TRABAJO DE INVESTIGACIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRABAJO DE INVESTIGACIÓN"

Transcripción

1 TRABAJO DE INVESTIGACIÓN TEMA: CENTROIDES DE GRAVEDAD DE LÍNEAS, ÁREAS Y VOLÚMENES DE CUADROS COMPUESTOS UTILIZANDO TABLAS.. GRUPO: 402 UNIDAD: 3 FECHA: 25/abril/2016 INTEGRANTES: Barrios Flores Dulce Soemi, Bertín Silva Sandra Concepción, Hernández Lizama Arely, Robles Cárdenas Jorge Iván, Vázquez Martínez Marco Antonio. LISTA DE COTEJO: INICIO *SI CUMPLE CON TODOS LOS INDICADORES DE LA LISTA DE COTEJO SE RECIBE EL PRESENTE TRABAJO DE INVESTIGACIÓN PARA EVALUAR SU DESARROLLO. INDICADOR ENTREGA INVESTIGACIÓN EN ARCHIVO CON FORMATO PDF (EN CASO DE INDICARSE QUE SEA IMPRESO LO PRESENTA EN TINTA NEGRA) INTEGRA HOJA DE PRESENTACIÓN (INDICADA EN ENCUADRE) AGREGA ÍNDICE PAGINADO INMEDITAMENTE DESPUÉS DE LA HOJA DE PRESENTACIÓN PAGINA TODAS LAS HOJAS EN MARGEN INFERIOR DERECHO INTEGRA MAPA CONCEPTUAL AGREGA UNA CONCLUSIÓN SOBRE EL TEMA INVESTIGADO DETALLA ORDENADAMENTE LA FUENTE DE INFORMACIÓN BIBLIOGRÁFICA RÚBRICA: DESARROLLO SI CUMPLE NO CUMPLE INDICADOR FORMATO DE INVESTIGACIÓN EXCELENTE (10) PRESENTA TODAS LAS CARACTERÍSTI CAS DE FOMATO INDICADAS BUENO (9-8) PRESENTA HASTA UNA OBSERVACIÓN DE LAS CARACTERÍSTI CAS SATISFACTORI O (7 0 6) PRESENTA HASTA DOS OBSERVACION ES DE LAS CARACTERÍSTI CAS DEFICIENTE (5 O MENOS) PRESENTA MÁS DE TRES OBSERVACION ES DE LAS CARACTERÍSTI CAS

2 ORGANIZACIÓN DE LA INFORMACIÓN RECOPILA Y ORGANIZA LOS DATOS DE ACUERDO A LOS RUBROS PROPUESTOS. CORROBORA DATOS Y MANTIENE INTEGRIDAD EN LA RECOPILACIÓN RECOPILA Y ORGANIZA LOS DATOS DE ACUERDO A LOS RUBROS PROPUESTOS. CORROBORA DATOS. TIENE DIFICULTAD MANTIENDO INTEGRIDAD EN LA RECOPILACIÓN RECOPILA Y ORGANIZA LOS DATOS DE ACUERDO A LOS RUBROS PROPUESTOS. TIENE DIFICULTAD CORROBORAN DO LOS DATOS Y MANTIENDO INTEGRIDAD EN LA RECOPILACIÓN RECOPILA MUY POCOS DATOS, ESTOS TIENEN POCA O NINGUNA CREDIBILIDAD. NO CORROBORA LOS DATOS Y TAMPOCO MANTIENE LA INTEGRIDAD DE LOS MISMOS INDICADOR ELABORACIÓN DEL MAPA CONCEPTUAL EXCELENTE (10) PRESENTA IDEAS CLARAS Y RELEVANTES RESPECTO AL CONTENIDO DE LA INFORMACIÓN INVESTIGADA BUENO (9-8) PRESENTA IDEAS CLARAS SOBRE EL CONTENIDO DE LA INFORMACIÓN PERO NO HA TOCADO OTROS ASPECTOS IMPORTANTES INVESTIGADOS SATISFACTORI O (7 0 6) PRESENTA SOLO ALGUNAS IDEAS CLARAS RESPECTO AL CONTENIDO DE LA INFORMACIÓN INVESTIGADA DEFICIENTE (5 O MENOS) NO PRESENTA IDEAS CLARAS RESPECTO AL CONTENIDO DE LA INFORMACIÓN INVESTIGADA CONCLUSIÓN SOBRE EL TEMA INVESTIGADO RESPONDE LOS OBJETIVOS. A RESPONDE LOS OBJETIVOS. A RESPONDE LOS OBJETIVOS. A RESPONDE PARCIALMENT E A LOS

3 MANTIENE OBJETIVIDAD AL EXPRESAR LAS IDEAS. SE SUSTENTA CON LOS DATOS ORTOGRAFÍA NO HAY ERRORES DE ORTOGRAFÍA O PUNTUACIÓN TOTAL MANTIENE OBJETIVIDAD AL EXPRESAR LAS IDEAS. TIENE DIFICULTAD SUSTENTANDO CON LOS DATOS PRESENTA HASTA 2 ERRORES DE ORTOGRAFÍA O PUNTUACIÓN TIENE DIFICULTAD MANTENIENDO OBJETIVIDAD AL EXPRESAR LAS IDEAS Y SUSTENTANDO CON LOS DATOS PRESENTA HASTA 4 ERRORES DE ORTOGRAFÍA O PUNTUACIÓN OBJETIVOS O NO RESPONDE. TIENE POCA O NINGUNA OBJETIVIDAD AL EXPRESAR LAS IDEAS, NO SUSTENTA CON LOS DATOS PRESENTA 5 O MÁS ERRORES DE ORTOGRAFÍA O PUNTUACIÓN INDICADORES (B Y D) ACREDITADOS SI ( ) NO ( ) FIRMA DEL DOCENTE:

