ITESM Campus Monterrey
|
|
|
- José Carlos Montes Río
- hace 9 años
- Vistas:
Transcripción
1 TESM Campus Monterrey Programa de Graduados en ngeniería - Maestría en ngeniería Eléctrica Factor de cresta, valor rms, distorsión armónica y factor K Dr. Armando Llamas, Profesor del Departamento de ngeniería Eléctrica, 4-Oct.-96 En la literatura correspondiente a armónicas en sistemas de potencia es frecuente encontrar los siguientes términos: factor de cresta, valor rms verdadero, distorsión armónica y espectro normalizado. En este artículo se presentan las definiciones de tales términos y se determinan los valores mencionados utilizando un ejemplo de corriente con distorsión. Factor de cresta, la relación del valor pico (cresta) al valor rms de una forma de onda periódica []. La ecuación () representa tal definición, valor pico f. c.= valor rms Debido a que el valor rms de una senoidal es el valor pico entre es. (), el factor de cresta de una senoidal El valor promedio de una forma de onda periódica es el área bajo la curva de la onda en un período T, entre el tiempo del período. Matemáticamente se escribe como F prom área bajo la curva T = = T f ( período en segundos t ) dt () siendo F prom el valor promedio de la forma de onda []. El valor promedio de una senoidal es cero, el valor promedio de una senoidal rectificada es π V p, siendo V p el valor pico de la senoidal. El valor efectivo o valor rms de una función periódica es la raíz cuadrada del valor promedio de la función al cuadrado, matemáticamente esto es T Frms = promedio de f ( t) = f t dt T ( ) () siendo F rms el valor rms de la forma de onda []. El valor rms de una senoidal es el valor pico entre. El valor rms de una función formada por componentes senoidales de frecuencia distinta está dado por la raíz cuadrada de los cuadrados de los valores rms de dicas componentes [], esto es, el valor rms de ( ω ) ( ω ) ( ω ) i( t) = sin t + sin t + sin t está dado por rms = + +, si las frecuencias angulares ω, ω y ω son distintas.
2 Corriente con distorsión armónica. La corriente descrita en esta sección es similar a la que demandan tres computadoras y sus monitores cuando se les aplica un voltaje senoidal de V rms, 6 Hz [4]. Esta corriente se utilizará en algunos ejemplos. Está dada por la siguiente ecuación: ( ) ( ) ( ω t) ( ω t) ( ω t) i( ω t) = sin ω t. sin ω t sin 5 7. sin sin 9 (4) Las gráficas de la corriente total, la fundamental y las armónicas se muestran a continuación: corriente (A) Fundamental Tercera Séptima corriente (A) 9 6 Resultante Novena -6-9 Quinta grados eléctricos grados eléctricos (a) Componentes armónicas (b) Componentes armónicas y resultante Figura. Descomposición de corriente con distorsión En la Figura a) se muestran la fundamental y las armónicas, en la Figura b) aparece además la resultante. El valor pico de la resultante es A y el valor promedio de la rectificación de onda completa es.5 A. Ejemplo. Empleando los datos de la corriente anterior determinaremos, el factor de cresta, el valor promedio y el valor rms. El factor de cresta está dado por valor pico f. c. = = =. 86 valor rms El valor promedio de la corriente del ejemplo es cero pues es simétrica alrededor del eje de tiempo. En la tabla siguiente aparecen los valores pico, los valores rms y los valores rms al cuadrado de las componentes (la fundamental y las armónicas) pico, rms, ( rms,) La suma del cuadrado de los valores rms es 9. y la raíz cuadrada de este valor es. Así pues el valor rms es A rms. Valor rms verdadero. Algunos instrumentos indican el valor rms sin importar la forma de la onda, por lo general aparece la leyenda true rms en dicos instrumentos.
