Matemática Superior Aplicada Descomposición PLU
|
|
|
- Estefania Ferreyra Gutiérrez
- hace 9 años
- Vistas:
Transcripción
1 Matemática Superior Aplicada Descomposición PLU Prof.: Dr. Alejandro S. M. Santa Cruz J.T.P.: Ing. Juan Ignacio Manassaldi Aux. 1 ra : Ing. Juan Pablo Camponovo Aux. 2 ra : Sr. Alejandro Jesús Ladreyt
2 Se llama factorización PLU de A si las matrices P; L; U cumplen que: PA = LU Donde: U es una matriz triangular superior con elementos diagonales no nulos L es una matriz triangular inferior con elementos diagonales iguales a 1 P es una matriz de permutación.
3
4 Aplicación en Sistema de ecuaciones Sea el sistema: Ax b Realizamos la descomposición PLU de A Luego: A? ' P LU PA LU Finalmente reemplazamos en el sistema Original P ' LUx b
5 Nuestro nuevo sistema a resolver es ' P LUx b Para resolverlo definimos los siguientes nuevos vectores LUx Pb L Ux Pb y z z Pb Ly z Ux y Conozco P y conozco b por lo que calculo z de manera directa Debemos resolver estos dos sistemas de ecuaciones
6 Cuál es la ventaja si ahora debo resolver dos sistemas en vez de uno? Lo vemos con un ejemplo:
7 Primer paso: z Pb Segundo Paso: Ly z y y y y
8 Qué ventaja tiene este sistema de ecuaciones? Ly z y y y y Fácil resolución! Aplicamos el método de sustitución hacia delante
9 Lo resolvemos y obtenemos: Ultimo Paso: Ux y x x x x
10 Qué ventaja tiene este sistema de ecuaciones? Ux y x x x x Fácil resolución! Aplicamos el método de sustitución hacia atrás
11 Finalmente: Descomposición PLU
12 Resumen: Ax b P ' LUx b Nuevo sistema equivalente z Pb Calculo directo de z Ly z Obtenemos y por sustitución hacia delante Ux y Obtenemos x por sustitución hacia atrás
13 Algunas cuestiones para discutir
14 Recordamos la eliminación Gaussiana: La técnica de pivoteo parcial consiste en ubicar en la fila pivote el termino de mayor magnitud de tal forma que al realizar la división por dicho termino no se incurre en la violación de división por números cercanos a cero ni la división por cero. Entonces debemos cambiar de lugar las filas
15 Ahora si eliminamos la primera columna:
16 hace falta cambiar el pivote? No, procedemos con la eliminación
17 hace falta cambiar el pivote? Si!
18 Completamos la eliminación Descomposición PLU
19 Resumen: Primero cambiamos la fila 1 por la 2
20 Luego cambiamos la fila 3 por la 4
21 Fila 1 por la 2 Fila 3 por la 4 Descomposición PLU
22
23 Ventajas: La descomposición PLU realiza internamente el proceso de pivoteo parcial La resolución del sistema es simple, solo requiere sustitución hacia delante y hacia atrás
24 Si con la eliminación Gaussiana también resuelvo aplicando sustitución. En donde esta la ventaja?
25 La eliminación gaussiana con pivoteo se le realiza a la matriz ampliada y la descomposición PLU solo a la matriz de coeficientes. Si tenemos que resolver una sola vez el sistema no hay ventajas. Pero si debemos resolver un mismo sistema varias veces con distintos términos independientes aquí la descomposición PLU se realiza una única vez y la EG se le debe realizar a cada nueva matriz ampliada.
26 Ejercicio Ejercicio 1: Contamos con tres corrientes provenientes de diferentes líneas de producción y deseamos mezclarlas para obtener un único producto que cumpla con las especificaciones requeridas. P 1 P 2 P 3 B l e n d i n g P La descarga (P) debe tener un flujo másico de 32 kg/h, 84 kg/h y 34 kg/h de componentes A, B y C respectivamente. Según análisis realizados, la composición (fracción de masa) de cada corriente que ingresa es: A P1 = 0.2 B P1 = 0.6 C P1 = 0.2 A P2 = 0.4 B P2 = 0.6 C P2 = 0 A P3 = 0.1 B P3 = 0.5 C P3 = 0.4 Deseamos conocer que cantidad de cada corriente debe ingresar al equipo para obtener el producto deseado.