4 OBSERVACIONES: PARA PODER ACREDITAR ESTOS INDICADORES DEBERÁ OBTENER MÍNIMO UNA CALIFICACIÓN DE 35 PUNTOS. DE 35 A 39 PUNTOS OBTIENE 70, DE 40 A 44 PUNTOS OBTIENE 80, DE 45 A 49 PUNTOS OBTIENE 90 Y CON 50 PUNTOS OBTIENE 100. AL OBTENER DE 70 A 80 DE CALIFICACIÓN ACREDITA EL INDICADOR B Y DE 90 A 100 ACREDITA LOS INDICADORES B Y D. EL ALUMNO SE COMPROMETE A ENTREGAR EN EL DÍA Y HORARIO EN QUE LE SEA PROGRAMADA SU ACTIVIDAD. EN CASO CONTRARIO NO SE CONTABILIZARÁ PARA EVALUACIÓN SUMATIVA. EL ALUMNO DEBERÁ DE IMPRIMIR LA PRESENTE RÚBRICA PARA SU REVISIÓN Y FIRMA POR EL DOCENTE. LAS CARACTERÍSTICAS A EVALUAR EN LA SECCIÓN DE FORMATO DE INVESTIGACIÓN SON: GARDADO: ARCHIVO EN FORMATO PDF, CON NOMBRE INVEST (NUMERO DE LA UNIDAD) (UN APELLIDO Y UN NOMBRE DEL ALUMNO) SI ES EN EQUIPO EL DATO DE UN INTEGRANTE. MARGENES: 3 CM EN LATERAL IZQUIERDO Y 2 CM EN LOS DEMÁS LADOS. TITULOS: CENTRADOS, MAYUSCULA,, NEGRITA, LETRA ARIAL 14 TEXTO: CON SANGRÍA (UN TAB) MINÚSCULA (DE ACUERDO A REGLAS DE ORTOGRAFÍA), FUENTE ARIAL 12, JUSTIFICADO. INTERLINEADO: 1.5 IMÁGENES: CLARAS Y BIEN UBICADAS. HOJA BOND COLOR BLANCA (CUANDO SE IMPRIMA)

5 INSTITUTO TECNOLÓGICO SUPERIOR DE PÁNUCO INGENIERÍA INDUSTRIAL TRABAJO DE INVESTIGACIÓN UNIDAD 3 TEMA CENTROIDES DE GRAVEDAD DE LÍNEAS, ÁREAS Y VOLÚMENES DE CUADROS COMPUESTOS UTILIZANDO TABLAS. INTEGRANTES: 1. BARRIOS FLORES DULCE SOEMI. 2. BERTIN SILVA SANDRA CONCEPCION. 3. HERNANDEZ LIZAMA ARELY. 4. ROBLES CARDENAS JORGE IVAN. 5. VAZQUEZ MARTINEZ MARCO ANTONIO. FECHA DE ENTREGA: 25 DE ABRIL DEL 2016

6 INDICE CENTROIDES DE GRAVEDAD DE LÍNEAS, ÁREAS Y VOLÚMENES DE CUADROS COMPUESTOS UTILIZANDO TABLAS MAPA CONCEPTUAL CONCLUSIÓN.. 11 BIBLIOGRAFÍA. 12

7 3.7.- CENTROIDES DE GRAVEDAD DE LÍNEAS, ÁREAS Y VOLÚMENES DE CUADROS COMPUESTOS UTILIZANDO TABLAS. Centro de gravedad: es un punto que ubica al peso resultante de un sistema de partículas. Para mostrar como determinar este punto, considere el sistema de n partículas fijas dentro de una región del espacio. Los pesos de las partículas comprenden un sistema de fuerzas paralelas, que puede ser remplazado por un solo peso resultante (equivalente) que tenga el punto G de aplicación definido. Esto requiere que el peso resultante sea igual al peso total de todas las n partículas; es decir, WR= W. La suma de los momentos de los pesos de todas las partículas son respecto a los ejes x, y, y, z es entonces igual al momento del peso de la resultante con respecto a esos ejes. Así para determinar la coordenada de x de G. podemos sumar momentos con respecto al eje y esto resulta en: XWR = X1 W1 + X2 W Xn Wn. De la misma manera sumando momentos con respecto al eje X1 podemos obtener la coordenada y; es decir: ywr = Y1 W1 + Y2 W2 + Yn Wn. Aunque los pesos no producen un momento con respecto al eje z podemos obtener la coordenada z de G imaginando el sistema de coordenadas con las partículas fijas en él, como si estuviera girado 90 con respecto al eje x ( o al y). Sumando momentos con respecto al eje x tenemos; zwr = Z1 W1 + Z2 W2 + ZnWn. Podemos generalizar estas fórmulas y escribirlas simbólicamente en la forma como se muestra en la siguiente ecuación. 1

8 Aquí X, Y, Z, representan las coordenadas del centro de gravedad G del sistema de partículas. X, Y, Z, representan las coordenadas de cada partícula presente en el sistema. W es la suma resultante de los pesos de todas las partículas presentes en el sistema. Estas ecuaciones son recordadas fácilmente si se tiene en mente que solo representa un balance entre la suma de los momentos de los pesos de cada partícula del sistema y el momento del peso resultante para el sistema. Centro de masa. Para estudiar problemas que implican el movimiento de materia bajo la influencia de una fuerza, esto es, la dinámica, es necesario localizar un punto llamado centro de masa. Si la aceleración debida a la gravedad g para cada partícula es constante entonces W = mg. Sustituyendo en las ecuaciones y cancelando g en el numerador y el denominador resulta 2