3 Valor rms en base al promedio de la senoidal rectificada. Algunos instrumentos rectifican una señal proporcional a la cantidad a medir y miden directamente el valor promedio de dica señal. La escala no indica el valor promedio sino el valor rms que corresponde a una senoidal. Se a visto que el valor rms de una senoidal es el valor pico entre, matemáticamente pico rms = y que el valor promedio de una senoidal con rectificación de onda completa está dada por prom = π pico (5), (6) sustituyendo pico de (6) en (5), tenemos que el valor rms en función del valor promedio está dado por rms π = prom (7) Si la corriente es senoidal estos amperímetros miden apropiadamente el valor rms de la misma, en caso contrario la indicación puede ser errónea. Ejemplo. Un amperímetro de valor efectivo verdadero indicaría A rms con la corriente del ejemplo anterior, mientras que un amperímetro que de valor rms en base al promedio de la senoidal rectificada π indicaría, rms = 5. = 667. A rms, (el valor promedio de la senoidal con rectificación de onda es completa es.5 A), la razón de la lectura del amperímetro en base al promedio a la lectura verdadera es Debido a que el amperímetro que emplea valor promedio fue diseñado para una corriente senoidal el valor que este determina es erróneo, mientras que el de valor efectivo verdadero da una lectura verdadera. Distorsión armónica total. Total Harmonic Distortion (THD). También se le conoce como factor armónico o factor de distorsión [5]. Es la relación del valor rms de la distorsión al valor rms de la fundamental. Debido a que la fundamental no contribuye a la distorsión, el valor efectivo de la distorsión es la raíz de la suma de los cuadrados de los valores rms de las armónicas, de la segunda en adelante. Matemáticamente, valor rms de la distorsión THD = = valor rms de la fundamental L+ max (8) Al incluir el valor rms de la fundamental,, dentro del radical se obtiene THD = max L max = (9) el cociente es el valor rms de la armónica dividido por el valor rms de la fundamental, este cociente está en por unidad, también se puede decir que a sido normalizado tomando como base el valor rms fundamental. Este grupo de cocientes forman el espectro normalizado.
4 Ejemplo. Empleando los datos de la corriente con distorsión de este artículo, tenemos la siguiente tabla: pico, rms, ( rms,) ( rms,) / {( rms,) / } La distorsión armónica se puede obtener sumando los cuadrados de los valores rms que aparecen subrayados en el renglón cuarto de la tabla anterior, 4.87, y elevando este resultado a la / obtenemos el valor rms de la distorsión,.7 A rms de distorsión, el THD es. 7 = 84. = 8. 4%.. 6 El THD también se puede obtener empleando los cuadrados de dico renglón, = 84. = 8. 4%. El penúltimo renglón de la tabla es el espectro normalizado de la corriente, se tiene p.u. o % de fundamental,.8 p.u. o 8.% de tercera,.68 p.u. o 6.8 % de quinta, etc. Factor K. El factor K indica la capacidad de un transformador para alimentar cargas no senoidales sin sobrecalentarse []. El factor K está dado por la siguiente expresión: max K = es el valor efectivo de la corriente armónica, en pu del valor efectivo de la corriente nominal. El factor K de una corriente de carga se puede obtener con la misma ecuación y con en pu de corriente total. Si se tienen los datos de las corrientes armónicas en pu de fundamental, el factor K se puede calcular mediante la siguiente expresión: K = max es el valor efectivo de la corriente fundamental en A rms, es el valor efectivo de la corriente en A rms, e es el valor efectivo de la corriente armónica, en pu de corriente fundamental. Ejemplo 4. Empleando los datos de la corriente con distorsión de este artículo, tenemos la siguiente tabla: en A rms
5 / en pu { / } { / } Sumando los valores del último renglón y multiplicando por la relación al cuadrado de corriente fundamental a corriente total, obtenemos K = max = = 8. Corriente nominal con factor K = da lugar a pérdidas nominales por corrientes circulantes, P ec,r, corriente nominal con la distorsión del ejemplo daría lugar a.8 P ec,r. En transformadores secos las pérdidas por corrientes circulantes en el devanado de baja tensión resultan en puntos calientes en ese devanado. Si se emplea un transformador seco con factor K = para alimentar corrientes con distorsión como la del ejemplo es obvio que en esos puntos calientes la temperatura se puede elevar en forma peligrosa. Conclusiones. Se an presentado las siguientes cuatro formas de cuantificar la distorsión armónica: a. factor de cresta, fc valor pico = valor rms b. relación de valor rms en base a valor promedio c. distorsión armónica total valor rms en base a promedio senoidal rectificada valor rms verdadero valor rms de la distorsión THD = = valor rms de la fundamental L+ 5 max es el valor efectivo de la corriente fundamental en A rms, e es el valor rms de la armónica d. factor K K = max es el valor efectivo de la corriente fundamental en A rms, es el valor efectivo de la corriente en A rms, e es el valor efectivo de la corriente armónica, en pu de corriente fundamental. No es posible decidir cuál es más util, ya que tienen distintos propósitos, por ejemplo el factor de cresta es una especificación de los medidores true rms, mientras que el factor K es una especificación de transformadores secos. Es importante entender y utilizar en forma apropiada los cuatro. 5
6 Bibliografía [] EEE Std -99, EEE Recommended Practice for Powering and Grounding Sensitive Electronic Equipment (Emerald Book). [] Stanley Wolf and Ricard F.M. Smit, Guía para mediciones eléctricas y prácticas de laboratorio, Prentice Hall, 99, SBN [] William H. Hayt, Jr. Jack E. Kemmerly, Análisis de circuitos en ingeniería, McGraw-Hill, 99, SBN [4] A. Llamas, Qué son las armónicas?, TESM Campus Monterrey. [5] EEE Std 59-99, EEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, April 99. 6
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado.
ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 1 Instrumentación y Objetivos Particulares Conocer las características, principio de funcionamiento
ARMÓNICAS Y RESONANCIA PARALELO
ARMÓNIAS Y RESONANIA PARAEO Jorge de los Reyes, Miembro, IEEE Departamento de Ingeniería Eléctrica ITESM, ampus Monterrey [email protected] Resumen --El fenómeno de resonancia es cada vez más
CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito
CAPIULO XI EL VAIMERO. INRODUCCION. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito Según la definición de potencia, un vatímetro debe ser un instrumento que
Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION
Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar
d m φ dt ξ = Por otro lado, por definición, la fem es la integral del campo a lo largo de una trayectoria C, o trayectoria cerrada
Tema: Inducción magnética. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. I. Objetivos. Comprender acerca de la relación del voltaje inducido en una bobina, en función
LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS
Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 02: MEDICION DE TENSION
ETAPAS DE SALIDA Etapa de salida Clase A Inconvenientes
Etapa de salida Clase A Inconvenientes El mayor inconveniente de la etapa de salida clase A es que presenta una elevada disipación de potencia en ausencia de señal AC de entrada. En gran cantidad de aplicaciones
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere
RECOMENDACIÓN UIT-R BS *,** Medición del nivel de tensión del ruido de audiofrecuencia en radiodifusión sonora
Rec. UIT-R BS.468-4 1 RECOMENDACIÓN UIT-R BS.468-4 *,** Medición del nivel de tensión del ruido de audiofrecuencia en radiodifusión sonora La Asamblea de Radiocomunicaciones de la UIT, (1970-1974-1978-1982-1986)
PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7:
PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7: MANEJO DEL OSCILOSCOPIO - MEDIDA DE ANGULOS DE FASE Y MEDIDA DE PARAMETROS DE UNA BOBINA 1. OBJETIVOS Adquirir conocimientos
Año de la Diversificación Productiva y del Fortalecimiento de la Educación
UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENEIRIA ELECTRICA Y ELECTRONICA Escuela Profesional de Ingeniería Eléctrica. Año de la Diversificación Productiva y del Fortalecimiento de la Educación CURSO
MEDIDAS ELÉCTRICAS. Práctica 2: VOLTÍMETROS
MEDIDAS ELÉCTRICAS ráctica : OLTÍMETROS 1. Objetivo Esta práctica se divide en dos partes con objetivos diferentes: arte 1: contrastar el comportamiento de distintos voltímetros en la medida de tensiones
Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos
Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím
intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.
1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración
Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA
PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA I - Finalidades 1.- Estudiar el código de color de las resistencias. 2.- Utilización del multímetro
PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 10: MEDICION DE POTENCIA
PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 10: MEDICION DE POTENCIA 1. OBJETIVOS Medir la tensión (V), la corriente (I) y la potencia activa (P) en diferentes tipos de carga.