27 Ejercicio Ejercicio 2: Las descarga (P) ahora debe tener un flujo másico de 30 kg/h, 80 kg/h y 36 kg/h de componentes A, B y C respectivamente.
Resolución de Sistema de Ecuaciones Lineales
Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 29 CONTENIDO
Gustavo Rodríguez Gómez. Agosto Dicembre 2011
Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 46 Capítulo II 2 / 46 1 Introducción Métodos Directos Sistemas Triangulares Sustitución Hacia Atrás Invertibilidad de una Matriz
Sistemas de Ecuaciones. Lineales II
Sistemas de Ecuaciones Lineales II Factorización LU: Eliminación Gaussiana Relación con la factorización LU 521230-1 - DIM Universidad de Concepción Solución de sistemas con matriz triangular Dadas L =
Lección 11. Eliminación Gaussiana con Pivoteo y Matrices de Banda
Lección 11. Eliminación Gaussiana con Pivoteo y Matrices de Banda MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre de 2014 1 Centro de Investigación en Matemáticas,
SEL - Métodos Directos
Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Métodos Directos Generalidades sobre Métodos Directos Eliminación Gaussiana Pivoteo Factorización LU Generalidades
RESOLUCIÓN DE SISTEMAS LINEALES
Contenido 1 Métodos de Solución Contenido Métodos de Solución 1 Métodos de Solución Desarrollamos el algoritmo de sustitución regresiva, con el que podremos resolver un sistema de ecuaciones lineales cuya
Instituto Tecnológico Autónomo de México. 1. At =..
Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida
Resolución de sistemas de ecuaciones lineales
Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular
Sistemas de Ecuaciones. Lineales III
Sistemas de Ecuaciones Lineales III Pivoteo: Estrategia de pivoteo parcial Adaptación a matrices con estructuras particulares: Matrices banda y tridiagonales Método de holesky 52123-1 - DIM Universidad
Solución de sistemas lineales
Solución de sistemas lineales Felipe Osorio http://www.ies.ucv.cl/fosorio Instituto de Estadística Pontificia Universidad Católica de Valparaíso Marzo 31, 2015 1 / 12 Solución de sistemas lineales El problema
Matrices y sistemas lineales
Matrices y sistemas lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices elementales En esta sección vamos a crear funciones en MATLAB que nos permitan construir matrices elementales.
Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011
Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................
TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades
TEMA 8 F MATEMÁTICOS TEMA 8 Sistemas de Ecuaciones Lineales: Método de Gauss 1 Sistemas de ecuaciones lineales Generalidades Uno de los problemas centrales del álgebra lineal es la resolución de ecuaciones
Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I
Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES
7 de Aril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase 6) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Álgera Lineal y Geometría Analítica
Matrices y Sistemas de Ecuaciones lineales
Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,
1. Sistemas de ecuaciones lineales
Departamento de Matemática Aplicada CÁLCULO COMPUTACIONAL. Licenciatura en Química (Curso 25-6) Sistemas de ecuaciones lineales Práctica 2 En esta práctica vamos a ver cómo se pueden resolver sistemas
Primero se triangulariza la matriz: Multiplicando la primera fila por (-1/3) y sumando a la segunda fila: ( ) ( )=( ) ( ) ( )
MAT 115 B EJERCICIOS RESUELTOS Resolver el siguiente sistema de ecuaciones: a) Por el método de eliminación de Gauss La matriz aumentada del sistema es: 3 2 6 1 5 Primero se triangulariza la matriz: Multiplicando
Intente deducir una forma general para describir todas las matrices cuadradas de orden 4 que conmutan con la matriz ( d = ~
47 EJERCICIO 2.4 Dada la matriz A = O : calcular A2. A 3. A 4. Se le ocurre alguna fórmula general O O : para AO, n E N? EJERCICIO 2.5 Intente deducir una forma general para describir todas las matrices
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades
Elementos de Cálculo Numérico
Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico Primer cuatrimestre 2006 Práctica N 2: Condicionamiento de una matriz. Descomposición
ELIMINACIÓN GAUSSIANA
ELIMINACIÓN GAUSSIANA Este método se aplica para resolver sistemas lineales de la forma: El método de eliminación Gaussiana (simple), consiste en escalonar la matriz aumentada del sistema: para obtener
Algoritmo de la factorización LU
Algoritmo de la factorización LU. Objetivo. Estudiar el algoritmo de la factorización LU de una matriz cuadrada invertible.. Requisitos: Matrices elementales y su relación con operaciones elementales.