9 Por comparación, entonces la ubicación del centro de gravedad, coincide con la del centro de masa, sin embargo las partículas, tienen peso únicamente bajo la influencia de una atracción, gravitatoria mientas que el centro de más es independiente de la gravedad. Por ejemplo no tendrá definido el centro de gravedad de un sistema de partículas que representen los planetas de nuestro sistema solar mientras que el centro de masa de este sistema si es importante. CENTRO DE GRAVEDAD, CENTRO DE MASA, Y CENTROIDE PARA UN CUERPO Un cuerpo rígido está compuesto de un número infinito de partículas y los principios usados para determinar las ecuaciones, son aplicados al sistema de partículas que componen un cuerpo rígido resulta necesario usar integración en vez de suma discreta de términos considerando la partícula arbitraria (x, y, z) y con peso dw las ecuaciones resultantes son; X = Y= Z= 3

10 Para aplicar estas ecuaciones apropiadamente el peso diferencial dw, debe ser expresado en términos de su volumen asociado dv, si se representa el peso específico, del cuerpo medido como un peso por volumen unitario entonces dw = y dv y por tanto: Aquí la integración debe ser efectuada a todo volumen de cuerpo. Centro de masa. La densidad p, o masa por volumen unitario está relacionada mediante la ecuación mencionada y =p g donde (g) es la aceleración debida a la gravedad sustituyendo esta relación con las ecuaciones y cancelado (g) en los numeradores y denominadores se obtienen ecuaciones similares ( con p remplazando a y) que se pueden usar para determinan el número de masa de cuerpo. 4

11 Esto es cierto si el cuerpo gravitatorio tiene la misma magnitud y dirección en todas partes. Esa suposición es apropiada para la mayor parte de las aplicaciones de la ingeniería ya que la gravedad no varía apreciablemente. CENTROIDE. Es un punto que define el centro geométrico de un objeto. Su ubicación puede ser determinada a partir de fórmulas similares a las usadas para encontrar el centro de gravedad del cuerpo o centro de masa. En particular si el material que compone un cuerpo es uniforme u homogéneo, la densidad o peso específico será constante en todo el cuerpo, y por tanto, este término saldrá de las integrales y se cancelara a partir de los numeradores y denominadores de las ecuaciones. Las formulas resultantes definen el centroide del cuerpo ya que son independientes del peso del cuerpo y dependen solo de la geometría consideremos tres casos específicos: 5

12 Volumen. Si un objeto es subdividido en elemento de volumen dv, la ubicación del centroide C (x, y, z) para el volumen del objeto puede ser determinado calculando los momentos de los elementos con respecto a cada uno de los ejes coordenados. Las formulas resultantes son: Área. De manera similar el centroide del área superficial de un objeto, como una placa o un cascaron. Se puede encontrar subdividiendo el área en elementos da y calculando los elementos de área con respecto a cada uno de los ejes coordenados esto es: Línea. Si la simetría del objeto, tal como la de una barra delgada o la de un alambre, toma la forma de una línea, el equilibrio de los elementos diferenciales dl con respecto a cada uno de los ejes coordenados resulta en: 6

13 Simetría. Los centroides de algunas formas o perfiles pueden ser parciales o completamente especificados usando condiciones de simetría. En los casos donde la forma tenga un eje de simetría el centroide de la forma se encontrara a lo largo de ese eje, puesto que para toda la longitud elemental dl a una distancia. Por tanto los elementos total para todos los elementos con respecto al eje de simetría. En los casos donde una forma tenga dos o tres ejes de simetría se infiere que el centroide se encuentra a la intersección de esos ejes. PUNTOS IMPORTANTES El centroide representa el centro geométrico de un cuerpo. Este punto coincide con el centro de masa o con el centro de gravedad solo si el material que compone al cuerpo es uniforme u homogéneo. 7

14 Las fórmulas usadas para localizar el centro de gravedad o el centroide simplemente representan un balance entre la suma de momentos de todas las partes del sistema y el momento de la resultante para el sistema. En algunos casos, el centroide se ubica en un punto fuera del objeto, como en el caso de un anillo, donde el centroide está en el centro del anillo, además este punto se encuentra sobre cualquier eje de simetría del cuerpo. PROCEDIMIENTO DEL ANALISIS El centro de gravedad o centroide de un objeto o forma puede ser determinado mediante simples integraciones usando el siguiente procedimiento: Elemento diferencial. Seleccione un sistema de coordenado apropiado, especifique los ejes de coordenado, y luego elija un elemento diferencial para la integración. Para líneas, el elemento dl, es representado como un segmento diferencial de línea. Para áreas el elemento da es generalmente un rectángulo de longitud finita y ancho diferencial. Para volúmenes, el elemento dw, es un disco circular con radio finito y espeso diferencial, o bien un cascaron con longitud y radio finitos y espesor diferencial. Localice en un punto arbitrario (x, y, z) sobre la curva que define la forma. 8

