Guía de uso de MATLAB
|
|
|
- Alfonso Reyes García
- hace 10 años
- Vistas:
Transcripción
1 Guía de uso de MATLAB Se necesitan unos pocos comandos básicos para empezar a utilizar MATLAB. Esta pequeña guía explica dichos comandos fundamentales. Habrá que definir vectores y matrices para poder modificarlos y operar con ellos. Se trata de comandos cortos de alto nivel, porque MATLAB trabaja constantemente con matrices. Creo que les gustarán las posibilidades que les ofrece este software para realizar operaciones de álgebra lineal mediante una serie de instrucciones cortas: definir E definir u modificar E multiplicar Eu E = eye(3) u =E(:,1) E(3,1)=5 v =E*u La palabra eye designa a la matriz identidad. La submatriz u = E(:,1) toma la primera columna de la anterior. La instrucción E(3, 1) = 5 coloca un 5 en el elemento (3, 1). El comando E* u multiplica las matrices E y u. Todos estos comandos se repiten en la lista que aparece a continuación. Aquí se presenta un ejemplo de cómo invertir una matriz y resolver un sistema lineal: definir A definir b invertir A Resolver Ax=b A = ones(3) + eye(3) b = A(:,3) C = inv(a) x = A\b o x = C*b Se sumó una matriz formada por unos a eye(3), y b es su tercera columna. A continuación, inv(a) genera la matriz inversa (normalmente en decimales, ya que para las fracciones se usa format rat). El sistema Ax = b se resuelve mediante x = inv(a) * b, el método lento. El comando de la barra inversa x = A\b realiza la eliminación gaussiana si A es cuadrada y nunca calcula la matriz inversa. Cuando la parte derecha de b sea igual a la tercera columna de A, la solución para x tiene que ser [0 0 1]'. (El símbolo de la transpuesta ' convierte a x en un vector de columna.) Entonces A*x elige la tercera columna de A, y tenemos que Ax = b. A continuación aparece una serie de comentarios, precedidos por el símbolo %: % Los símbolos a y A son diferentes: MATLAB distingue por defecto entre unos casos y otros. % Escribir help slash para obtener una explicación del modo de utilizar el símbolo de la barra inversa. La palabra help (ayuda) puede ir seguida de un símbolo o del nombre de un comando o de un archivo (de extensión.m) de MATLAB
2 Nota: El nombre del comando aparece con una mayúscula inicial en la explicación que da help, pero debe escribirse en minúsculas al utilizarlo. La barra inversa A\b actúa de forma distinta cuando A no es cuadrada. % Para ver los números con 16 dígitos, escribir format long (formato largo). El formato normal, format short (formato corto), muestra 4 dígitos decimales. % Si se pone un punto y coma tras un comando, el programa no mostrará su resultado. A = ones(3); no mostrará la matriz identidad de 3 x 3. % Utilizar la flecha del desplazamiento hacia arriba del cursor para volver a comandos anteriores. Cómo introducir un vector de filas o de columnas u = [2 4 5] tiene una fila con tres elementos (matriz de 1 x 3). v = [2; 4; 5] tiene tres filas separadas por puntos y comas (matriz de 3 x 1). v = [2 4 5]' o v = u' transpone u para generar la misma v. w = 2:5 define el vector de filas w = [ ] mediante valores que aumentan sucesivamente en una unidad. u = 1:2:7 asigna valores que aumentan en dos unidades para obtener u = [ ] Cómo definir una matriz (introduciendo las filas una por una) A = [1 2 3; 4 5 6] tiene dos filas (el punto y coma siempre separa unas filas de otras). A = [ ] también genera la matriz A, pero es más difícil de escribir. B = [1 2 3; 4 5 6]' es la transpuesta de A. Así pues, A T es A' en MATLAB. Cómo generar matrices especiales diag(v) genera una matriz diagonal con el vector v como diagonal. toeplitz(v) define una matriz simétrica de diagonal constante con v como primera fila y primera columna. toeplitz(w, v) define una matriz simétrica de diagonal constante con w como primera columna y v como primera fila. ones(n) genera una matriz de n n con todos los valores iguales a uno. zeros(n) genera una matriz de n n con todos los valores iguales a cero. eye(n) genera una matriz identidad de n n. rand(n) genera una matriz de n n con elementos de valor aleatorio entre 0 y 1 (distribución uniforme). randn(n) genera una matriz de n n cuyos elementos siguen una distribución normal (media 0 y varianza 1). 2
