Una introducción a MATLAB
|
|
|
- Silvia San Martín Ruiz
- hace 10 años
- Vistas:
Transcripción
1 Universidad de Castilla-La Mancha ETSI Industriales Una introducción a MATLAB Curso 04/05 1. Introducción. MATLAB es un programa de cálculo científico de gran versatilidad y facilidad de uso con un gran número de herramientas orientadas a una amplia diversidad de aplicaciones. Una vez iniciado MATLAB, podremos acceder a un completo tutorial de ayuda mediante el comando helpdesk. MATLAB proporciona también un conjunto de demostraciones de algunas de sus posibilidades accesible mediante el comando demo. Por su parte, en cualquier momento podremos acceder a la ayuda inmediata respecto de cualquier función mediante la orden help función. El elemento básico en MATLAB son las matrices, que son definidas mediante corchetes. Así >> A=[ ] A = define la matriz fila, mientras que la orden >> a=[1 2 3; 4 5 6] A = ( ) a = define la matriz con dos filas a = Obsérvese que el operador ; separa una fila de la siguiente. Es importante destacar que MATLAB distingue entre mayúsculas y minúsculas, siendo por tanto diferentes a de A.
2 El operador ; al final de una sentencia hace que MATLAB omita la salida. Por otra parte, si no asignamos un nombre a la matriz definida, ésta se asigna de forma automática a la variable ans, por ejemplo, >> [1 2 3; 2 4 5] Una de las características de MATLAB es la facilidad con la que opera con matrices, así el operador define la matriz traspuesta de la dada, >> b=a b = La suma entre una matriz y un escalar produce lo siguiente, >> a pero la orden >> a+b??? Error using ==> + Matrix dimensions must agree. da lugar a error pues las dimensiones de las matrices no son acordes. También es posible definir submatrices a través del operador : del siguiente modo
3 >> c=a(1:2,2:3) c = La multiplicación de matrices se lleva a cabo con el operador *, siempre que las dimensiones sean compatibles. Así, >> a=[1 2 3; 4 5 6]; >> b=[2 3 1] ; >> a*b >> b*a??? Error using ==> * Inner matrix dimensions must agree. También se pueden multiplicar dos matrices elemento a elemento usando el operador.*. En el siguiente ejemplo, el comando eye(n) define la matriz identidad de orden n: >> c=a *a c = >> d=eye(3) d = 1 0 0
4 Nótese a continuación la diferencia entre el operador multiplicación, con y sin. >> c*d >> c.*d Del mismo modo actúan los operadores./ y.^, que dividen o elevan cada uno de los elementos de la matriz. Véanse los ejemplos, >> c^ >> c.^
5 el primero de los cuales calcula la multiplicación de c consigo misma, mientras que el segundo calcula el cuadrado de cada elemento de c Álgebra elemental. MATLAB dispone de diversos comandos para realizar distintos cálculos con matrices. El comando inv calcula la inversa de una matriz, siempre que ésta exista, mientras que det calcula su determinate: >> a=[1 0-1; 2 0-1; ]; >> inv(a) >> det(a) -1 Por su parte, el comando eig proporciona los autovalores de una matriz, y poly da como resultado los coeficientes del polinomio característico. Por ejemplo, >> a=[1 0-1; 2 1-1; ]; >> eig(a) i i donde, como puede observarse, aparecen dos autovalores complejos, 2 + i, 2 i, y el autovalor 0. Si hacemos, >> poly(a)
6 sabremos que el polinomio característico de a viene dado por λ 3 4λ 2 + 5λ Gráficas sencillas. El comando plot permite dibujar una poligonal que une un conjunto de puntos definidos mediante un par de vectores. Obsérvese el siguiente ejemplo: >> x=-1:0.3:1 x = >> y=x.^2 y = en él hemos definido un vector x tomando los puntos que están entre 1 y 1 con distancia 0,3. y el vector y, calculando los cuadrados de los elementos de x. El comando plot(x,y) dibuja una poligonal uniendo los puntos del plano con primera coordenada los elementos de x y segunda coordenada los elementos de y. Entre punto y punto, MATLAB introduce una recta. La sentencia siguiente >> plot(x,y, *- ) general el dibujo mostrado en la Figura Funciones. MATLAB permite trabajar con expresiones simbólicas de funciones de forma sencilla, y realizar cálculos sobre las mismas. Para definer una función usamos el comando inline como mostramos a continuación: >> f=inline( exp(x)-x^2-3*x ) f = Inline function: f(x) = exp(x)-x^2-3*x
7 Figura 1.1. Ejemplo del comando plot Para calcular el valor de esta función en un punto a basta escribir f(a), mientras que es posible esbozar su gráfica en un intervalo [a, b] con la sentencia fplot(f,[a b]). Por otro lado, el comando fzero(f,a) resuelve la ecuación f(x) = 0, en el punto más cercano al punto a. Si en lugar de dar el punto a damos un intervalo donde se encuentra una raíz, calcula ésta: >> fzero(f,[0,1]) El paquete simbólico. Una de los paquetes más útiles para el cálculo con MAT- LAB lo constituye el paquete simbólico o Symbolic Math Toolbox, que permite realizar cálculo simbólico avanzado, es decir, se puede prescindir de asignar un número a una variable y tratarla como una constante genérica. Por ejemplo, si tratamos de calcular el seno de una variable no numérica: >> y=sin(x)??? Undefined function or variable x. obtenemos un error, pues MATLAB no conoce el valor de x. Para declarar una variable como simbólica usamos la expresión >> syms x Ahora podemos evaluar expresiones que contengan a esta variable a través del comando simplify.
8 >> y=sin(x); z=cos(x); >> simplify(y^2+z^2) 1 También es posible definir matrices simbólicas del siguiente modo >> M=sym( [a b; c d] ) M = [ a, b] [ c, d] y ahora calcular, por ejemplo su determinante, y polinomio característico: >> det(m), poly(m) a*d-b*c x^2-x*d-a*x+a*d-b*c Con el paquete simbólico podemos calcular límites, derivadas, integrales impropias, etc. A continuación exponemos diversos ejemplos de estos cálculos. Para calcular el límite >> limit(sin(x)/x,0) lím x 0 sen(x), x 1
9 o un límite en infinito: >> syms n lím n >> limit((n^3+3*n^2-2*n)/(3*n^3-1),inf) n 3 + 3n 2 2n, 3n 3 1 1/3 También es posible definir expresiones simbólicas sin necesidad de declarar la variable previamente, >> f= exp(z^3)+sin(z)^2 f = exp(z^3)+sin(z)^2 y después es posible, por ejemplo, derivar: >> diff(f) 3*z^2*exp(z^3)+2*sin(z)*cos(z) En algunos casos la lectura de la salida que proporciona MATLAB no es muy legible. El comando pretty genera en ocasiones una visualización más usual. Si nuestra expresión depende de constantes o más variables, es posible especificar la variable de derivación del siguiente modo: >> f= a*exp(a+x)/sin(a*x) f = a*exp(a+x)/sin(a*x) >> diff(f, a )
10 exp(a+x)/sin(a*x)+a*exp(a+x)/sin(a*x)-a*exp(a+x)/sin(a*x)^2*cos(a*x)*x >> pretty(ans) exp(a + x) a exp(a + x) a exp(a + x) cos(a x) x sin(a x) sin(a x) 2 sin(a x) La integración se lleva a cabo con el comando int. Es posible hacer integrales definidas o indefinidas: >> f= a*exp(a*x) ; >> int(f, x ) exp(a*x) >> int(f, x,0,1) exp(a)-1 Es importante observar que el cálculo de una integral definida mediante la última sentencia es un cálculo simbólico, de manera que integrales como la siguiente >> int( exp(x^2), x,0,1) -1/2*i*erf(i)*pi^(1/2) no tienen mucho sentido, pues el resultado viene expresado mediante una función extraña, ya que no se conoce una primitiva de la función e x2. Sin embargo, si acudimos al análisis numérico, MATLAB proporciona varios comandos que permiten obtener aproximaciones numéricas de cualquier integral definida. Por ejemplo, para usar la regla de Simpson tenemos el comando quad que puede actuar sobre funciones o expresiones simbólicas
11 >> f=inline( exp(x.^2) ); >> quad(f,0,1) >> quad( x.*exp(x),0,1) Nótese en ambos casos la necesidad de usar los operadores de multiplicación o exponenciación de la forma.* ó.^. 4. Programación en MATLAB. Para finalizar con esta breve introducción a MAT- LAB es necesario hablar de los scripts o m-files que nos permiten elaborar programas para ejecutar en el entorno de MATLAB. Como ejemplo presentamos a continuación una pequeña implementación del método de Newton: function y = newton(f,x0) % f es una cadena de caracteres % x0 es el punto inicial df=diff(f); xk=1; x=0; while (abs(xk-x)>1.e-6) x=x0; xk = x0 - eval(f)/eval(df); x0=xk; end y=xk; El diseño del programa permite introducir tanto la función cuya raíz queremos encontrar como el punto para iniciar el algoritmo. Dado que introducimos parámetros en la ejecución hemos de formular el m-file como una function, tal y como aparece en la primera línea. El dato de salida es la variable y, el nombre del programa (que debe coincidir con el nombre del fichero m-file) es newton que depende de los parámetros de entrada f, que debe ser una cadena de caracteres y x0 un punto inicial. Las líneas siguientes, comenzando con % son comentarios.
12 El resto de las líneas son asignaciones y un bucle en el que se itera mediante el método de Newton hasta que la diferencia entre dos iteraciones consecutivas es menor que Para poder ejecutar este programa debemos editarlo (MATLAB trae consigo un editor incorporado) y guardarlo como un fichero con extensión.m. Después, bastará que el fichero se encuentre en algún lugar en el que MATLAB lo pueda encontrar (en el path), para que pueda se ejecutado del siguiente modo: >> newton( exp(x)-x*sin(x),0)
Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control
1er curso de Ingeniería Industrial: Ingeniería de Control Práctica 1ª: Introducción a Matlab Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática
Introducción a Matlab.
Introducción a Matlab. Ejercicios básicos de manipulación de imágenes. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Iniciación
Tema 7: Programación con Matlab
Tema 7: Programación con Matlab 1. Introducción Matlab puede utilizarse como un lenguaje de programación que incluye todos los elementos necesarios. Añade la gran ventaja de poder incorporar a los programas
Tema 4: Empezando a trabajar con ficheros.m
Tema 4: Empezando a trabajar con ficheros.m 1. Introducción Como ya se comentó en el punto 3 del tema1, en Matlab tienen especial importancia los ficheros M de extensión.m. Contienen conjuntos de comandos
Comenzando con MATLAB
ÁLGEBRA LINEAL INGENIERÍA INFORMÁTICA Curso 08/09 PRÁCTICA 1 Comenzando con MATLAB 1 Funcionamiento de Matlab MATLAB es un sistema interactivo basado en matrices para cálculos científicos y de ingeniería.
Álgebra Lineal Tutorial básico de MATLAB
Escuela de Matemáticas. Universidad Nacional de Colombia, Sede Medellín. 1 VECTORES Álgebra Lineal Tutorial básico de MATLAB MATLAB es un programa interactivo para cómputos numéricos y visualización de
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
Práctica 3: Funciones
Fonaments d Informàtica 1r curs d Enginyeria Industrial Práctica 3: Funciones Objetivos de la práctica En esta práctica estudiaremos cómo podemos aumentar la funcionalidad del lenguaje MATLAB para nuestras
Algorítmica y Lenguajes de Programación. MATLAB (i)
Algorítmica y Lenguajes de Programación MATLAB (i) MATLAB. Introducción MATLAB es un entorno interactivo que utiliza como tipos de datos básicos vectores y matrices de flotantes que no requieren ser dimensionados.
>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans
Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Cálculo Numérico (521230) Laboratorio 1: Introducción al Matlab Matlab es una abreviatura para
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
1. Visualización de datos con Octave
1. Visualización de datos con Octave Versión final 1.0-19 agosto 2002 Octave es un poderoso software de cálculo numérico. En este documento explicamos un subconjunto realmente pequeño de sus comandos,
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
Tema 3: Vectores y matrices. Conceptos básicos
Tema : Vectores matrices. Conceptos básicos 1. Definición Matlab está fundamentalmente orientado al trabajo el cálculo matricial. Veremos que las operaciones están definidas para el trabajo con este tipo
Introducción a la Programación en MATLAB
Introducción a la Programación en MATLAB La programación en MATLAB se realiza básicamente sobre archivos M, o M-Files. Se los denomina de esta forma debido a su extensión.m. Estos archivos son simple archivos
Espacios vectoriales y aplicaciones lineales.
Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en
2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL
2º ITT SISTEMAS ELECTRÓNICOS 2º ITT SISTEMAS DE TELECOMUNICACIÓN 3º INGENIERÍA DE TELECOMUNICACIÓN AUTÓMATAS Y SISTEMAS DE CONTROL PRÁCTICA 2: INTRODUCCIÓN A MATLAB. CARACTERÍSTICAS BÁSICAS DE MATLAB Funcionalidades
Estudio de ceros de ecuaciones funcionales
Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x)
PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.
PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO [email protected] Boleta: 2009350122 CASTILLO GUTIÉRREZ
MATLAB en 30 minutos
MATLAB en 30 minutos Rafael Collantes. Octubre 200. Introducción MATLAB nació como un programa para cálculo matricial, pero en la actualidad MATLAB es un sistema que permite no solamente realizar todo
Práctica 1: Introducción al entorno de trabajo de MATLAB *
Práctica 1: Introducción al entorno de trabajo de MATLAB * 1. Introducción MATLAB constituye actualmente un estándar dentro de las herramientas del análisis numérico, tanto por su gran capacidad y sencillez
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
Introducción a MATLAB
Introducción a MATLAB Juan-Antonio Infante Rey José María En estas breves notas, desarrolladas por Juan-Antonio Infante y José María Rey, profesores del Departamento de Matemática Aplicada de la Universidad
1. Ecuaciones no lineales
1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar
Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una
Características básicas de Matlab
Práctica 1: Introducción a Matlab Objetivo: Conocer las herramientas básicas que ofrece Matlab: Matrices y vectores. Programación básica en Matlab: funciones y guiones (scripts). Representación bidimensional
facilidades para cálculo matemático y Dispone de toolboxes especializados: Control Systems, Neural Netword, Optimization, etc.
MATLAB Introducción al MATLAB MATLAB = MATrix LABoratory Es un entorno de computación que presenta facilidades para cálculo matemático y visualización gráfica Dispone de toolboxes especializados: Control
Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico.
1 Primeros pasos en R. Al iniciarse R (ver Figura 16), R espera la entrada de órdenes y presenta un símbolo para indicarlo. El símbolo asignado, como puede observarse al final, es > Figura 16. Pantalla
4. Sucesiones y funciones
1 4. Sucesiones y funciones Mathematica dispone de herramientas para hacer sumas de series numéricas, derivadas de funciones de una y varias variables, cálculo de primitivas de funciones de una variable,
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
Anexo 1: Demostraciones
75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
Cálculo Simbólico también es posible con GeoGebra
www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades
Introducción a MATLAB/ OCTAVE. Fundamentos Físicos de la Informática, 2006
Introducción a MATLAB/ OCTAVE Fundamentos Físicos de la Informática, 006 Matlab/ Octave Matlab es un lenguaje de programación orientado al cálculo numérico, principalmente matricial Octave es un programa
Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales
Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector
DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD
Curso Asignatura 2014/2015 MATEMÁTICAS II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad La siguiente relación de objetivos,
De aquí sale el proyecto MACsyma (MAC s SYmbolic MAnipulator)
El proyecto Matemáticas y Computación (MAC) se inicia en la década de los años 60 en el MIT (con el apoyo financiero de los Departamentos de Defensa y Energía de los EE.UU.) para atender sus necesidades
Algunos comandos para tener en cuenta en las operaciones son: who enumera todas las variables usadas hasta el momento.
MATLAB El software MatLab se desarrolló como un Laboratorio de matrices, pues su elemento básico es una matriz. Es un sistema interactivo y un lenguaje de programación de cómputos científico y técnico
1. Iteraciones de aplicaciones discretas
Práctica número 1. Curso 2012-2013 Las prácticas propuestas aquí están realizadas con la ayuda del programa de simulación Matlab. Las prácticas también se podrán realizar con el programa libre Octave disponible
RELACIONES DE RECURRENCIA
Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
Qué son los monomios?
Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
Aplicaciones Lineales
Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las
Transformaciones canónicas
apítulo 29 Transformaciones canónicas 29.1 Introducción onsideremos una transformación arbitraria de las coordenadas en el espacio de las fases de dimensión 2(3N k) (con el tiempo como un parámetro) Q
8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.
Prácticas de Matemáticas I y Matemáticas II con DERIVE 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar si el
Herramientas computacionales para la matemática MATLAB: Arreglos
Herramientas computacionales para la matemática MATLAB: Arreglos Verónica Borja Macías Marzo 2013 1 Arreglos Un arreglo es una estructura que MATLAB utiliza para almacenar y manipular datos. Es una lista
Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1
. ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio
Trabajando en la ventana de comandos en el programa gretl.
Proyecto de Innovación Docente: Guía multimedia para la elaboración de un modelo econométrico. 1 Trabajando en la ventana de comandos en el programa gretl. Gretl permite trabajar mediante comandos y funciones,
INTRODUCCION A LA PROGRAMACION DE PLC
INTRODUCCION A LA PROGRAMACION DE PLC Esta guía se utilizará para estudiar la estructura general de programación de um PLC Instrucciones y Programas Una instrucción u orden de trabajo consta de dos partes
Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular. Con la expresión seleccionada
Integrales Definidas e Indefinidas Cómo calcular una integral indefinida (primitiva) o una integral definida? Se introduce en la Ventana de Álgebra la expresión cuya primitiva queremos calcular Con la
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
LibreOffice - curso avanzado
LibreOffice - curso avanzado Math Qué es? Math es el editor de fórmulas la suite LibreOffice, que se puede invocar en sus documentos de texto, hojas de cálculo, presentaciones y dibujos, permitiéndole
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa
Introducción a Matlab
Introducción a Matlab Visión en Robótica 1er cuatrimestre de 2013 En este apunte veremos las operaciones más comunes del entorno de programación Matlab. Se aprerán a manejar los aspectos básicos como saltos
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
IES Fco Ayala de Granada Junio de 2012 (Específico Modelo 1) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Específico Modelo 1) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 específico Sea la función f: (0,+) R definida por f(x) 1/x + ln(x) donde
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
1. INVERSA DE UNA MATRIZ REGULAR
. INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz
Matlab para Análisis Dinámico de Sistemas
Matlab para Análisis Dinámico de Sistemas Análisis Dinámico de Sistemas, curso 26-7 7 de noviembre de 26 1. Introducción Para usar las funciones aquí mencionadas se necesita Matlab con el paquete de Control
Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales
Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Introducción al Cálculo Simbólico a través de Maple
1 inn-edu.com [email protected] Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos
Complemento Microsoft Mathematics
Complemento Microsoft Mathematics El complemento Microsoft Mathematics es un conjunto de herramientas que se pueden usar para realizar operaciones matemáticas y trazado de gráficas con expresiones o ecuaciones
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS
1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES
Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere
Matrices invertibles. La inversa de una matriz
Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad
OPERACIONES ELEMENTALES CON VECTORES
VECTORES EN 3D (O EN R 3) Presentación: este apunte te servirá para repasar y asimilar que son los vectores en un espacio tridimensional, sólo hablamos de los vectores como se utilizan en Álgebra, para
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
Presentaciones. Con el estudio de esta Unidad pretendemos alcanzar los siguientes objetivos:
UNIDAD 8 Presentaciones Reunión. (ITE. Banco de imágenes) as presentaciones son documentos formados por una sucesión de páginas, llamadas diapositivas, que transmiten información estructurada de manera
Tutorial Básico de vbscript
Tutorial Básico de vbscript Bueno, primero aclarar que este tutorial, pretende explicar de manera básica las distintas instrucciones aplicadas en visual basic script (vbs de aquí en más), para que así
Práctica 1 - Pista de Carreras 12407 - Programación II
1. Introducción Práctica 1 - Pista de Carreras 12407 - Programación II En esta práctica el objetivo es implementar una matriz de adyacencia para el juego Pista de Carreras. Con tal fin, primero hay que
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 11 ( Modelo 3) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 del 11 [ 5 puntos] Dada la función f : R R definida por f(x) ax 3 + bx +cx, determina
4 APLICACIONES LINEALES. DIAGONALIZACIÓN
4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos
Matemáticas I: Hoja 4 Aplicaciones lineales y diagonalización
Matemáticas I: Hoja 4 Aplicaciones lineales y diagonalización Ejercicio. Decidir cuáles de las siguientes aplicaciones son lineales. Cuál es la dimensión del espacio imagen? a f(x, x 2, x 3 = (x 2 + x
ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS
ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel Resumen dibujo de grafos mediante algoritmos genéticos
Estructuras de Control - Diagrama de Flujo
RESOLUCIÓN DE PROBLEMAS Y ALGORITMOS Ingeniería en Computación Ingeniería en Informática UNIVERSIDAD NACIONAL DE SAN LUIS DEPARTAMENTO DE INFORMÁTICA AÑO 2015 Índice 1. Programación estructurada 2 1.1.
Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables
Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.6 Extremos relativos de funciones de 2 variables Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
Manual de Introducción a SIMULINK
Manual de Introducción a SIMULINK Autor: José Ángel Acosta Rodríguez 2004 Capítulo Ejemplo.. Modelado de un sistema dinámico En este ejemplo se realizará el modelado de un sistema dinámico muy sencillo.
Tema 3: Aplicaciones de la diagonalización
TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:
M a t e m á t i c a s I I 1
Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)
Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
Repaso de matrices, determinantes y sistemas de ecuaciones lineales
Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento
x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
QUÉ ES UN NÚMERO DECIMAL?
QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y
GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008
1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto
Actividades con GeoGebra
Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde
E 1 E 2 E 2 E 3 E 4 E 5 2E 4
Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),
Curso PHP Módulo 1 R-Luis
Lenguaje PHP Introducción Archivos HTML y PHP: Crear un archivo php es tan sencillo como cambiarle la extensión a un archivo html, por ejemplo podemos pasar de index.html a index.php sin ningún inconveniente.