15 TAMAÑO Y BRAZOS DE MOMENTO Exprese la longitud dl, el área da, o el volumen dv, del elemento en términos de la coordenada de la curva, usada para describir la forma geométrica. Determine las coordenadas o brazos de momento x, y, z para el centroide o centro de gravedad del elemento. INTEGRACIONES Sustituya las formulaciones, para x, y, z, y, dl, da, dv, en las ecuaciones apropiadas y efectué las integraciones. Para efectuar la integración, exprese la función en el integrando, en términos de la misma variable, aplicada al espesor diferencial del elemento. Los límites de la integral son definidos a partir de las dos ubicaciones extremas del espesor diferencial del elemento de manera que cuando los elementos son sumados o la integración es efectuada, la región completa queda cubierta. 9

16 MAPA CONCEPTUAL CENTROIDES DE GRAVEDAD DE LÍNEAS, ÁREAS Y VOLÚMENES DE CUADROS COMPUESTOS UTILIZANDO TABLAS. CENTRO DE MASA Centro de gravedad: es un punto que ubica al peso resultante de un sistema de partículas. CENTROIDE VOLUMEN El volumen del objeto puede ser determinado calculando los momentos de los elementos con respecto a cada uno de los ejes coordenados Implican el movimiento de materia bajo la influencia de una fuerza, esto es, la dinámica, es necesario localizar un punto llamado centro de masa. Es un punto que define el centro geométrico de un objeto. Su ubicación puede ser determinada a partir de fórmulas similares a las usadas para encontrar el centro de gravedad del cuerpo o centro de masa. Área. De manera similar el centroide del área superficial de un objeto. Simetría. Los centroides de algunas formas o perfiles pueden ser parciales o completamente especificados usando condiciones de simetría. 10

17 CONCLUSION Por ultimos el centroide de gavedad del punto G de una placa delgada, homogénea, de grosor t uniforme y superficie de área A, se puede determinar considerando un elemento infinitesimal de volumen dv que se puede expresar en función de un elemento infinitesimal de superficie da de la placa en la forma siguiente: dv = t da. Este tema se nos hizo un poco corto a comparacion de los temas anterios y con tan solo su primera palabra nos damos una idea de lo que trata el tema la palabra centroides se refiere al centro de un cuerpo e incluso en donde estamos parados. Los centroides de cuerpos compuestos si puede dividirse una línea, superficie o volumen en partes cuyos respectivos centroides tengan posiciones conocidas, se podrá determinar sin integración el momento de la línea, superficie o volumen total obteniendo la suma algebraica de los primeros momentos (producto de la longitud, área o volumen por la distancia del centroide al eje o plano) de las partes en que se haya dividido la línea, superficie o volumen. 11

18 BIBLIOGRAFÍA HIBBELER. R.C Mecánica Vectorial Para Ingenieros DECIMA EDICION Estática CAPITULO 9: CENTRO DE GRAVEDAD Y CENTROIDE Pag:

CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio,

CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio, CENTRO DE GRAVEDAD Y CENTROIDE Centro de gravedad y centro de masa para un sistema de partículas Centro de gravedad Considerando el sistema de n partículas fijo dentro de una región del espacio, Los pesos

Más detalles

TEMA II CENTRO DE GRAVEDAD Y CENTROIDES

TEMA II CENTRO DE GRAVEDAD Y CENTROIDES Universidad de los Andes Facultad de Ingeniería Departamento de Ciencias Aplicadas y Humanísticas. Mecánica Racional 10 TEMA II CENTRO DE GRAVEDAD Y CENTROIDES Apuntes de clases, de la profesora Nayive

Más detalles

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido.

Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido. UNIDAD 2 EQUILIBRIO DE CUERPOS RÍGIDOS. CENTROS DE GRAVEDAD GENERALIDADES.- El centro de gravedad es aquel que localiza el peso resultante de un sistema de partículas y el centro de masas de un sistema

Más detalles

1 1.1. INTRODUCCIÓN Se ha supuesto que la atracción ejercida por la tierra sobre un cuerpo rígido puede representarse por una sola fuerza W, esta fuerza, denominada fuerza de gravedad o peso del cuerpo,

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

Centro de masa. Centro de gravedad. Centroides.

Centro de masa. Centro de gravedad. Centroides. Centro de masa. Centro de gravedad. Centroides. MOMENTOS Hasta ahora se han calculado momentos de fuerzas. Sin embargo, en muchos problemas de ingeniería aparecen momentos de masas, fuerzas, volúmenes,

Más detalles

Centro de gravedad de un cuerpo bidimensional

Centro de gravedad de un cuerpo bidimensional Centro de gravedad de un cuerpo bidimensional Al sumar las fuerzas en la dirección z vertical y los momentos alrededor de los ejes horizontales y y x, Aumentando el número de elementos en que está dividida

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ESTÁTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ESTÁTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ESTÁTICA NIVEL : LICENCIATURA CRÉDITOS : 8 CLAVE : ICAC23002815 HORAS TEORÍA : 3 SEMESTRE : TERCERO HORAS PRÁCTICA : 2 REQUISITOS : GEOMETRÍA

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

DIVISIÓN DE INGENIERÍAS CIVIL Y GEOMÁTICA DEPARTAMENTO DE ESTRUCTURAS

DIVISIÓN DE INGENIERÍAS CIVIL Y GEOMÁTICA DEPARTAMENTO DE ESTRUCTURAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE INGENIERÍAS CIVIL Y GEOMÁTICA DEPARTAMENTO DE ESTRUCTURAS ASIGNATURA: TEMA: ESTÁTICA ESTRUCTURAL CENTROIDES CENTROIDES: CENTRO

Más detalles

CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE

CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE UNIERSIDD NION DE O FUTD DE INGENIERÍ EÉTRI Y EETRÓNI ESUE PROFESION DE INGENIERÍ EÉTRI ENTRO DE GREDD, ENTRO DE MS Y ENTROIDE ING. JORGE MONTÑO PISFI O, 2010 ENTRO DE GREDD, ENTRO DE MSYY ENTROIDE ENTRO

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ESTATICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ESTATICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ESTATICA NIVEL: LICENCIATURA CRÉDITOS: 9 CLAVE: ICAC24.500917 HORAS TEORÍA: 4.5 SEMESTRE: TERCERO HORAS PRÁCTICA: 0 REQUISITOS: CINEMATICA

Más detalles

TEORÍA TEMA 6 CENTRO DE FUERZAS PARALELAS. A- Centro de fuerzas paralelas caso dos fuerzas- caso n fuerzas. Definición centro de fuerzas paralelas.