3 ones(m, n), zeros(m, n), rand(m, n) generan matrices de m n. ones(size(a)), zeros(size(a)), eye(size(a)) generan matrices de la misma forma que A. Cómo cambiar elementos en una matriz A dada A(3, 2) = 7 coloca un 7 en el elemento (3, 2). A(3,:) = v sustituye los valores de la tercera fila por los de v. A(:, 2) = w sustituye los valores de la segunda columna por los de w. El símbolo de los dos puntos : significa todo (todas las columnas o todas las filas). A([2 3],:) = A([3 2],:) intercambia las filas 2 y 3 de A. Cómo crear submatrices de una matriz A de m n A(i, j) muestra el elemento (i, j) de la matriz A (escalar = matriz de 1 1). A(i, :) muestra la fila i-ésima de A (como vector de fila). A(:, j) muestra la columna j-ésima de A (como vector de columna). A(2: 4,3: 7) muestra las filas de la 2 a la 4 y las columnas de la 3 a la 7 (en forma de matriz de 3 5). A([2 4],:) muestra las filas 2 y 4 y todas las columnas (en forma de matriz de 2 n). A(:) muestra una sola columna larga formada a partir de las columnas de A (matriz de mn 1). triu(a) coloca ceros en todos los elementos por debajo de la diagonal (triangular superior). tril(a) coloca ceros en todos lo elementos por encima de la diagonal (triangular inferior). Multiplicación e inversión de matrices A * B da la matriz resultante del producto AB (si dicha operación es posible). A. * B da el producto elemento por elemento (si size(a) = size(b), es decir, si tienen el mismo tamaño) inv(a) da A -1 si A es cuadrada e invertible. pinv(a) da la pseudoinversa de A. A\B da inv(a) * B si existe inv(a): la barra inversa es la división por la izquierda. x = A\b da la solución de Ax = b si existe inv(a). Véase help slash cuando A sea una matriz rectangular! Números y matrices asociados a A det(a) es el determinante (si A es una matriz cuadrada). rank(a) es el rango (número de pivotes = dimensión del espacio de filas y del espacio de columnas). size(a) es el par de números [m n]. 3
4 trace(a) es la traza = suma de los elementos de la diagonal = suma de autovalores. null(a) es una matriz cuyas columnas n - r forman una base ortogonal para el espacio nulo de A. orth(a) es una matriz cuyas columnas r forman una base ortogonal para el espacio de Ejemplos columnas de A. E = eye(4); E(2, 1) = -3 crea una matriz de eliminación elemental de 4 4. E*A resta 3 veces la fila 1 de la fila 2 de A. B = [A b] crea una matriz aumentada con b como columna adicional. E = eye(3); P = E([2 1 3],:) genera una matriz de permutación. Nótese que triu(a) + tril(a) - diag(diag(a)) es igual a A. Archivos.m incluidos en el programa para realizar la factorización de matrices ( importantísimos!) [L, U, P ] = lu(a) produce tres matrices donde PA = LU. e = eig(a) es un vector en el que se encuentran los valores propios de A. [S, E] = eig(a) produce una matriz diagonal de autovalores E y una matriz de autovectores S donde AS = SE. Si A no es diagonalizable (no tiene suficientes autovectores), S no es invertible. [Q, R] = qr(a) produce una matriz ortogonal Q de m m y una triangular R de m n, siendo A = QR. Creación de archivos de extensión.m Son archivos con la terminación.m que MATLAB utiliza para trabajar con funciones y scripts. Un script es una secuencia de comandos que se pueden ejecutar a menudo y que se pueden guardar en un archivo de extensión.m para no tener que escribirlos de nuevo. Las demostraciones de MATLAB son un ejemplo de estos scripts. Fijémonos en la que lleva por nombre house (casa). La mayoría de las funciones de MATLAB están en realidad en archivos.m, y se pueden visualizar escribiendo type xxx, donde xxx es el nombre de la función. Para elaborar sus propios scripts o funciones, deberán generar un nuevo archivo de texto con el nombre que ustedes quieran, siempre y cuando termine en.m, para que MATLAB lo reconozca. Este tipo de archivos se pueden crear, editar y guardar con cualquier editor de textos, como emacs, EZ, o vi. Un archivo de script es simplemente una lista de comandos de MATLAB. Cuando se escribe el nombre del archivo en el prompt de MATLAB, su contenido se ejecuta. Para que un archivo.m sea una función, tiene que empezar por la 4