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
INVERSORES RESONANTES
3 INVERSORES RESONANTES 3.1 INTRODUCCIÓN Los convertidores de CD a CA se conocen como inversores. La función de un inversor es cambiar un voltaje de entrada en CD a un voltaje simétrico de salida en CA,
Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA
Tema: PRINCIPIOS DE LAS MAQUINAS DE CORRIENTE CONTINUA. I. OBJETIVOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSIÓNDE LA ENERGIAELECTROMECÁNICAII. Que el estudiante: Identifique la
II Unidad Diagramas en bloque de transmisores /receptores
1 Diagramas en bloque de transmisores /receptores 10-04-2015 2 Amplitud modulada AM Frecuencia modulada FM Diagramas en bloque de transmisores /receptores Amplitud modulada AM En la modulación de amplitud
CAPITULO XII PUENTES DE CORRIENTE ALTERNA
CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este
Trabajo opcional tema 4: modulación
Trabajo opcional tema 4: modulación Alberto Mateos Checa I. Telecomunicación 2 Trabajo opcional tema 4: modulación angular ÍNDICE DE CONTENIDOS: 1. Introducción.... 3 2. Diseño.... 3 2.1. Sistema completo....
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar
1. Progresiones aritméticas
1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.
SIMULACIÓN DE LA MODULACIÓN POR AMPLITUD DE PULSOS (PAM) EN MATLAB
SIMULACIÓN DE LA MODULACIÓN POR AMPLITUD DE PULSOS (PAM) EN MATLAB 1. OBJETIVOS: General: o Implementar en simulink un sistema de bloques que permita simular Modulación por Amplitud de Pulsos (PAM), a
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
Guía del estudiante. Actividad 1. Si la base de un triángulo es b y su altura es h: 1. Escriba la expresión algebraica que representa su área:
MATEMÁTICAS Grado Séptimo Bimestre IV Semana 1 Número de clases 1-4 Clase 1 Tema: Expresiones algebraicas valor numérico. Lenguaje común, lenguaje algebraico, simplificación de expresiones algebraicas
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Inversores. Conversión de continua a alterna
Inversores Conversión de continua a alterna Introducción Convierten corriente continua a alterna. Motores de alterna de velocidad ajustable. Sistemas de alimentación ininterrumpida. Dispositivos de corriente
Sucesiones y Progresiones. Guía de Ejercicios
. Módulo 5 Sucesiones y Progresiones Guía de Ejercicios Índice Unidad I. Sucesiones Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 06 Unidad II. Sumatorias de sucesiones Ejercicios Resueltos...
MÁQUINAS ELÉCTRICAS LABORATORIO No. 3
Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.
Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:
Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2 CARACTERÍSTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
ARRANQUE DE LÁMPARAS FLUORESCENTES
4 ARRANQUE DE LÁMPARAS FLUORESCENTES 4. INTRODUCCIÓN En el uso de sistemas de iluminación fluorescente es necesario alimentar a la lámpara de descarga con el voltaje adecuado para evitar un mal funcionamiento
UTN FRM MEDIDAS ELECTRÓNICAS 1 Página 1 de 5 ERRORES
UTN FRM MEDIDAS ELECTRÓNICAS 1 Página 1 de 5 ERRORES Medir es determinar cuantas veces una unidad de medida esta comprendida en la magnitud a medir. La cifra encontrada, multiplicada por la unidad de medida
Carrera: ELF-0527 2-4-8
. DATOS DE LA ASIGNATURA Nombre de la Asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Mediciones Eléctricas Ingeniería Eléctrica ELF-057-4-8. HISTORIA DEL PROGRAMA Lugar
Carrera: ECF-0427 2-4 8. Participantes Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos.
.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Mediciones Eléctricas Ingeniería Electrónica ECF-047-4 8.- HISTORIA DEL PROGRAMA
Ejercicios propuestos para el tercer parcial. Figura 1. Figura 2
Ejercicios propuestos para el tercer parcial. 1) Qué función cumple la resistencia R ubicada entre la compuerta y el cátodo mostrada en la figura 1, y cómo afecta a la activación del SCR? Figura 1. 2)
Medición de resistencia por el método de amperímetro-voltímetro
Medición de resistencia por el método de amperímetro-voltímetro Objetivos Determinar el valor de una resistencia por el método de amperímetro voltímetro. Discutir las incertezas propias del método y las
Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos
Prácticas Laboratorio Práctica 2: Diodos Ernesto Ávila Navarro Práctica 2: Diodos (Montaje y medida en laboratorio) Índice: 1. Material de prácticas 2. Medida de las características del diodo 2.2. Diodo
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER
elab, Laboratorio Remoto de Electrónica ITEM, Depto. de Ingeniería Eléctrica PRÁCTICA PD4 REGULACIÓN DE OLTAJE CON DIODO ENER OBJETIO Analizar teóricamente y de forma experimental la aplicación de diodos
PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable.
PROGRAMA IEM-212 1.1 Introducción. En el curso anterior consideramos la Respuesta Natural y Forzada de una red. Encontramos que la respuesta natural era una característica de la red, e independiente de
Respuesta en Frecuencia de un Circuito RC
de un Circuito RC Omar X. Avelar & Diego I. Romero SISTEMAS ELECTRICOS INDUSTRIALES (ESI 13AA) Instituto Tecnológico y de Estudios Superiores de Occidente () Departamento de Electrónica, Sistemas e Informática
Bienvenidos. En esta presentación en la que estudiaremos la ley de Ohm y la ley de Watt.
Teel 1011: Circuitos de Corriente Directa (DC) Unidad 3: Ley de Ohm y ley de Watt Introducción 1.1 Bienvenida Bienvenidos. En esta presentación en la que estudiaremos la ley de Ohm y la ley de Watt. 1
Práctica de Laboratorio. Tema: Medición de Potencia Activa en Sistemas Trifásicos.
Universidad Nacional de Mar del lata. ráctica de Laboratorio Tema: Medición de otencia Activa en Sistemas Trifásicos. Cátedra: Medidas Eléctricas I º año de la carrera de Ingeniería Eléctrica. Área Medidas
Qué es el db? db = 10 log 10 (Ps / Pe) (1)
Qué es el db? El decibel (db) es una unidad relativa de una señal muy utilizada por la simplicidad al momento de comparar y calcular niveles de señales eléctricas. Los logaritmos son muy usados debido
AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD
AÑO DE LA INTEGRACIÓN NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA
Tema: Uso del analizador espectral.
Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro
I. RESULTADOS DE APRENDIZAJE
CICLO I-15 MEDICIONES ELECTRICAS UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELÉCTRICA Y MECÁNICA GUIA DE LABORATORIO # 1 :Mediciones de potencia electrica I. RESULTADOS DE
Movimiento Armónico Simple
Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS
SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
a las pruebas de circuito abierto y cortocircuito a los generadores sincrónicos,
Electricidad avanzada ENTREGA 1 Pruebas de circuito abierto y cortocircuito en los generadores sincrónicos La máquina sincrónica es hoy por hoy, la más ampliamente utilizada para convertir grandes cantidades
Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a
Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO.
Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 2 1.1. Fuente de alimentación CPS250
Circuitos resistivos activos. Primera parte
Circuitos resistivos activos. Primera parte Objetivos 1. Analizar circuitos equivalentes de transistores constituidos por resistores y fuentes dependientes. 2. Explicar las características del amplificador
El sistema a identificar es el conjunto motor eléctrico-freno siguiente:
Sistema a identificar El sistema a identificar es el conjunto motor eléctrico-freno siguiente: Relación entrada-salida Las variables de entrada-salida a considerar para la identificación del sistema es
Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO
Laboratorio de lectricidad PCIC - 3 LY D OHM. POPIDDS D LOS CICUIOS D SISNCIS SI Y PLLO I - Finalidades 1.- Comprobar experimentalmente la ley de Ohm. 2.- Comprobar experimentalmente que en un circuito
TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui
TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) [email protected] División de Ciencias Naturales y Exactas,
PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS OBJETIVO Familiarizar al estudiante con los conceptos fundamentales
Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC
PATA - 12 EATANA DE UN ONDENSADO Y AATEÍSTAS DE UN UTO SEE - Finalidades 1.- Determinar la reactancia capacitiva (X ) de un condensador. 2.- omprobar la fórmula: X? 1?? 3.- Determinar experimentalmente
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
Áreas entre curvas. Ejercicios resueltos
Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio
Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón
Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, [email protected] Mariana Ceraolo
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
Instalación y mantenimiento de cualquier red eléctrica.
Soluciones 1 Soporte Eléctrico Instalación y mantenimiento de cualquier red eléctrica. Desarrollamos proyectos llave en mano enfocados a la Calidad y Eficiencia en el consumo. Transformadores. Subestaciones.
Estudio de fallas asimétricas
Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.
FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES
Ingeniería en Sistemas de Información 01 FUNCIONES EXPONENCIALES LOGARITMICAS La función eponencial FUNCIONES EXPONENCIALES La función eponencial es de la forma, siendo a un número real positivo. El dominio
5 PULSO MULTIPLE REFERENCIA SENOIDAL MODIFICADA 6 PARAMETROS DE EFICIENCIA
Control de Máquinas Eléctricas Primavera 2009 INTRODUCCION 1 CIRCUITOS DE CONTROL 2 PULSO UNICO 3 PULSO MULTIPLE REFERENCIA CONSTANTE 4 PULSO MULTIPLE REFERENCIA SENOIDAL 5 PULSO MULTIPLE REFERENCIA SENOIDAL
RESUMEN ALGEBRA BÁSICA
RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO
Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes
Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]
Medición de magnitudes de corriente alterna
Medición de magnitudes de corriente alterna Sara Campos Hernández División de Mediciones Electromagnéticas CENAM Contenido Introducción Patrones utilizados para medir señales alternas Instrumentación utilizada
LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES
No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso
DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con
Transformada de Laplace: Aplicación a vibraciones mecánicas
Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina [email protected]
Problemas métricos. Ángulo entre rectas y planos
Problemas métricos Ángulo entre rectas y planos Ángulo entre dos rectas El ángulo que forman dos rectas es el ángulo agudo que determinan entre sí sus vectores directores. Dos rectas son perpendiculares
TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL
TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL 6.1. TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA 6.1.1. Tasa de variación media La tasa de variación media de una unción en un intervalo a, b es el cociente: b a TVM,
PROBLEMAS DE OPTIMIZACIÓN
1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello
Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño
ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan
ET008 Transformadores monofásicos auxiliares para equipos
ET008 Transformadores monofásicos auxiliares para equipos ESPECIFICACIÓN TÉCNICA Elaborado por: Revisado por: Armando Ciendua Margarita Olano Revisión #: Entrada en vigencia: ET008 08/08/2002 Esta información
elab 3D Práctica 2 Diodos
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TECNICA SUPERIOR DE INGENIERIA Y SISTEMAS DE TELECOMUNICACIÓN elab 3D Práctica 2 Diodos Curso 2013/2014 Departamento de Sistemas Electrónicos y de Control 1. Introducción
La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente.
Solución. En el primer cuadrante: En el segundo cuadrante: En el tercer cuadrante: En el cuarto cuadrante: cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan
UNIVERSIDAD DON BOSCO
CICLO 02-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 01 NOMBRE DE LA PRÁCTICA: Generalidades y Fundamentos de Electrónica.
Trabajo Práctico N o 4 Mediciones con Corriente Continua. Antonio, Pablo Oscar Frers, Wenceslao
Física II A Trabajo Práctico N o 4 Mediciones con Corriente Continua Antonio, Pablo Oscar Frers, Wenceslao XXXXX XXXXX 2. do cuatrimestre 2006 ÍNDICE Índice 1. Resumen 2 2. Introducción 2 3. Método experimental
2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?
1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 1 Nombre: Introducción al algebra Objetivo de la asignatura: El estudiante aplicará los conceptos fundamentales del álgebra como números reales, exponentes, radicales
Electrónica de Potencia Problemas Tema 3
Electrónica de Potencia Problemas Tema 3 Problema 1 En el rectificador de la siguiente figura, la carga es resistiva y de valor R determinar: v 2V sen( wt) p = s a) El rendimiento. b) El factor de forma.
Auditorias Técnicas al Sistema Eléctrico Una visión hacia la productividad. Pte 4 de 13
Auditorias Técnicas al Sistema Eléctrico Una visión hacia la productividad. Pte 4 de 13 Paso 2.- Objetivo primario: Determinación y Medición en Campo de los perfiles de carga y Calidad de energía ( Power
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
UNIDAD 8 INECUACIONES. Objetivo general.
8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en
Practicas de Fundamentos de Electrotecnia ITI. Curso 2005/2006
Practicas de Fundamentos de Electrotecnia ITI. Curso 005/006 Práctica 4 : Modelo equivalente de un transformador real. Medidas de potencia en vacío y cortocircuito. OBJETIVO En primer lugar, el alumno