TEORÍA TEMA 6 CENTRO DE FUERZAS PARALELAS. A- Centro de fuerzas paralelas caso dos fuerzas- caso n fuerzas. Definición centro de fuerzas paralelas. TEORÍA TEMA 6 CENTRO DE FUERZAS PARALELAS A- Centro de fuerzas paralelas caso dos fuerzas- caso n fuerzas. Definición centro de fuerzas paralelas. B- Caso de fuerzas paralelas de igual sentido (gráfico)

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

UNIVERSIDAD LIBRE SECCIONAL PEREIRA FACULTAD DE INGENIERÍA PROGRAMA ACADÉMICO DE INGENIERÍA CIVIL

UNIVERSIDAD LIBRE SECCIONAL PEREIRA FACULTAD DE INGENIERÍA PROGRAMA ACADÉMICO DE INGENIERÍA CIVIL FACULTAD DE INGENIERÍA PROGRAMA ACADÉMICO DE INGENIERÍA CIVIL PLAN DE ASIGNATURA NOMBRE DE LA ASIGNATURA: CODIGO DE LA ASIGNATURA: 02007 CICLO DE FORMACIÓN: COMPONENTE DE FORMACIÓN BÁSICO PROFESIONAL BÁSICO

Más detalles

4. PROPIEDAD DE ÁREAS PLANAS Y LINEAS Centroides de áreas compuestas

4. PROPIEDAD DE ÁREAS PLANAS Y LINEAS Centroides de áreas compuestas 4. PROPIEDAD DE ÁREAS PLANAS Y LINEAS 4.1. Centroides de áreas compuestas 4.1.1. Centros de gravedad de un cuerpo bidimensional Para iniciar, considere una placa plana horizontal (figura 5.1). La placa

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

Monday, March 26, 12

Monday, March 26, 12 cómo puede influir la sección transversal de un objeto en su equilibrio? es importante para la construcción de estructuras? fuerzas distribuidas: centroides centros de gravedad areas líneas centro de gravedad

Más detalles

Apéndice A. Vectores: propiedades y operaciones básicas.

Apéndice A. Vectores: propiedades y operaciones básicas. Vectores 145 Apéndice A. Vectores: propiedades y operaciones básicas. Una clasificación básica de las distintas propiedades físicas medibles, establece que estas pueden dividirse en dos tipos: a) Aquellas

Más detalles

ESTÁTICA. Mecánica vectorial para ingenieros: Centroides y Centros de Gravedad. Novena edición CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

ESTÁTICA. Mecánica vectorial para ingenieros: Centroides y Centros de Gravedad. Novena edición CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. Novena edición CAPÍTULO : ESTÁTICA Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Centroides y Centros de Gravedad 2010 The McGraw-Hill Companies, Inc. All

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

Nombre de la asignatura: Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCM Horas teoría-horas práctica-créditos: 3-2-8

Nombre de la asignatura: Carrera: Ingeniería Mecatrónica. Clave de la asignatura: MCM Horas teoría-horas práctica-créditos: 3-2-8 1. - DATOS DE LA ASIGNATURA Nombre de la asignatura: Estática. Carrera: Ingeniería Mecatrónica Clave de la asignatura: MCM-0207 Horas teoría-horas práctica-créditos: 3-2-8 2. - UBICACIÓN a) RELACION CON

Más detalles

Calcular la diferencia de potencial entre el centro de la esfera y el infinito.

Calcular la diferencia de potencial entre el centro de la esfera y el infinito. Problema 2.1 Carga volumétrica, principio de superpo- sición Figura 2.1. Esfera con distribución de carga no simétrica (Problema 2.1) Una esfera no conductora de radio R está dividida es dos semiesferas.

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

Unidad III. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida :

Unidad III. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida : Unidad III Aplicaciones de la integral. 3.1 Áreas. 3.1.1 Área bajo la gráfica de una función. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida

Más detalles

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; = 3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función

Más detalles

Indice de contenido. Ecuaciones de los círculos / Ecuación estándar de un círculo. Problemas complementarios

Indice de contenido. Ecuaciones de los círculos / Ecuación estándar de un círculo. Problemas complementarios l' Indice de contenido Un sistema de coordenadas lineales / Intervalos finitos / Intervalos infinitos / Desigualdades Ejes de coordenadas / Coordenadas / Cuadrantes / Fórmula de la distancia / Fórmulas

Más detalles

ENERGÍA Y CANTIDAD DE MOVIMIENTO

ENERGÍA Y CANTIDAD DE MOVIMIENTO Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 10:47 CUERPOS RIGIDOS ENERGÍA Y CANTIDAD DE MOVIMIENTO 2016 Hoja 1 OBJETIVOS Estudiar el método del Trabajo y la Energía Aplicar y analizar el movimiento