TEMA VI 1. MÉTODO DE ELIMINACIÓN DE GAUSS Y GAUSS JORDAN PARA RESOLVER SISTEMAS DE ECUACIONES LINEALES.
TEMA VI 1. MÉTODO DE ELIMINACIÓN DE GAUSS Y GAUSS JORDAN PARA RESOLVER SISTEMAS DE ECUACIONES LINEALES. El método de Eliminación de Gauss consiste en transformar un sistema de ecuaciones lineales (S.E.L.)
Matrices triangulares y descomposición LU
Matrices triangulares y descomposición LU Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el examen será suficiente
Sistema de ecuaciones Parte II
Regla de Cramer Sistema de ecuaciones Parte II La regla de Cramer sirve para resolver sistemas de ecuaciones lineales. Se aplica a sistemas que cumplan las dos condiciones siguientes: El número de ecuaciones
Algoritmo de factorización LU
Algoritmo de factorización LU Objetivos. Estudiar el algoritmo de la factorización LU de una matriz cuadrada invertible. Requisitos. Matrices elementales y su relación con operaciones elementales, matriz
Teoría Tema 6 Discusión de sistemas por el método de Gauss
página 1/9 Teoría Tema 6 Discusión de sistemas por el método de Gauss Índice de contenido Método de Gauss...2 Discusión de sistemas por el método de Gauss...4 Sistemas que dependen de parámetros desconocidos...6
Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:
Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar
SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA
MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva
Descomposición QR de una matriz (1)
Descomposición QR de una matriz (1) Mayo de 2015. Factorización (o descomposición) QR Una factorización QR de una matriz A es una descomposición de A como producto de dos matrices: A = QR. La matriz R
Sistema de ecuaciones algebraicas. Eliminación de Gauss.
Sistema de ecuaciones algebraicas. Eliminación de Gauss. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: [email protected] web: http://metodosnumericoscem.weebly.com
TEMA 4: Sistemas de ecuaciones lineales II
TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos
Análisis Numérico para Ingeniería. Clase Nro. 5
Análisis Numérico para Ingeniería Clase Nro. 5 Sistemas de Ecuaciones Lineales Temas a tratar: Tipos de Matrices Método de Triangulación de Gauss Método de Diagonalización de Gauss-Jordan Tácticas de Pivoteo
2. Sistemas de ecuaciones lineales.
2. Sistemas de ecuaciones lineales. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2002 Contents 1 Introducción 2 2 Operaciones elementales
A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.
A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas
Ejercicio 3 de la Opción A del modelo 1 de 2008.
Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1
TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES
TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES Dado un polinomio P(x) y un número real a, el resto de la división de P(x) entre (x a) es P(a) (es decir, el resultado de sustituir el valor de x por
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales. Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales de la forma:
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Sistemas de Ecuaciones Lineales 1) SISTEMAS DE ECUACIONES LINEALES Un sistema de ecuaciones lineales es un conjunto de ecuaciones
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible
TAREA 1 ALGEBRA ING. AMBIENTAL UNIVERSIDAD DE CÒRDOBA Vanessa Aldana, Cristian Gonzales, María De La Ossa
TAREA 1 ALGEBRA ING. AMBIENTAL UNIVERSIDAD DE CÒRDOBA Vanessa Aldana, Cristian Gonzales, María De La Ossa EJERCICIO 1 Para una matriz A nxn. En qué consiste la factorización o descomposición LU? Explique
Método de Gauss-Jordán paso a paso para la resolución de Sistemas de Ecuaciones Lineales de 3x3
Método de Gauss-Jordán paso a paso para la resolución de Sistemas de Ecuaciones Lineales de 3x3 17-octubre-2013 Elaboró: Ing. Edwing Daniel Chay Morales 1 El propósito de este material es dar a detalle
Eliminación Gaussiana con pivote parcial
Eliminación Gaussiana con pivote parcial Luis Rández Dpto. Matemática Aplicada Facultad de Ciencias Universidad de Zaragoza Luis Rández (Dpto. Matemática Aplicada) Eliminación Gaussiana con pivote parcial
SISTEMAS DE ECUACIONES
SISTEMAS DE ECUACIONES Ecuación es una igualdad que contiene por lo menos una incógnita, que se representa por medio de una letra, cuyo valor se debe averiguar. Por ejemplo: 3x + 2 = 4 donde debemos calcular
Matemática II Tema 3: resolución de sistemas de ecuaciones lineales
Matemática II Tema 3: resolución de sistemas de ecuaciones lineales 2012 2013 Índice Sistemas de ecuaciones lineales 1 Interpretación geométrica y definición 1 Método de eliminación 4 Resolución de sistemas
Introducción a Matrices y Eliminación Gaussiana
Introducción a Matrices y Eliminación Gaussiana 1 Sistema de Ecuaciones Matricial 2 Definición Una matriz es un arreglo rectangular de valores llamados elementos, organizados por filas y columnas. Ejemplo:
Resolver las siguientes integrales aplicando fracciones parciales,
Tu pregunta es, Resolver las siguientes integrales aplicando fracciones parciales, 1- x+1 (x 3) 2 dx 2- x+1 (x 1) 2 dx 3- x (x 3) 2 dx 4- x 2 dx (x 3)(x+2) 2 Bien, para la primera, x + 1 (x 3) 2 dx Ésta
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes
Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5.
Unidad. Matrices.. Conceptos básicos.. Operaciones con matrices.. Matriz Inversa.. El método de Gauss-Jordan.. Aplicaciones Objetivos particulares de la unidad Al culminar el aprendizaje de la unidad,
Factorización de matrices
CAPÍTULO Factorización de matrices En este capítulo se estudian algunas de las técnicas más utilizadas para factorizar matrices, es decir, técnicas que permiten escribir una matriz como producto de dos
Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012
Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema
SISTEMAS DE ECUACIONES LINEALES
SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales 1. Estudiar el sistema de ecuaciones según los valores del parámetro a. ax + y + z = a x y + z = a 1 x + (a 1)y + az = a + 3 Resolverlo (si es posible) para a = 1. (Junio
Tema 3: Sistemas de ecuaciones lineales
Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE ECONOMIA LICENCIATURA DE ACTUARIA Algebra Lineal Práctica: Matriz inversa 1 M. en I. Elizabeth Almazán Torres 2 Resultado de Aprendizaje El estudiante
I. Operaciones con matrices usando Mathematica
PRÁCTICA 9: RESOLUCIÓN DE SISTEMAS LINEALES II I. Operaciones con matrices usando Mathematica Introducir matrices en Mathematica: listas y escritura de cuadro. Matrices identidad y diagonales. El programa
Métodos para matrices especiales. Descomposición de Cholesky
Métodos para matrices especiales. Descomposición de Cholesky MAT-251 Dr. CIMAT A.C. e-mail: [email protected] web: http://www.cimat.mx/~alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. e-mail: [email protected]
Métodos directos para resolver sistemas de ecuaciones lineales
Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el
Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5
DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. SISTEMAS DE ECUACIONES LINEALES
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 8. SISTEMAS DE ECUACIONES LINEALES 1.- Discusión de sistemas lineales: Teorema de Rouché-Fröbenius. En este apartado trataremos la discusión
MATRICES Y DETERMINANTES II.
MATRICES Y DETERMINANTES II. Matriz adjunta es la matriz cuadrada que se obtiene al sustituir cada elemento por su adjunto correspondiente. Calcula la matriz adjunta: 2 2 2 A =( 2 1 0 ) 3 2 2 Primero calculamos
Simulacion Numerica / Metodos Numericos. Unidad III Solución de Ecuaciones Lineales. Ing. Deny González Msc.
Unidad III Solución de Ecuaciones Lineales Contenido Introducción. Métodos Alternativos para Pequeños Sistemas Método Grafico Regla de Cramer Eliminación de Incógnitas. Eliminación de Gauss Simple Descomposición
Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES. 1. Una matriz A de n n es diagonalmente dominante (estrictamente) por filas si
Cuarta relación de problemas Técnicas Numéricas Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES 1. Una matriz A de n n es diagonalmente dominante estrictamente por filas si a ii > a
MATRICES. Capítulo 3. Martínez Héctor Jairo Sanabria Ana María Semestre 02, Introducción Definición y Tipo de Matrices
55 Capítulo 3 MATRICES Martínez Héctor Jairo Sanabria Ana María Semestre 02, 2007 3 Introducción En los capítulos anteriores, utilizando la noción de matriz, simplificamos la representación de problemas
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:
TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.
TEMA 4 Ejercicios / 1 TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. 1. Tenemos un sistema homogéneo de 5 ecuaciones y 3 incógnitas: a. Es posible que sea incompatible?. Por qué? b. Es posible
Descomposición LU de matrices
Descomposición LU de matrices José L. Vieitez IMERL, Facultad de Ingeniería, Universidad de la República 3 de agosto de 006 Abstract Descomposición LU de una matriz A = (a ij ), i, j = 1,..., n. 1 Hechos
SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.
SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.
Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales
Grado en Ingeniería agrícola y del medio rural Tema 2 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2017 Licencia Creative Commons 4.0 Internacional J.
PAIEP. Sistemas de Ecuaciones Lineales
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Sistemas de Ecuaciones Lineales Consideremos el sistema lineal de dos ecuaciones y dos incógnitas x + y = 2 2x
Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS
SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS 1.- DEFINICIÓN DE SISTEMAS DE ECUACIONES LINEALES Definición: se llama sistema de ecuaciones lineales al
Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss
página 1/6 Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss Índice de contenido Matriz del sistema y matriz ampliada...2 Método de Gauss...3 Solución única, ausencia
Cálculo numérico. Sistemas de ecuaciones lineales.
José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...
ECUACIONES. Las letras representan números y se llaman incógnitas.
ECUACIONES. Una ecuación es una expresión algebraica (un conjunto de letras y números), unidos entre sí por signos aritméticos, de radicalización y potenciación. Las letras representan números y se llaman
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares
Clase 1. Resolución de sistemas de ecuaciones lineales: preliminares 2. Método directo y exacto: Gauss 3. Método directo y exacto (II): descomposición LU 4. Métodos indirectos: Jacobi, Gauss-Seidel 2 Sistemas
Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).
Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales
Factorización de rango completo y aplicaciones
XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 21-25 septiembre 2009 (pp. 1 8) Factorización de rango completo y aplicaciones R. Cantó 1, B. Ricarte
3- Sistemas de Ecuaciones Lineales
Nivelación de Matemática MTHA UNLP 1 3- Sistemas de Ecuaciones Lineales 1. Introducción Consideremos el siguiente sistema, en él tenemos k ecuaciones y n incógnitas. Los coeficientes a ij son números reales
ECUACIONES DE 2º GRADO. Se resuelve mediante la siguiente fórmula:
ECUACIONES DE 2º GRADO Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Se resuelve mediante la siguiente fórmula: ( 1). Si es a
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...
Curso cero Matemáticas en informática : Sistemas de ecuaciones lineales
lineales -Jordan Curso cero Matemáticas en informática : de ecuaciones lineales Septiembre 2005 lineales -Jordan lineales -Jordan Se llama ecuación lineal con n incógnitas a a x + a 2 x 2 + a 3 x 3 + +
PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas
PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio
MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS
Índice Presentación... 3 Matrices... 4 Tipos de matrices I... 5 Tipos de matrices II... 6 Suma de matrices... 7 Multiplicación por un escalar... 8 Producto de matrices... 9 Trasposición de matrices...
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2
Solución de sistemas de ecuaciones lineales: Descomposición LU
Solución de sistemas de ecuaciones lineales: Descomposición LU Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán Facultad de Ingeniería, UNAM * 2006
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Determinantes DETERMINANTES Se trata de una herramienta matemática que sólo se puede utilizar cuando nos encontremos con matrices
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene
Ecuaciones de 2º grado
Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
