detalles

INTRODUCCIÓN A LAS TÉCNICAS DE ANÁLISIS INSTRUMENTAL

INTRODUCCIÓN A LAS TÉCNICAS DE ANÁLISIS INSTRUMENTAL INTRODUCCIÓN A LAS TÉCNICAS DE ANÁLISIS INSTRUMENTAL Sergio Figueroa Arroyo Alberto Valdés Tabernero Ana Mª García Palomino INDICE INTRODUCCIÓN 3 INSTRUMENTOS PARA EL ANÁLISIS 5 COMPONENTES DE LOS INSTRUMENTOS

Más detalles

Determinación de constantes de ionización

Determinación de constantes de ionización Capítulo 5. Determinación de constantes de ionización Se determinaron las constantes de ionización de diversos compuestos mediante curvas de titulación ácido-base empleando métodos espectrofotométricos

Más detalles

INTRODUCCIÓN A LA ESPECTROFOTOMETRÍA

INTRODUCCIÓN A LA ESPECTROFOTOMETRÍA INTRODUCCIÓN A LA ESPECTROFOTOMETRÍA Objetivos Al finalizar el trabajo práctico los estudiantes estarán en capacidad de: - Conocer el principio que rige la espectrofotometría. - Interpretar el basamento

Más detalles

Criterios de selección y tratamientos de muestras. Química Analítica Cuantitativa 2010

Criterios de selección y tratamientos de muestras. Química Analítica Cuantitativa 2010 Criterios de selección y tratamientos de Química Analítica Cuantitativa 2010 Los químicos analíticos son detectives; y algunas veces la vida es complicada. Un análisis cuantitativo comprende una serie

Más detalles

Análisis Gravimétrico

Análisis Gravimétrico Análisis Gravimétrico Noviembre, 2012 Clasificación del Análisis Químico Análisis Químico Análisis químico cualitativo Análisis químico cuantitativo Qué hay? Cuánto hay? Identificar los componentes Cuantificar

Más detalles

Determinación de oxidantes totales en aire

Determinación de oxidantes totales en aire Práctica 5 Determinación de oxidantes totales en aire 1. Introducción Los oxidantes atmosféricos son contaminantes secundarios producidos fotoquímicamente en la fase gaseosa y en aerosoles a partir de

Más detalles

FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico.

FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. FÍSICA Y QUÍMICA 3º ESO. OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN 1ª Evaluación: Unidad 1. La medida y el método científico. OBJETIVOS 1. Reconocer las etapas del trabajo científico y elaborar informes

Más detalles

INTRODUCCIÔN A LA METROLOGÎA QUÎMICA

INTRODUCCIÔN A LA METROLOGÎA QUÎMICA INTRODUCCIÔN A LA METROLOGÎA QUÎMICA CURVAS DE CALIBRACIÓN EN LOS MÉTODOS ANALÍTICOS María Antonia Dosal Marcos Villanueva Marzo 2008 Un procedimiento analítico muy utilizado en análisis cuantitativo es

Más detalles

Espectroscopía Clase integradora

Espectroscopía Clase integradora Espectroscopía Clase integradora Qué es la espectroscopía? La espectroscopia es el estudio de la INTERACCIÓN entre la materia y energía radiante, por ejemplo, radiación electromagnética. Busca relacionar

Más detalles

Curva de calibracion Calcio (Perkin Elmer 370)

Curva de calibracion Calcio (Perkin Elmer 370) Absorbancia UNIVERSIDAD INDSUTRIAL DE SANTANDER ESCUELA DE QUIMICA Laboratorio de Instrumentación Química I Grupo 2 (Jueves) Silvia Juliana Vesga Cód.: 2090143 Brandon Álvarez Sánchez Cód.: 2091650 Práctica

Más detalles

Cuantificación de compuestos por cromatografía: Método del Patrón Interno

Cuantificación de compuestos por cromatografía: Método del Patrón Interno Cuantificación de compuestos por cromatografía: Método del Patrón Interno Apellidos, nombre Departamento Centro Fernández Segovia, Isabel (isferse1@tal.upv.es) García Martínez, Eva (evgarmar@tal.upv.es)