Más detalles

Unidad 6. Objetivos. Equilibrio, momento de una fuerza. Al término de la unidad, el alumno:

Unidad 6. Objetivos. Equilibrio, momento de una fuerza. Al término de la unidad, el alumno: Unidad 6 Equilibrio, momento de una fuerza Objetivos Al término de la unidad, el alumno: Definir e identificar los brazos de palanca que se generan por la aplicación de fuerzas que se aplican sobre algunos

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011 Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende

Más detalles

',5(&&,Ï1$&$'e0,&$ 6(&8(1&,$)250$7,9$

',5(&&,Ï1$&$'e0,&$ 6(&8(1&,$)250$7,9$ ',5(&&,Ï1*(1(5$/'(/%$&+,//(5$72'(/(67$'2'(+,'$/*2 ',5(&&,Ï1$&$'e0,&$ 6(&8(1&,$)250$7,9$ 3ODQWHO &ODYH $VLJQDWXUDCOMPUTACIÓN I &ODYHCO1801 'RFHQWH: &DWHJRUtDV Se expresa y comunica. Piensa crítica y reflexivamente.

Más detalles

Lunes, Miércoles y Jueves: 08:30 a 10:30 horas. Diario: 14:30 a 15:00 horas Salón: 4105

Lunes, Miércoles y Jueves: 08:30 a 10:30 horas. Diario: 14:30 a 15:00 horas Salón: 4105 Datos de la materia Nombre de la materia: Estática Clave de la materia: M1003-03 Liga al programa de la http://serviciosva.itesm.mx/planesestudio/consultas/materias/consultamaterias.aspx?form=consultar_ma

Más detalles

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.

En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,

Más detalles

Capitulo Vectores. Matías Enrique Puello Chamorro. 13 de julio de 2014

Capitulo Vectores. Matías Enrique Puello Chamorro.  13 de julio de 2014 Capitulo Vectores Matías Enrique Puello Chamorro mpuello@unilibrebaq.edu.co www.matiaspuello.wordpress.com 13 de julio de 2014 Índice 1. Introducción 3 2. Marcos de referencia 4 3. Definición de VECTOR

Más detalles

Estatica. Carrera: Participantes Academia de Ing. Civil del ITN. Asignaturas Temas Asignaturas Temas Resistencia de Materiales.

Estatica. Carrera: Participantes Academia de Ing. Civil del ITN. Asignaturas Temas Asignaturas Temas Resistencia de Materiales. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Estatica Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3 2 8 2.- HISTORIA DEL PROGRAMA Lugar y fecha de elaboración

Más detalles

U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ESTÁTICA SÍLABO

U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ESTÁTICA SÍLABO U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ESTÁTICA SÍLABO I. DATOS GENERALES CARRERA PROFESIONAL : INGENIERÍA MECÁNICA

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL SILABO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL SILABO FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL SILABO 1. DATOS INFORMATIVOS 1.1 Nombre de la Asignatura : ESTÁTICA 1.2 Código de la Asignatura : CIV420 1.3 Número de créditos : 04 1.4 Carácter

Más detalles

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales

Más detalles

VIII. MOMENTOS DE INERCIA

VIII. MOMENTOS DE INERCIA VIII. MOMENTOS DE INERCIA Recordemos que el momento estático es la suma de los productos de cada elemento de un cuerpo por su distancia a un eje. El momento de inercia, es cambio es la suma de los productos

Más detalles

Módulo. Representación Simbólica y Angular del entorno REAN-03 CONALEP IBQA

Módulo. Representación Simbólica y Angular del entorno REAN-03 CONALEP IBQA Programa de estudios Unidad 2. Modelado angular, lineal, de superficie y espacial. Propósito de la unidad. Calculará dimensiones, angulares, lineales, superficiales y espaciales de figuras geométricas

Más detalles

Capítulo I PRINCIPIOS GENERALES Y VECTORES FUERZA 1.1 INTRODUCCIÓN

Capítulo I PRINCIPIOS GENERALES Y VECTORES FUERZA 1.1 INTRODUCCIÓN PRINIPIOS GENERLES Y VETORES FUERZ apítulo I 1.1 INTRODUIÓN La mecánica trata de la respuesta de los cuerpos a la acción de las fuerzas. Las leyes de la mecánica encuentran aplicación en el estudio de

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Tema 2: Movimiento unidimensional

Tema 2: Movimiento unidimensional Tema 2: Movimiento unidimensional FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Vector de posición

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2 1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete

Más detalles

FACULTAD DE CIENCIA Y TECNOLOGIA INGENIERIA CIVIL Y GERENCIA DE CONSTRUCCIONES SÍLABO

FACULTAD DE CIENCIA Y TECNOLOGIA INGENIERIA CIVIL Y GERENCIA DE CONSTRUCCIONES SÍLABO FACULTAD DE CIENCIA Y TECNOLOGIA INGENIERIA CIVIL Y GERENCIA DE CONSTRUCCIONES 1. Datos generales SÍLABO Materia: FISICA I Código: CTE0110 Créditos: 6 Nivel: 1 Paralelo: B Eje de formación: BASICA Prerrequisitos:

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS FACULTAD: INGENIERIA CARRERA: INGENIERIA CIVIL Asignatura/Módulo: ESTATICA Código: Plan de estudios: Nivel: Tercero Prerrequisitos Correquisitos:

Más detalles

CURSO DE ESTÁTICA APUNTES DE CLASE ING. SERGIO HERRERA RAMÍREZ

CURSO DE ESTÁTICA APUNTES DE CLASE ING. SERGIO HERRERA RAMÍREZ CURSO DE ESTÁTICA APUNTES DE CLASE ING. SERGIO HERRERA RAMÍREZ "No nos hace falta valor para emprender ciertas cosas porque sean difíciles, sino que son difíciles porque nos falta valor para emprenderlas"

Más detalles

PLAN DE ESTUDIOS 2008-II SÍLABO

PLAN DE ESTUDIOS 2008-II SÍLABO UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA DEPARTAMENTO ACADÉMICO DE INGENIERÍA I. INFORMACION GENERAL PLAN DE ESTUDIOS 2008-II SÍLABO 1.1 Asignatura : MECÁNICA DEL CUERPO RÍGIDO 1.2 Ciclo : III

Más detalles

Carreras : Ingeniería Civil Ingeniería Industrial Ingeniería Electromecánica Ingeniería Mecánica Ingeniería Mecatrónica

Carreras : Ingeniería Civil Ingeniería Industrial Ingeniería Electromecánica Ingeniería Mecánica Ingeniería Mecatrónica I IDENTIFICACIÓN Materia : Estática Semestre : Tercer ESTATICA Carreras : Ingeniería Civil Ingeniería Industrial Ingeniería Electromecánica Ingeniería Mecánica Ingeniería Mecatrónica Profesores : Ms.Ing.Mec.,

Más detalles

Estatica. Carrera: CIM 0516

Estatica. Carrera: CIM 0516 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Estatica Ingeniería Civil CIM 0516 3 2 8 2.- HISTORIA DEL PROGRAMA Lugar y fecha

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

Conceptos Fundamentales de la Mecánica

Conceptos Fundamentales de la Mecánica Materia: Estática rograma educativo: Licenciatura en Ingeniería Civil rofesor: Jaime Retama Velasco Tema: CONCETOS BÁSICOS DE LA MECÁNICA Y ESTÁTICA DE LA ARTÍCULA Conceptos Fundamentales de la Mecánica

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

Tema 1 Fundamentos de la mecánica clásica newtoniana

Tema 1 Fundamentos de la mecánica clásica newtoniana Tema 1 Fundamentos de la mecánica clásica newtoniana Objetivo El alumno conocerá y comprenderá los aspectos básicos de la mecánica clásica newtoniana, así como las partes en que se divide, las leyes que

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

Física II. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos.

Física II. Carrera: MCT Participantes Representantes de las academias de Ingeniería Mecánica de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física II Ingeniería Mecánica MCT - 0513 2 3 7 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

MECÀN - Mecánica

MECÀN - Mecánica Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2017 250 - ETSECCPB - Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Barcelona 751 - DECA - Departamento

Más detalles

ESTATICA I N G. G I L A L V A R E Z 09/09/2015

ESTATICA I N G. G I L A L V A R E Z 09/09/2015 ESTATICA 1 I N G. G I L A L V A R E Z 09/09/2015 INTRODUCCIÓN Objetivos didácticos: Analizar las fuerzas y hallar las fuerzas resultantes en dos y tres dimensiones Diferenciar entre varios tipos de soportes

Más detalles

Instituto Tecnológico Superior de Libres Organismo Público Descentralizado del Gobierno del Estado de Puebla. Ingeniería en Sistemas Computacionales

Instituto Tecnológico Superior de Libres Organismo Público Descentralizado del Gobierno del Estado de Puebla. Ingeniería en Sistemas Computacionales Instituto Tecnológico Superior de Libres Organismo Público Descentralizado del Gobierno del Estado de Puebla Ingeniería en Sistemas Computacionales Información General para alumnos de Residencia Profesional

Más detalles

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. 2. 2. Introducción A lo largo del estudio de la Física surgen una serie de propiedades, tanto de magnitudes escalares como vectoriales, que se expresan por medio de nuevos conceptos tales como gradiente,

Más detalles

LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO

LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO I. LOGRO Comprobar experimental, gráfica y analíticamente la primera y segunda condición de equilibrio a través de diagramas de cuerpo libre.

Más detalles

COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No.

COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No. 1 COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO CIENCIAS NATURALES Primer año Sección: Nombre del estudiante: No. UNIDAD No 3 Tema: Vectores Cuando vas en coche por una carretera, una autovía o una autopista,

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

UNIDAD Nº Momento de una fuerza

UNIDAD Nº Momento de una fuerza UNIDAD Nº 3 3.1 Momento de una fuerza El efecto producido sobre un cuerpo por una fuerza de magnitud y dirección dadas, depende de la posición de la línea de acción de la fuerza. Línea de acción de F 2

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador Av. 12 de Octubre 76 y Roca 1.- DATOS INFORMATIVOS: MATERIA O MÓDULO: Física I CÓDIGO: CARRERA: NIVEL: Civil Primero P1 No. CRÉDITOS: 6 CRÉDITOS TEORÍA: 6 CRÉDITOS PRÁCTICA: 2 SEMESTRE / AÑO ACADÉMICO:

Más detalles

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático.

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. 81. Un campo vectorial está definido por B = B 0 u x (r < a) B r = A cos ϕ ; B r 2 ϕ = C sin ϕ (r > a) r 2 donde r y ϕ son

Más detalles

Dinámica. Carrera: MTM Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos.