5 palabra function seguida de las variables de salida entre paréntesis, el nombre de la función y las variables de entrada. Ejemplos function [C]=mult(A) r=rank(a); C =A' A; Guardar los comandos que aparecen arriba en un archivo de texto llamado mult.m. Esta función tomará la matriz A y mostrará solamente la matriz resultado C. La variable r no se muestra porque no se introdujo como variable de salida. Al final de los comandos se ha puesto ";" para que no aparezcan en la ventana de MATLAB cada vez que se ejecutan. Esto resulta útil para trabajar con matrices grandes. Éste es otro ejemplo: function [V, D, r]=properties(a) % Esta función calcula el rango, autovalores y autovectores de A [m, n]=size(a); if m==n [V, D]=eig(A); r=rank(a); else disp('error: La matriz debe ser cuadrada ); end Aquí, la función toma la matriz A como entrada y sólo muestra dos matrices y el rango como salida. El % se utiliza para marcar un comentario. La función comprueba si la matriz de entrada es cuadrada y luego calcula el rango, los autovalores y autovectores de la matriz A. Al escribir properties(a) sólo se obtendrá la primera salida, V, la matriz de autovectores. Es necesario escribir [V,D,r]=properties(A) para obtener las tres salidas. Llevar un diario de trabajo El comando diary('file') ordena a MATLAB que grabe todas la operaciones que se realizan en su ventana y que guarde los resultados en el archivo de texto de nombre file. Al escribir diary on y diary off activa y desactiva la grabación. Los archivos del diario se pueden visualizar mediante un editor de textos, o se pueden imprimir con lpr en unix. En MATLAB se pueden visualizar utilizando el comando type file. Guardar variables y matrices La instrucción diary graba tanto los comandos introducidos como la salida de MATLAB, pero no graba los valores de las variables y matrices. La orden whos elabora un lista de dichas variables, así como de las dimensiones de la matrices. El comando save xxx guarda las matrices y variables de esta lista en un archivo denominado xxx. MATLAB etiqueta estos archivos con una extensión.mat, en lugar de con la.m que usa para scripts y 5
6 funciones. MATLAB podrá leer posteriormente los archivos xxx.mat mediante la orden load xxx. Gráficos El comando más simple es plot(x, y), que utiliza dos vectores, x e y, de la misma longitud. Éste dibujará los puntos (xi, yi) y los unirá mediante rectas continuas. Si no se le da ningún vector x, MATLAB asume que x(i) = i. A continuación plot(y) recibe el mismo espacio en el eje de las x: los puntos son (i, y(i)). Se pueden cambiar el tipo y color de la línea que une los puntos mediante un tercer argumento. Si este argumento no existe, MATLAB dibuja por defecto una línea continua de color negro "-". Introduciendo help plot se obtienen muchas opciones, aquí sólo indicamos unas pocas: MATLAB 5: plot(x, y,'r+ :') dibuja r en rojo, los puntos en forma de + y unidos por línea de puntos. MATLAB 4: plot(x, y,' --') dibuja una línea discontinua y plot(x, y,' '), una línea de puntos. Se pueden omitir las líneas y representar sólo los puntos discretos de distintas formas: plot(x, y,' o') dibuja círculos. Otras opciones son '+', 'x' o '*'. Para obtener dos gráficas en los mismos ejes, utilizar plot(x, y, X, Y). Sustituyendo plot por loglog, semilogy o semilogx, se cambian uno o ambos ejes a la escala logarítimica. El comando axis([a b c d]) ajusta el tamaño del gráfico al del rectángulo a x b, c y d. Para dar título al gráfico o marcar los ejes de las x o de las y, se escribe entre comillas la etiqueta deseada, como en los ejemplos siguientes: title ( altura del satélite ) xlabel ( tiempo en segundos ) ylabel ( altura en metros') El comando hold conserva el gráfico anterior mientras se dibuja uno nuevo. Al repetir hold, se borra la pantalla. Para imprimir o guardar la pantalla de gráficos en un archivo, véase help print o ejecútese print Pnombre de la impresora print d nombre del archivo. 6
Comenzando con MATLAB
ÁLGEBRA LINEAL INGENIERÍA INFORMÁTICA Curso 08/09 PRÁCTICA 1 Comenzando con MATLAB 1 Funcionamiento de Matlab MATLAB es un sistema interactivo basado en matrices para cálculos científicos y de ingeniería.
Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una
Tema 3: Vectores y matrices. Conceptos básicos
Tema : Vectores matrices. Conceptos básicos 1. Definición Matlab está fundamentalmente orientado al trabajo el cálculo matricial. Veremos que las operaciones están definidas para el trabajo con este tipo
Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. [email protected]
Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad
Álgebra Lineal Tutorial básico de MATLAB
Escuela de Matemáticas. Universidad Nacional de Colombia, Sede Medellín. 1 VECTORES Álgebra Lineal Tutorial básico de MATLAB MATLAB es un programa interactivo para cómputos numéricos y visualización de
SISTEMAS DE ECUACIONES LINEALES
SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas
Prácticas de Análisis Matricial con MATLAB
Prácticas de Análisis Matricial con MATLAB Ion Zaballa. Trabajando con matrices y vectores Ejercicio.- Dados los vectores a = 3 4 a) Calcula el vector 3a a + 4a 3., a = 3, a 3 = b) Si A = [a a a 3 ] es
http://www.ib.cnea.gov.ar/~instyctl/tutorial_matlab_esp/plot.html Gráficos en Matlab
1 de 6 04/11/2010 0:58 La Estética de los Gráficos Más de un Gráfico en una ventana (Subplot) Cambiando los ejes Agregar Texto Gráficos en Matlab Una de las funciones más importantes en Matlab es la función
Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control
1er curso de Ingeniería Industrial: Ingeniería de Control Práctica 1ª: Introducción a Matlab Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática
Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:
Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición
1. Visualización de datos con Octave
1. Visualización de datos con Octave Versión final 1.0-19 agosto 2002 Octave es un poderoso software de cálculo numérico. En este documento explicamos un subconjunto realmente pequeño de sus comandos,
10. GENERADOR DE INFORMES.
10. GENERADOR DE INFORMES. El generador de informes es un módulo de la aplicación que nos permite elaborar listados de artículos y de clientes pero de forma personalizada, pues se definen los criterios
UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica
Programación TE243 Segundo semestre de 2014 Ing: José Norbey Sánchez Grupo: UNIVERSIDAD TECNOLÓGICA DE PEREIRA Programa de Tecnología Eléctrica 2. Gráficos en dos y tres dimensiones: 2.1 Gráficos en dos
Centro de Capacitación en Informática
Fórmulas y Funciones Las fórmulas constituyen el núcleo de cualquier hoja de cálculo, y por tanto de Excel. Mediante fórmulas, se llevan a cabo todos los cálculos que se necesitan en una hoja de cálculo.
Tema 4: Empezando a trabajar con ficheros.m
Tema 4: Empezando a trabajar con ficheros.m 1. Introducción Como ya se comentó en el punto 3 del tema1, en Matlab tienen especial importancia los ficheros M de extensión.m. Contienen conjuntos de comandos
Apéndice A. Repaso de Matrices
Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de
Introducción a Matlab.
Introducción a Matlab. Ejercicios básicos de manipulación de imágenes. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Iniciación
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO [email protected] Boleta: 2009350122 CASTILLO GUTIÉRREZ
>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans
Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Cálculo Numérico (521230) Laboratorio 1: Introducción al Matlab Matlab es una abreviatura para
Características de funciones que son inversas de otras
Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =
Operación de Microsoft Word
Generalidades y conceptos Combinar correspondencia Word, a través de la herramienta combinar correspondencia, permite combinar un documento el que puede ser una carta con el texto que se pretende hacer
Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico.
1 Primeros pasos en R. Al iniciarse R (ver Figura 16), R espera la entrada de órdenes y presenta un símbolo para indicarlo. El símbolo asignado, como puede observarse al final, es > Figura 16. Pantalla
PROGRAMA DE CONTROL DE CALIDAD
WORK PAPER # 1 PROGRAMA DE CONTROL DE CALIDAD Nro. DE PROCEDIMIENTO: AC - PRO 01 Nro. DE HOJAS: 6 ELABORÓ: Ing. Víctor A. Laredo Antezana CÓDIGO: TÍTULO WORK PAPER: LO BÁSICO DE MATLAB DPTO: UDABOL LA
Apuntes de ACCESS. Apuntes de Access. Campos de Búsqueda:
Apuntes de ACCESS Campos de Búsqueda: Los campos de búsqueda permiten seleccionar el valor de un campo de una lista desplegable en lugar de tener que escribirlos. El usuario sólo tiene que elegir un valor
ARREGLOS DEFINICION GENERAL DE ARREGLO
ARREGLOS DEFINICION GENERAL DE ARREGLO Conjunto de cantidades o valores homogéneos, que por su naturaleza se comportan de idéntica forma y deben de ser tratados en forma similar. Se les debe de dar un
Curso de Procesamiento Digital de Imágenes
Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html [email protected]
TEMA 5. INTRODUCCIÓN AL MANEJO DE ORIGIN 6.1
TEMA 5. INTRODUCCIÓN AL MANEJO DE ORIGIN 6.1!"# 1. Introducción En muchos aspectos, el Origin es muy similar a Excel. Y lo es, más que en su apariencia, en la versatilidad y en las funciones que permite
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
Introducción a Matlab
Introducción a Matlab Visión en Robótica 1er cuatrimestre de 2013 En este apunte veremos las operaciones más comunes del entorno de programación Matlab. Se aprerán a manejar los aspectos básicos como saltos
Diagonalización de matrices
diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla
http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO
ESTADISTICA APLICADA I Dr. Edgar Acuna http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 2. UNA INTRODUCCIÓN A MINITAB 21Entrando 2.1 a MINITAB Hay dos maneras de
Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3
1. Matrices en Matlab Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3 Para introducir una matriz en Matlab se procede de la
Práctica 0: Introducción a Matlab. Series Temporales. Diplomatura en Estadística. 2009/2010
Práctica 0: Introducción a Matlab. Series Temporales. Diplomatura en Estadística. 2009/200 Matlab es un programa inicialmente diseñado para realizar operaciones matriciales (MATrix LABoratory) que ha ido
Anexo 1: Demostraciones
75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices
MANUAL DE USUARIO INTRANET CONSULTA DE INVENTARIOS ( I C I )
MANUAL DE USUARIO INTRANET CONSULTA DE INVENTARIOS ( I C I ) 2012 Introducción e Índice 2012 2 de 37 INTRODUCCIÓN El Sistema de Consulta de Bienes por Área es un desarrollo que permite tener acceso al
1) Como declarar una matriz o un vector.
MATLAB es un programa que integra matemáticas computacionales y visualización para resolver problemas numéricos basándose en arreglos de matrices y vectores. Esta herramienta posee infinidad de aplicaciones,
Apéndice Álgebra lineal con wxmaxima
Apéndice Álgebra lineal con wxmaxima Objetivos 1. Definir matrices con wxmaxima. 2. Aplicar con wxmaxima operaciones con matrices. 3. Aplicar transformaciones elementales de matrices. 4. Calcular el determinante
Clase 2: Operaciones con matrices en Matlab
Clase 2: Operaciones con matrices en Matlab Hamilton Galindo UP Hamilton Galindo (UP) Clase 2: Operaciones con matrices en Matlab Marzo 2014 1 / 37 Outline 1 Definición de matrices desde teclado 2 Operaciones
Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA
Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro
facilidades para cálculo matemático y Dispone de toolboxes especializados: Control Systems, Neural Netword, Optimization, etc.
MATLAB Introducción al MATLAB MATLAB = MATrix LABoratory Es un entorno de computación que presenta facilidades para cálculo matemático y visualización gráfica Dispone de toolboxes especializados: Control
Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2010 Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2010 INDICE: 01. DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS. 02. VALOR
1. INVERSA DE UNA MATRIZ REGULAR
. INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz
2_trabajar con calc I
Al igual que en las Tablas vistas en el procesador de texto, la interseccción de una columna y una fila se denomina Celda. Dentro de una celda, podemos encontrar diferentes tipos de datos: textos, números,
Una introducción a MATLAB
Universidad de Castilla-La Mancha ETSI Industriales Una introducción a MATLAB Curso 04/05 1. Introducción. MATLAB es un programa de cálculo científico de gran versatilidad y facilidad de uso con un gran
RESUMEN DEL PROGRAMA GNUPLOT
RESUMEN DEL PROGRAMA GNUPLOT Gnuplot es un programa de representación grafica de funciones y superficies, tanto definidas a través de sus expresiones analíticas, como de un conjunto de datos o puntos del
Matrices: Conceptos y Operaciones Básicas
Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES
Recursos de Aprendizaje
1.0 Entorno del programa 2.0 Creación de un nuevo programa 2.1 Guardar un programa o una lista de posiciones 2.2 La apertura de una lista de programa o de posiciones 2.3 El cierre de una lista de programas
Guía N 1: Fundamentos básicos(i)
1 Guía N 1: Fundamentos básicos(i) Objetivos Generales: Ver una breve descripción de las capacidades más comunes de Excel Objetivos específicos: Descripción de los elementos de un libro: Hojas, iconos,
CONSULTAS CON SQL. 3. Hacer clic sobre el botón Nuevo de la ventana de la base de datos. Aparecerá el siguiente cuadro de diálogo.
CONSULTAS CON SQL 1. Qué es SQL? Debido a la diversidad de lenguajes y de bases de datos existentes, la manera de comunicar entre unos y otras sería realmente complicada a gestionar de no ser por la existencia
CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de
CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,
GE Power Management. 6S``O[WS\bORS1]\TWUc`OQWÕ\g. GE-FILES 7\ab`cQQW]\Sa 539$ &
')) GE Power Management 6S``O[WS\bORS1]\TWUc`OQWÕ\g /\ãzwawars@suwab`]arszawabs[o GE-FILES 7\ab`cQQW]\Sa 539$ & *(Ã3RZHUÃ0DQDJHPHQW +D\DOJRTXHQRHQFXHQWUD" $OJRQRHVWiVXILFLHQWHPHQWHFODUR" 6,Ã 7,(1(Ã $/*Ô1Ã
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
DISEÑADOR DE ESCALERAS
DISEÑADOR DE ESCALERAS Guia del usuario DesignSoft 1 2 DISEÑADOR DE ESCALERAS El Diseñador de Escaleras le hace más fácil definir y colocar escaleras personalizadas en su proyecto. Puede empezar el diseñador
MANUAL DE HOJA DE CALCULO
MANUAL DE HOJA DE CALCULO Conceptos Básicos Uso de Celdas Relleno automático y listas de clasificación Formatos Funciones de Bases de Datos Gráficos o Diagramas Abrir archivos de texto y formatearlos CONCEPTOS
CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre
CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una
Guía Práctica para el Uso del Servicio de Software Zoho CRM
Guía Práctica para el Uso del Servicio de Software Zoho CRM Parte 4 Modificación de las Listas Estándar del Sistema Modificación del Menú Principal del Sistema Importación de información al Sistema Adición
Operación Microsoft Access 97
Trabajar con Controles Características de los controles Un control es un objeto gráfico, como por ejemplo un cuadro de texto, un botón de comando o un rectángulo que se coloca en un formulario o informe
3_formato I. NOTA: al pegar unas celdas sobre otras no vacías, se borrará el contenido de estas últimas.
3. Luego se seleccionan las celdas donde se quiere que se sitúen las celdas cortadas. No hace falta seleccionar el rango completo sobre el que se va a pegar, ya que si se selecciona una única celda, Calc
Curso PHP Módulo 1 R-Luis
Lenguaje PHP Introducción Archivos HTML y PHP: Crear un archivo php es tan sencillo como cambiarle la extensión a un archivo html, por ejemplo podemos pasar de index.html a index.php sin ningún inconveniente.
Matlab para Análisis Dinámico de Sistemas
Matlab para Análisis Dinámico de Sistemas Análisis Dinámico de Sistemas, curso 26-7 7 de noviembre de 26 1. Introducción Para usar las funciones aquí mencionadas se necesita Matlab con el paquete de Control
Práctica 3: Funciones
Fonaments d Informàtica 1r curs d Enginyeria Industrial Práctica 3: Funciones Objetivos de la práctica En esta práctica estudiaremos cómo podemos aumentar la funcionalidad del lenguaje MATLAB para nuestras
Traslación de puntos
LECCIÓN CONDENSADA 9.1 Traslación de puntos En esta lección trasladarás figuras en el plano de coordenadas definirás una traslación al describir cómo afecta un punto general (, ) Una regla matemática que
Roberto Quejido Cañamero
Crear un documento de texto con todas las preguntas y respuestas del tema. Tiene que aparecer en él todos los contenidos del tema. 1. Explica qué son los modos de presentación en Writer, cuáles hay y cómo
MICROSOFT EXCEL 2007. Introducción: Qué es y para qué sirve Excel2007? TECNOLOGIA/ INFORMATICA: MS-EXCEL
MICROSOFT EXCEL 2007 Qué es y para qué sirve Excel2007? Excel 2007 es una hoja de cálculo integrada en Microsoft Office. Esto quiere decir que si ya conoces otro programa de Office, como Word, Access,
Traslaciones, Homotecias, Giros y Simetrías
Traslaciones, Homotecias, Giros y Simetrías Traslaciones Nombre e indicación Comando equivalente Vector entre Dos puntos Vector [A, B] Seleccionamos el icono correspondiente a la herramienta Vector entre
Algorítmica y Lenguajes de Programación. MATLAB (i)
Algorítmica y Lenguajes de Programación MATLAB (i) MATLAB. Introducción MATLAB es un entorno interactivo que utiliza como tipos de datos básicos vectores y matrices de flotantes que no requieren ser dimensionados.
Capítulo 9. Archivos de sintaxis
Capítulo 9 Archivos de sintaxis El SPSS permite generar y editar archivos de texto con sintaxis SPSS, es decir, archivos de texto con instrucciones de programación en un lenguaje propio del SPSS. Esta
ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.
ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos
Operación de Microsoft Excel
Representación gráfica de datos Generalidades Excel puede crear gráficos a partir de datos previamente seleccionados en una hoja de cálculo. El usuario puede incrustar un gráfico en una hoja de cálculo,
Uso del programa CALC
Uso del programa CALC 1. Introducción. Podemos considerar una hoja de cálculo como una tabla en la que tenemos texto, números y fórmulas relacionadas entre si. La ventaja de usar dicho programa radica
x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos
Herramientas computacionales para la matemática MATLAB: Funciones definidas por el usuario (parte II)
Herramientas computacionales para la matemática MATLAB: Funciones definidas por el usuario (parte II) Verónica Borja Macías Mayo 2012 1 La línea H1 y las líneas de texto de ayuda La línea H1 y las líneas
La ventana de Microsoft Excel
Actividad N 1 Conceptos básicos de Planilla de Cálculo La ventana del Microsoft Excel y sus partes. Movimiento del cursor. Tipos de datos. Metodología de trabajo con planillas. La ventana de Microsoft
Espacios vectoriales y aplicaciones lineales.
Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en
Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x
Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada
!!!!!!!! !!!!! Práctica!4.! Programación!básica!en!C.! ! Grado!en!Ingeniería!!en!Electrónica!y!Automática!Industrial! ! Curso!2015H2016!
INFORMÁTICA Práctica4. ProgramaciónbásicaenC. GradoenIngenieríaenElectrónicayAutomáticaIndustrial Curso2015H2016 v2.1(18.09.2015) A continuación figuran una serie de ejercicios propuestos, agrupados por
Módulo 9 Sistema matemático y operaciones binarias
Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional
Tema 7: Valores y vectores propios
Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Tecnologías de la Información. Apuntes de programación en Visual Basic 6.0
Tecnologías de la Información. Apuntes de programación en Visual Basic 6.0 Introducción. Qué es un lenguaje de programación? Es la forma que tienen los usuarios (personas) de dar órdenes a una máquina
A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:
ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,
TEMA 5: HOJAS DE CÁLCULO. Edición de hojas de cálculo con OpenOffice Calc
TEMA 5: HOJAS DE CÁLCULO Edición de hojas de cálculo con OpenOffice Calc Qué vamos a ver? Qué es una hoja de cálculo y para qué sirve El entorno de trabajo de OpenOffice Calc Edición básica de hojas de
Características básicas de Matlab
Práctica 1: Introducción a Matlab Objetivo: Conocer las herramientas básicas que ofrece Matlab: Matrices y vectores. Programación básica en Matlab: funciones y guiones (scripts). Representación bidimensional
Para crear formularios se utiliza la barra de herramientas Formulario, que se activa a través del comando Ver barra de herramientas.
Formularios TEMA: FORMULARIOS. 1. INTRODUCCIÓN. 2. CREACIÓN DE FORMULARIOS. 3. INTRODUCIR DATOS EN UN FORMULARIO. 4. MODIFICAR UN FORMULARIO 5. MANERAS DE GUARDAR UN FORMULARIO. 6. IMPRIMIR FORMULARIOS.
Álgebra lineal y matricial
Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen
El programa Minitab: breve introducción a su funcionamiento. Para mostrar la facilidad con la que se pueden realizar los gráficos y cálculos
El programa Minitab: breve introducción a su funcionamiento Para mostrar la facilidad con la que se pueden realizar los gráficos y cálculos estadísticos en la actualidad, el libro se acompaña, en todo
2.1.- EJEMPLO DE UN PROGRAMA FORTRAN
2.1.- EJEMPLO DE UN PROGRAMA FORTRAN Con el presente apartado comenzaremos a conocer cómo se escribe un programa en lenguaje FORTRAN bajo el entorno de programación FORTRAN. En primer lugar conozcamos
Imprimir códigos de barras
Imprimir códigos de barras Al igual que en Abies 1, podemos definir el papel de etiquetas que vamos a utilizar. Se nos dan tres tipos de etiquetas ya creadas, que podemos modificar o eliminar, para lo
Flor +. Manual básico para enfermeras y auxiliares de Enfermería
HOSPITAL UNIVERSITARIO REINA SOFÍA ÁREA DE ENFERMERÍA Flor +. Manual básico para enfermeras y auxiliares de Enfermería Consejería de Salud 0. ACCESO AL MÓDULO Para acceder al sistema informático del hospital
6. VECTORES Y COORDENADAS
6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES
Operaciones básicas, fórmulas, referencias absolutas, relativas y mixtas.
Módulo 3 Herramientas de Cómputo Operaciones básicas, fórmulas, referencias absolutas, relativas y mixtas. Operaciones Básicas Las operaciones básicas que se realizan en una hoja de cálculo son: Seleccionar
Herramientas computacionales para la matemática MATLAB: Scripts
Herramientas computacionales para la matemática MATLAB: Scripts Verónica Borja Macías Marzo 2012 1 Scripts Hasta ahora los comandos MATLAB que hemos visto se ejecutaban en Ia Ventana de Comandos. Aunque
Fundamentos de Matemática Aplicada. (Prácticas)
Fundamentos de Matemática Aplicada (Prácticas) Damián Ginestar Peiró UNIVERSIDAD POLITÉCNICA DE VALENCIA 1 Índice general 1. Matrices dispersas 3 1.0.1. Esquemas de almacenamiento.............. 3 1.0.2.
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
INFORMÁTICA. Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial. Curso 2013-2014. v1.0 (05.03.
INFORMÁTICA Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial Curso 2013-2014 v1.0 (05.03.14) A continuación figuran una serie de ejercicios propuestos, agrupados
ESCALARES, VECTORES Y MATRICES
ESCALARES, VECTORES Y MATRICES MATRIZ Al resolver problemas de ingeniería, es importante poder visualizar los datos relacionados con el problema. A veces los datos consisten en un solo número, como el