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

INTRODUCCION A LA ESPECTROSCOPIA DE ABSORCION MOLECULAR UV/VIS Y DE INFRARROJO CERCANO. Cap. 13

INTRODUCCION A LA ESPECTROSCOPIA DE ABSORCION MOLECULAR UV/VIS Y DE INFRARROJO CERCANO. Cap. 13 INTRODUCCION A LA ESPECTROSCOPIA DE ABSORCION MOLECULAR UV/VIS Y DE INFRARROJO CERCANO Cap. 13 Medición de la absorbancia y la transmitancia Recipiente produce pérdidas por: reflexión (aire/pared, pared/solución)

Más detalles

CLASIFICACIÓN DE LA MATERIA

CLASIFICACIÓN DE LA MATERIA 1. Clasificación de la materia por su aspecto CLASIFICACIÓN DE LA MATERIA La materia homogénea es la que presenta un aspecto uniforme, en la cual no se pueden distinguir a simple vista sus componentes.

Más detalles

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1

TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal

Más detalles

b. No debe reaccionar con ninguno de los componentes de la mezcla.

b. No debe reaccionar con ninguno de los componentes de la mezcla. ANÁLISIS CUALITATIVO Una vez obtenido un cromatograma satisfactorio se procede a realizar la identificación de los componentes de la muestra empleando alguna de las siguientes técnicas. 1. Técnica cualitativa

Más detalles

UNIDAD 1 La materia y sus cambios

UNIDAD 1 La materia y sus cambios UNIDAD 1 La materia y sus cambios Tema 1.2 Composición de la materia. Sustancias y mezclas. Mezclas homogéneas, heterogéneas y coloides. Introducción a las disoluciones: no saturadas, saturadas y sobresaturadas.

Más detalles

Titulaciones en Química Analítica. Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D.

Titulaciones en Química Analítica. Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D. Titulaciones en Química Analítica Capítulo 13 CHEM 3320 Rosamil Rey Santos, Ph.D. Introducción En el análisis volumétrico, la concentración se determina midiendo su capacidad de reaccionar con un reactivo

Más detalles

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.

TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE

Más detalles

CONTENIDO DE HIERRO EN LAS LECHES DE FORMULA EMPLEADAS EN LA ALIMENTACIÓN INFANTIL: DISTRIBUCION EN EL SUERO LACTEO Y EN LA GRASA

CONTENIDO DE HIERRO EN LAS LECHES DE FORMULA EMPLEADAS EN LA ALIMENTACIÓN INFANTIL: DISTRIBUCION EN EL SUERO LACTEO Y EN LA GRASA CONTENIDO DE HIERRO EN LAS LECHES DE FORMULA EMPLEADAS EN LA ALIMENTACIÓN INFANTIL: DISTRIBUCION EN EL SUERO LACTEO Y EN LA GRASA R. Domínguez 3,1, J.M. Fraga 1,2, J.A. Cocho 1,2, P. Bermejo 3, A. Bermejo

Más detalles

Consulte nuestra página web: En ella encontrará el catálogo completo y comentado

Consulte nuestra página web:  En ella encontrará el catálogo completo y comentado A nálisis químicos Consulte nuestra página web: www.sintesis.com En ella encontrará el catálogo completo y comentado A nálisis químicos Francesc Pujol Urban Joan Sánchez Rodríguez Francesc Pujol Urban

Más detalles

FARMACOPEA MERCOSUR: MÉTODO GENERAL PARA ESPECTROFOTOMETRIA ULTRAVIOLETA Y VISIBLE

FARMACOPEA MERCOSUR: MÉTODO GENERAL PARA ESPECTROFOTOMETRIA ULTRAVIOLETA Y VISIBLE MERCOSUL/XLIII SGT Nº 11/P.RES. Nº FARMACOPEA MERCOSUR: MÉTODO GENERAL PARA ESPECTROFOTOMETRIA ULTRAVIOLETA Y VISIBLE VISTO: El Tratado de Asunción, el Protocolo de Ouro Preto y las Resoluciones N 31/11

Más detalles

FUENTES DE RUIDO EN LOS ANÁLISIS INSTRUMENTALES

FUENTES DE RUIDO EN LOS ANÁLISIS INSTRUMENTALES FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 2 LECTURA N 4 FUENTES DE RUIDO EN LOS ANÁLISIS INSTRUMENTALES Bibliografía: SKOOG, D.A. James; Holler F. James; PRINCIPIOS DE ANÁLISIS

Más detalles

Determinación de la concentración micelar crítica (cmc) y grado de disociación (α) de un tensioactivo iónico mediante medidas de conductividad

Determinación de la concentración micelar crítica (cmc) y grado de disociación (α) de un tensioactivo iónico mediante medidas de conductividad Determinación de la concentración micelar crítica (cmc) y grado de disociación (α) de un tensioactivo iónico mediante medidas de conductividad OBJETIVO: Determinación de la concentración micelar crítica

Más detalles

PROGRAMA DE ESTUDIO. Práctica ( ) Teórica ( X ) Presencial ( X ) Teórica-práctica ( ) Híbrida ( )

PROGRAMA DE ESTUDIO. Práctica ( ) Teórica ( X ) Presencial ( X ) Teórica-práctica ( ) Híbrida ( ) PROGRAMA DE ESTUDIO Nombre de la asignatura: LABORATORIO DE QUÍMICA ANALITICA 3 Clave: LQU10 Ciclo Formativo: Básico ( ) Profesional ( x ) Especializado ( ) Fecha de elaboración: Horas Horas Semestre semana

Más detalles

ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA METODOLOGÍA EN QUÍMICA ANALÍTICA... 9 CAPÍTULO 2: EVALUACIÓN DE LOS DATOS ANALÍTICOS... 25

ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA METODOLOGÍA EN QUÍMICA ANALÍTICA... 9 CAPÍTULO 2: EVALUACIÓN DE LOS DATOS ANALÍTICOS... 25 ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA METODOLOGÍA EN QUÍMICA ANALÍTICA... 9 1.1. CONCEPTO Y FINALIDAD DE LA QUÍMICA ANALÍTICA... 9 1.2. LA PROPIEDAD ANALÍTICA... 11 1.3. EL PROCESO ANALÍTICO... 12 1.4.

Más detalles

I.E.D. FERNANDO MAZUERA VILLEGAS J.T. AREA TECNOLOGIA GRADO NOVENO 2.009

I.E.D. FERNANDO MAZUERA VILLEGAS J.T. AREA TECNOLOGIA GRADO NOVENO 2.009 GRADO NOVENO 2.009 PERIODO I ASIGNATURA: Análisis de Muestras Químicas PROFESOR: Marco Antonio Flórez Figueroa Análisis de objetos. Ciencia. Empirismo. Técnica. Tecnología. Objeto. Industria. Trabajo.

Más detalles

Optimizar recursos y asegurar cumplimiento metrológico Buenos Aires 23 de Octubre de 2015

Optimizar recursos y asegurar cumplimiento metrológico Buenos Aires 23 de Octubre de 2015 Optimizar recursos y asegurar cumplimiento metrológico Buenos Aires 23 de Octubre de 2015 Operación que establece, una relación entre los valores y sus incertidumbres de medida asociadas obtenidas a partir

Más detalles

La concentración másica (C)

La concentración másica (C) La concentración másica (C) Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología de Alimentos ETSIAMN (Universidad Politécnica de Valencia) 1 Resumen

Más detalles

Detector de Mercurio por Fluorescencia Modelo 2500

Detector de Mercurio por Fluorescencia Modelo 2500 Detector de Mercurio por Fluorescencia Modelo 2500 El Modelo 2500 es un detector de mercurio elemental por Espectrometría de Fluorescencia Atómica de Vapor Frío (CVAFS). Las ventajas de la fluorescencia

Más detalles

APÉNDICE I. Calibración de la señal cromatográfica como función de la concentración: Sistema Ternario

APÉNDICE I. Calibración de la señal cromatográfica como función de la concentración: Sistema Ternario APÉNDICE I Calibración de la señal cromatográfica como función de la concentración: Sistema Ternario En este apéndice se muestra la información correspondiente a la elaboración de las diferentes curvas

Más detalles

PROBLEMARIO DE QUÍMICA ANALÍTICA II. Espectrometría UV-Visible

PROBLEMARIO DE QUÍMICA ANALÍTICA II. Espectrometría UV-Visible UNIVERSIDAD DEL ZULIA FACULTAD EXPERIMENTAL DE CIENCIAS DEPARTAMENT DE QUIMICA UNIDAD ACADÉMICA DE QUÍMICA ANALÍTICA MATERIA: QUÍMICA ANALÍTICA II PRBLEMARI DE QUÍMICA ANALÍTICA II Espectrometría UV-Visible

Más detalles

Química Analítica

Química Analítica Unidad responsable: 240 - ETSEIB - Escuela Técnica Superior de Ingeniería Industrial de Barcelona Unidad que imparte: 713 - EQ - Departamento de Ingeniería Química Curso: Titulación: 2016 GRADO EN INGENIERÍA

Más detalles

FENÓMENOS DE TRANSPORTE

FENÓMENOS DE TRANSPORTE FENÓMENOS DE TRANSPORTE UNIDAD I CONTENIDO LEY CERO DE LA TERMODINÁMICA LEY CERO DE LA TERMODINÁMICA Cuando tocamos un objeto, el sentido del tacto nos proporciona la sensación que calificamos como caliente

Más detalles

INSTRUMENTACIÓN. PRÁCTICA 1

INSTRUMENTACIÓN. PRÁCTICA 1 Introducción INSTRUMENTACIÓN. PRÁCTICA 1 Medidas de tensión eléctrica y circuitos potenciométricos Los circuitos potenciométricos se emplean frecuentemente para convertir las variaciones de impedancia

Más detalles

UNIVERSIDAD JUÁREZ AUTÓNOMA DE TABASCO DIVISIÓN ACADÉMICA DE CIENCIAS BIOLÓGICAS LICENCIATURA EN INGENIERÍA AMBIENTAL

UNIVERSIDAD JUÁREZ AUTÓNOMA DE TABASCO DIVISIÓN ACADÉMICA DE CIENCIAS BIOLÓGICAS LICENCIATURA EN INGENIERÍA AMBIENTAL UNIVERSIDAD JUÁREZ AUTÓNOMA TABASCO DIVISIÓN ACADÉMICA CIENCIAS BIOLÓGICAS LICENCIATURA EN INGENIERÍA AMBIENTAL ASIGNATURA: INSTRUMENTACIÓN Y CONTROL NIVEL: AREA FORMACIÓN SUSTANTIVA PROFESIONAL HORAS

Más detalles

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos

Más detalles

6 APENDICE. A. Curvas de Calibración

6 APENDICE. A. Curvas de Calibración 6 APENDICE A. Curvas de Calibración Las muestras colectadas en las hidrólisis contenían básicamente carbohidratos como, glucosa, xilosa y arabinosa, entre otros. Se realizaron curvas de calibración para

Más detalles

OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución.

OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución. OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución. FUNDAMENTO TEÓRICO Una disolución es una mezcla homogénea

Más detalles

ANEXO 1. CALIBRADO DE LOS SENSORES.

ANEXO 1. CALIBRADO DE LOS SENSORES. ANEXO 1. CALIBRADO DE LOS SENSORES. Las resistencias dependientes de la luz (LDR) varían su resistencia en función de la luz que reciben. Un incremento de la luz que reciben produce una disminución de

Más detalles

MÉTODOS ESPECTROMÉTRICOS DE ANÁLISIS

MÉTODOS ESPECTROMÉTRICOS DE ANÁLISIS MÉTODOS ESPECTROMÉTRICOS DE ANÁLISIS Introducción: Además de las volumetrías y gravimetrías estudiadas, el químico analítico posee otros métodos de análisis que se basan, en general, en las propiedades

Más detalles

7 6 EL PUENTE WHEATSTONE

7 6 EL PUENTE WHEATSTONE EL PUENTE WHEATSTONE 253 7 6 EL PUENTE WHEATSTONE El circuito puente Wheatstone se utiliza para medir con precisión la resistencia. Sin embargo, más comúnmente se opera junto con transductores para medir

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

GRAFICOS DE CONTROL DATOS TIPO VARIABLES

GRAFICOS DE CONTROL DATOS TIPO VARIABLES GRAFICOS DE CONTROL DATOS TIPO VARIABLES OBJETIVO DEL LABORATORIO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos de control, para realizar

Más detalles

Calidad. y seguridad en el laboratorio

Calidad. y seguridad en el laboratorio Calidad y seguridad en el laboratorio Consulte nuestra página web: www.sintesis.com En ella encontrará el catálogo completo y comentado Calidad y seguridad en el laboratorio Antonio Moreno Ramírez Carmen

Más detalles

PRÁCTICA 1 HERRAMIENTAS Y OPERACIONES BÁSICAS EN EL LABORATORIO BIOANALÍTICO

PRÁCTICA 1 HERRAMIENTAS Y OPERACIONES BÁSICAS EN EL LABORATORIO BIOANALÍTICO PRÁCTICA 1 HERRAMIENTAS Y OPERACIONES BÁSICAS EN EL LABORATORIO BIOANALÍTICO INTRODUCCIÓN Todos los instrumentos de medida que se utilizan en el laboratorio tienen algún tipo de escala para medir una magnitud,

Más detalles

Póster. XII Congreso Nacional de Seguridad y Salud en el Trabajo. Valencia de noviembre de 2001.

Póster. XII Congreso Nacional de Seguridad y Salud en el Trabajo. Valencia de noviembre de 2001. Análisis de compuestos orgánicos volátiles en el aire de los lugares de trabajo. Desarrollo de una nueva herramienta analítica para la mejora de la calidad de los resultados Póster. XII Congreso Nacional

Más detalles

Página 1 de 11. Apartado 7.9: Filtro de partículas Se incluye este apartado sobre el filtro interno de partículas del analizador.

Página 1 de 11. Apartado 7.9: Filtro de partículas Se incluye este apartado sobre el filtro interno de partículas del analizador. PRINCIPALES CAMBIOS EN LAS NORMAS UNE-EN 2013 CON RESPECTO A LAS NORMAS UNE- EN 2005/2006, RELATIVAS A LOS METODOS DE REFERENCIA PARA LA DETERMINACION DE LAS CONCENTRACIONES DE OXIDOS DE NITROGENO, DIOXIDO

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

1.- La materia y clasificación. La materia es cualquier cosa que ocupa un espacio y tiene masas Estados: sólido, líquido, gaseoso

1.- La materia y clasificación. La materia es cualquier cosa que ocupa un espacio y tiene masas Estados: sólido, líquido, gaseoso La Química La Química se encarga del estudio de las propiedades de la materia y de los cambios que en ella se producen. La Química es una ciencia cuantitativa y requiere el uso de mediciones. Las cantidades

Más detalles

Guión de Prácticas. PRÁCTICA METROLOGIA. Medición. 2. CONSIDERACIONES PREVIAS a tener en cuenta SIEMPRE

Guión de Prácticas. PRÁCTICA METROLOGIA. Medición. 2. CONSIDERACIONES PREVIAS a tener en cuenta SIEMPRE 1. OBJETIVOS Guión de Prácticas. PRÁCTICA METROLOGIA. Medición Conocimientos de los fundamentos de medición Aprender a utilizar correctamente los instrumentos básicos de medición. 2. CONSIDERACIONES PREVIAS

Más detalles

Ley de Ohm y conductimetría.

Ley de Ohm y conductimetría. Ley de Ohm y conductimetría. Laboratorio de Física: 1210 Unidad 4 Temas de interés. 1. Ley de Ohm. 2. Conductores electrolíticos. 3. Ley de Kohlrausch. 4. Resistencia eléctrica y conductancia. 5. Fisicoquímica

Más detalles

O peraciones. básicas de laboratorio

O peraciones. básicas de laboratorio O peraciones básicas de laboratorio Consulte nuestra página web: www.sintesis.com En ella encontrará el catálogo completo y comentado O peraciones básicas de laboratorio Alejandro Tomás Lorente Anna Cabedo

Más detalles

RepublicofEcuador EDICTOFGOVERNMENT±

RepublicofEcuador EDICTOFGOVERNMENT± RepublicofEcuador EDICTOFGOVERNMENT± Inordertopromotepubliceducationandpublicsafety,equaljusticeforal, abeterinformedcitizenry,theruleoflaw,worldtradeandworldpeace, thislegaldocumentisherebymadeavailableonanoncommercialbasis,asit

Más detalles

DIFERENCIA, VENTAJAS Y DESVENTAJAS DE INSTRUMENTOS ANALÓGICOS Y DIGITALES

DIFERENCIA, VENTAJAS Y DESVENTAJAS DE INSTRUMENTOS ANALÓGICOS Y DIGITALES DIFERENCIA, VENTAJAS Y DESVENTAJAS DE INSTRUMENTOS ANALÓGICOS Y DIGITALES En general los parámetros que caracterizan un fenómeno pueden clasificarse en Analógicos y Digitales, se dice que un parámetro

Más detalles

VALIDACION DE TECNICAS ANALITICAS Marzo 10/2015

VALIDACION DE TECNICAS ANALITICAS Marzo 10/2015 VALIDACION DE TECNICAS ANALITICAS Marzo 10/2015 BPM Y BPL ANA CECILIA MATALLANA E. MARZO 2015 VALIDACION DE METODOS ANALITICOS B Y BPL QUE ES VALIDACION? Validar un método consiste en verificar y documentar

Más detalles

Estadística Descriptiva

Estadística Descriptiva M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Desde la segunda mitad del siglo anterior, el milagro industrial sucedido en Japón, hizo

Más detalles

Espectrofotometria Uv Visible: Curso: Quimica Analítica II 2012 Profesor: Juan Carlos Sturm

Espectrofotometria Uv Visible: Curso: Quimica Analítica II 2012 Profesor: Juan Carlos Sturm Espectrofotometria Uv Visible: Aplicaciones en el analisis químico Curso: Quimica Analítica II 2012 Profesor: Juan Carlos Sturm Fotómetro o espectrofotómetro? emisor LED 525nm Fotodiodo detector Microprocesador

Más detalles

CINÉTICA QUÍMICA DETERMINACIÓN DEL ORDEN DE REACCIÓN Y ENERGÍA DE ACTIVACIÓN

CINÉTICA QUÍMICA DETERMINACIÓN DEL ORDEN DE REACCIÓN Y ENERGÍA DE ACTIVACIÓN II PRÁCTICA 2 CINÉTICA QUÍMICA DETERMINACIÓN DEL ORDEN DE REACCIÓN Y ENERGÍA DE ACTIVACIÓN En esta experiencia comprobaremos la influencia de la concentración de los reactivos, de la temperatura, y de

Más detalles

Universidad de Alcalá

Universidad de Alcalá Universidad de Alcalá Departamento de Electrónica CONVERSORES ANALÓGICO-DIGITALES Y DIGITALES-ANALÓGICOS Tecnología de Computadores Ingeniería en Informática Sira Palazuelos Manuel Ureña Mayo 2009 Índice

Más detalles

Principios básicos de Absorciometría

Principios básicos de Absorciometría Principios básicos de Absorciometría Prof. Dr. Luis Salazar Depto. de Ciencias Básicas UFRO 2004 NATURALEZA DE LA LUZ MECÁNICA CUÁNTICA Isaac Newton (1643-1727) Niels Bohr (1885-1962) Validación del modelo

Más detalles

Prefacio... ix COMO UTILIZAR ESTE LIBRO... 1 QUE ES LA QUIMICA... 2 EL METODO CIENTIFICO... 3 LAS RAMAS DE LA QUIMICA... 3

Prefacio... ix COMO UTILIZAR ESTE LIBRO... 1 QUE ES LA QUIMICA... 2 EL METODO CIENTIFICO... 3 LAS RAMAS DE LA QUIMICA... 3 ÍNDICE Prefacio... ix 1 introducción a la química... 1 COMO UTILIZAR ESTE LIBRO... 1 QUE ES LA QUIMICA... 2 EL METODO CIENTIFICO... 3 LAS RAMAS DE LA QUIMICA... 3 2 el sistema métrico y la medición científica...

Más detalles

CROMATOGRAFIA DE GASES

CROMATOGRAFIA DE GASES CROMATOGRAFIA DE GASES Prof. Jorge Mendoza C. Dpto. Química Inorgánica y Analítica Definición: La cromatografía es un método de separación física en la cual los componentes aser separados son distribuidos

Más detalles

II. INDICADORES DE EVALUACIÓN Y RELACIÓN CON COMPETENCIAS BÁSICAS CRITERIOS DE EVALUACIÓN

II. INDICADORES DE EVALUACIÓN Y RELACIÓN CON COMPETENCIAS BÁSICAS CRITERIOS DE EVALUACIÓN 1 11 1 1 CL CM CCyIMF CTIyCD CSyC CSyA CAA CAeIP CE UNIDAD DIDÁCTICA Nº PROPIEDADES DE LA MATERIA I. CONTENIDOS Materia, cuerpos materiales y sistemas materiales* Propiedades de la materia: intensivas

Más detalles

VOLUMEN MOLAR PARCIAL DE UNA MEZCLA BINARIA

VOLUMEN MOLAR PARCIAL DE UNA MEZCLA BINARIA Práctica VOLUMEN MOLAR PARCIAL DE UNA MEZCLA BINARIA. INTRODUCCIÓN Las magnitudes termodinámicas como la entropía S, energía interna E, volumen V ó entalpía H son magnitudes extensivas, que dependen de

Más detalles

PRÁCTICO 3: SOLUCIONES

PRÁCTICO 3: SOLUCIONES Curso de Laboratorio Página: 1/6 DEPARTAMENTO ESTRELLA CAMPOS PRÁCTICO 3: SOLUCIONES Bibliografía: Química, La Ciencia Central, T.L. Brown, H.E.LeMay, Jr., B.Bursten; Ed. Prentice-Hall Hispanoamericana,

Más detalles

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS PRÁCTICA DE LABORATORIO II-09 TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS OBJETIVOS Estudiar los fenómenos transientes que se producen en circuitos RC de corriente directa.

Más detalles

CENTRO UNIVERSITARIO MONTEJO A.C. Temario Ciencias 3 Énfasis en química. Bloque I. Las características de los materiales

CENTRO UNIVERSITARIO MONTEJO A.C. Temario Ciencias 3 Énfasis en química. Bloque I. Las características de los materiales Bloque I. Las características de los materiales La ciencia y la tecnología en el mundo actual Identifica las aportaciones del conocimiento químico y tecnológico en la satisfacción de necesidades básicas,

Más detalles

ESPECTROFOTÓMETROS UV- VISIBLE COMPONENTES

ESPECTROFOTÓMETROS UV- VISIBLE COMPONENTES ESPECTROFOTÓMETROS UV- VISIBLE COMPONENTES INSTRUMENTAL EL INSTRUMENTO QUE NORMALMENTE SE UTILIZA PARA MEDIR LA TRANSMITANCIA Y ABSORBANCIA ES EL ESPECTROFOTÓMETRO LOS COMPONENTES BÁSICOS DE UN ESPECTROFOTÓMETRO

Más detalles

COLEGIO DE BACHILLERES DEL ESTADO DE TLAXCALA DIRECCIÓN ACADÉMICA DEPARTAMENTO DE BIBLIOTECAS Y LABORATORIOS

COLEGIO DE BACHILLERES DEL ESTADO DE TLAXCALA DIRECCIÓN ACADÉMICA DEPARTAMENTO DE BIBLIOTECAS Y LABORATORIOS DIRECCIÓN ACADÉMICA DEPARTAMENTO DE BIBLIOTECAS Y LABORATORIOS ACTIVIDAD EXPERIMENTAL NÚM. 2 TABLA PERIÓDICA PROPIEDAD DE LOS NO METALES EN COMPARACIÓN CON LOS METALES (BLOQUE IV) INTRODUCCIÓN Una de las

Más detalles

Conceptos básicos de metrología

Conceptos básicos de metrología Conceptos básicos de metrología Definiciones, características y estimación de incertidumbres. Lic. Francisco Sequeira Castro 05 de Noviembre, 2014 Qué es la metrología? La metrología es la ciencia de las

Más detalles

Guía Temática de Química

Guía Temática de Química Guía Temática de Química Introducción a la Química Definición de química y de ciencias afines a ella Diferenciación de las ciencias afines a la química 1 Conceptos básicos de química y el método científico

Más detalles

UNIÓN INTERNACIONAL DE TELECOMUNICACIONES CONSTRUCCIÓN, INSTALACIÓN Y PROTECCIÓN DE LOS CABLES Y OTROS ELEMENTOS DE PLANTA EXTERIOR

UNIÓN INTERNACIONAL DE TELECOMUNICACIONES CONSTRUCCIÓN, INSTALACIÓN Y PROTECCIÓN DE LOS CABLES Y OTROS ELEMENTOS DE PLANTA EXTERIOR UNIÓN INTERNACIONAL DE TELECOMUNICACIONES CCITT L.14 COMITÉ CONSULTIVO INTERNACIONAL TELEGRÁFICO Y TELEFÓNICO CONSTRUCCIÓN, INSTALACIÓN Y PROTECCIÓN DE LOS CABLES Y OTROS ELEMENTOS DE PLANTA EXTERIOR MÉTODO

Más detalles

Determinación de la Masa Molar del Magnesio

Determinación de la Masa Molar del Magnesio Determinación de la Masa Molar del Magnesio Introducción teórica Como en muchas reacciones químicas, los reactivos o sus productos o ambos son gases, es más común medir éstos en función del volumen usando

Más detalles

Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas)

Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas) Medición y comparación del coeficiente de atenuación lineal de líquidos (con y sin gas) Marlen Hernández Ortiz Héctor Antonio Durán Muñoz Eduardo Manzanares Acuña Héctor René Vega Carrillo Unidad de Académica

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

GUIA DE ESTUDIO PARA EXAMEN DE RECUPERACION DE QUIMICA. CICLO ESCOLAR NOMBRE DEL ALUMNO:

GUIA DE ESTUDIO PARA EXAMEN DE RECUPERACION DE QUIMICA. CICLO ESCOLAR NOMBRE DEL ALUMNO: GUIA DE ESTUDIO PARA EXAMEN DE RECUPERACION DE QUIMICA. CICLO ESCOLAR 2013-2014. RELACION DE LA QUIMICA Y LA TECNOLOGÍA CON EL SER HUMANO, LA SALUD Y EL AMBIENTE. NOMBRE DEL ALUMNO: AL CONTESTAR ESTE TRABAJO

Más detalles

Movimiento armónico. Péndulos físico y de torsión.

Movimiento armónico. Péndulos físico y de torsión. Movimiento armónico. Péndulos físico y de torsión. Objetivo eterminar el radio de giro de un péndulo físico y la aceleración de la gravedad. eterminar el módulo de rigidez de un hilo metálico mediante

Más detalles

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro

Práctica No 12. Determinación experimental de la Presión de vapor de un líquido puro Práctica No 12 Determinación experimental de la Presión de vapor de un líquido puro 1. Objetivo general: Evaluar la entalpía de vaporización mediante el modelo de Clausius y Clapeyron. 2. Marco teórico:

Más detalles

TÉCNICAS EXPERIMENTALES EN SÍNTESIS ORGÁNICA

TÉCNICAS EXPERIMENTALES EN SÍNTESIS ORGÁNICA TÉCNICAS EXPERIMENTALES EN SÍNTESIS ORGÁNICA PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid COLECCIÓN: Química

Más detalles

Medidas descriptivas I. Medidas de tendencia central A. La moda

Medidas descriptivas I. Medidas de tendencia central A. La moda Medidas descriptivas I. Medidas de tendencia central A. La moda Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neuman Gandía 1 Introducción En muchas ocasiones el conjunto

Más detalles

INSTITUTO SUPERIOR DEL PROFESORADO SAN PEDRO NOLASCO. Espacio curricular: QUÍMICA EXPERIMENTAL (instrumental)

INSTITUTO SUPERIOR DEL PROFESORADO SAN PEDRO NOLASCO. Espacio curricular: QUÍMICA EXPERIMENTAL (instrumental) 1 Espacio curricular: QUÍMICA EXPERIMENTAL (instrumental) Formato: Asignatura Carrera: Profesorado en Química Curso: 4º año Profesor/a: Lic. Elena Rocelli N de horas: Totales: 98 Semanales: 7 Ciclo lectivo:

Más detalles

A continuación se detallan cada una de las propiedades coligativas:

A continuación se detallan cada una de las propiedades coligativas: PREGUNTA (Técnico Profesional) Se prepara una solución con 2 mol de agua y 0,5 mol de un electrolito no volátil. Al respecto, cuál es la presión de vapor a 25 ºC de esta solución, si la presión del agua

Más detalles