Dinámica. Carrera: MTM Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos. .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Dinámica Ingeniería Mecatrónica MTM-0 --.- HISTORIA DEL PROGRAMA Lugar y fecha

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

II. Vectores. En contraste, un vector solo está completamente definido cuando se especifica su magnitud y dirección.

II. Vectores. En contraste, un vector solo está completamente definido cuando se especifica su magnitud y dirección. Objetivos: 1. Diferenciar una cantidad escalar de una vectorial. 2. Recordar algunos principios trigonométricos básicos. 3. Manipular vectores de forma gráfica y analítica. 1. Introducción. El análisis

Más detalles

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES

INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES INTEGRALES EN REGIONES POLARES 1 INTEGRALES DOBLES EN COORDENADAS POLARES Hasta el momento hemos tratado integrales dobles en las cuales la región de integración es una región rectangular de la forma *(

Más detalles

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA.

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE:

Más detalles

Javier Junquera. Equilibrio estático

Javier Junquera. Equilibrio estático Javier Junquera Equilibrio estático Bibliografía Física, Volumen 1, 6 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 12 Definición de equilibrio El término equilibrio

Más detalles

Qué es el CÁLCULO? LÍMITE Y CONTINUIDAD

Qué es el CÁLCULO? LÍMITE Y CONTINUIDAD Qué es el CÁLCULO? El Cálculo es la matemática de los cambios velocidades y aceleraciones. También son objeto del Cálculo las rectas tangentes, pendientes, áreas, volúmenes, longitud de arco, centroide,

Más detalles

Facultad de Ciencia y Tecnología. Escuela de Ingeniería Civil y Gerencia de Construcciones. Sílabo

Facultad de Ciencia y Tecnología. Escuela de Ingeniería Civil y Gerencia de Construcciones. Sílabo Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil y Gerencia de Construcciones Sílabo 1. DATOS GENERALES: 1.1. Asignatura: ESTÁTICA 1.2. Código: CTE0100 1.3. Créditos: 4 1.4. Horario: Lunes

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Fundamentos de Estática y Dinámica 2. Competencias Desarrollar y conservar

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

Centroide,Centro de masa y Centro de gravedad

Centroide,Centro de masa y Centro de gravedad Centroide,Centro de masa y Centro de gravedad Definiciones: Centroide: Centro geométrico. Centro de masa: El punto en donde se puede considerar que se concentra toda la masa del cuerpo. Centro de gravedad:

Más detalles

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento

Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento Para qué aprender FISICA? Materiales Potencia Rozamiento y Fricción Viscosidad Turbulencias Movimiento OBJETIVOS Formular: Conceptos, Definiciones Leyes resolver PROBLEMAS Fomentar: Habilidades Destrezas

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

DOMINIOS COGNITIVOS. (Objetos de estudio, temas y subtemas) 1. Introducción 1.1. Conceptos y principios fundamentales Unidades.

DOMINIOS COGNITIVOS. (Objetos de estudio, temas y subtemas) 1. Introducción 1.1. Conceptos y principios fundamentales Unidades. UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA UNIDAD ACADEMICA PROGRAMA DEL CURSO: ESTÁTICA DES: Ingeniería Programa(s) Educativo(s): Ing. Civil Tipo de materia: Obligatoria Clave de la materia: 303 Semestre: 3 Área

Más detalles

Bases para el estudio del movimiento mecánico

Bases para el estudio del movimiento mecánico Vectores 1 ases para el estudio del movimiento mecánico SR: Cuerpos que se toman como referencia para describir el movimiento del sistema bajo estudio. Se le asocia z(t) (t) (t) Observador Sistema de Coordenadas

Más detalles

Programa de Asignatura

Programa de Asignatura Asignatura: Mecánica vectorial para ingenieros I Clave: 9936 Semestre: III Tipo: Obligatoria H. Teoría: 3 H Práctica: 2 H. Laboratorio: 0 HSM: 5 Créditos: 8 Requisitos Materia: Clave: Física I con Laboratorio

Más detalles

Formulario: Geometría Analítica

Formulario: Geometría Analítica Universidad Autónoma del Estado de México UAEM Facultad de Ingeniería Formulario: Geometría Analítica Elaborado por: Estudiante en Ingeniería en Electrónica Formulario Geometría Analítica 1. VECTORES EN

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

VECTORES Y OPERACIONES CON VECTORES

VECTORES Y OPERACIONES CON VECTORES BOLILLA 2 Sistema de Coordenadas VECTORES Y OPERACIONES CON VECTORES Un sistema de coordenadas permite ubicar cualquier punto en el espacio. Un sistema de coordenadas consta de: Un punto fijo de referencia

Más detalles

Clave: M

Clave: M Clave: 107-2-M-1-2014 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de Matemática Clave de Examen: 107-2-M-1-2014 Curso: Matemática Intermedia 1 Semestre: Primero Código del

Más detalles

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez 2. DE LAS PARTICULAS 2. DE LAS PARTICULAS 2.1 Introducción Estudiar el efecto de las fuerzas sobre las partículas Sustituir dos o mas fuerzas por una RESULTANTE Relaciones necesarias para EQUILIBRIO de

Más detalles

LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él?

LA ENERGÍA E. Cabe preguntarse entonces: toda fuerza actuando sobre un cuerpo realiza trabajo sobre él? LA ENERGÍA E l concepto de energía es uno de los más importantes del mundo de la ciencia. En nuestra vida diaria, el termino energía tiene que ver con el costo del combustible para transporte y calefacción,

Más detalles

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla

El sólido rígido. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Dpto.Física Aplicada III Universidad de Sevilla El sólido rígido Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2015/2016 Dpto.Física Aplicada III Universidad de Sevilla Índice Condición geométrica de

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles