Matrices y sistemas lineales
|
|
|
- Alba Concepción Carrizo Redondo
- hace 8 años
- Vistas:
Transcripción
1 Matrices y sistemas lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices elementales En esta sección vamos a crear funciones en MATLAB que nos permitan construir matrices elementales. Para ello, en primer lugar, abrimos un m-fichero nuevo: y en este fichero en blanco copiamos: function P=pij(i,j,n) P=eye(n); P(i,i)=; P(j,j)=; P(i,j)=; P(j,i)=; return F ile New m file Guardamos el fichero con el mismo nombre que le hemos dado a la función, es decir, F ile Save as : pij.m Ya tenemos la función que nos genera las matrices elementales P ij. Comprueba que funciona correctamente con los siguientes ejemplos y antes de ejecutar las órdenes piensa cuál debe ser el resultado que se debe obtener. >> pij(,,) >> A=[ ;4 5 6; 7 8 9] >> pij(,,)*a >> A*pij(,,) Completa el fichero pijt(i,j,t,m) de forma que con la función que en él se define se construyan las matrices elementales P ij (t). function P=pijt(i,j,t,n) P=eye(n); P(i,j)=... return Comprueba que esta función está bien definida ejecutando las siguientes órdenes en MAT- LAB; al igual que antes piensa antes de ejecutarlas cuál es el resultado que se debe obtener.
2 >> pijt(,,,) >> pijt(,,-,)*a >> A*pijt(,,-,) >> A*pijt(,,-,) >> pijt(,,-,5)*a Procede de forma análoga a los casos anteriores y define una función en MATLAB de la forma qis(i,s,n) con la que se construyan las matrices Q i (s). Comprueba que lo has hecho bien ejecutando los siguientes ejemplos: >> qis(,-4,5) >> qis(,-4,)*a >> A*qis(,,) Cálculo de la inversa En esta sección vamos a utilizar las matrices elementales para calcular la inversa de una matriz regular. Termina el siguiente ejemplo: >> A=[ - ; ; - ] >> A=[A eye()] >> A=pij(,,)*A >> A=pijt(,,-,)*A >> %continua el ejercicio Comprueba que lo has hecho bien utilizando la orden en MATLAB inv(a). Nota: También podríamos haber calculado A haciendo operaciones elementales por columnas. Eliminación gaussiana Considera el sistema lineal Ax = b. La técnica de eliminación de Gauss consiste en realizar operaciones elementales sobre las ecuaciones de este sistema de forma que se obtenga un sistema equivalente Ux = y donde la matriz de coeficientes U es triangular superior. Si utilizamos notación matricial, la idea es la hacer operaciones elementales sobre la matriz ampliada hasta triangular la matriz de coeficientes, es decir, con U matriz triangular superior. Trasforma el sistema (A b) operaciones elemetales (U y) 5
3 en un sistema triangular superior equivalente. 4 Factorización LU Sea A una matriz regular. La factorización LU consiste en descomponer la matriz A como producto de dos matrices A = LU donde L es triangular inferior con elementos diagonales l ii = y U es una matriz triangular superior. Esta factorización no siempre existe, el siguiente resultado nos da una condición suficiente para la existencia de esta factorización. Teorema. Sea A una matriz regular tal que las n submatrices a... a k A k =....., a k... a kk k =,..., n son todas regulares. Entonces existen una única matriz triangular inferior L con l ii = y una única matriz U triangular superior tales que A = LU. En la práctica, se comprueba que esta factorización existe cuando es posible aplicar la técnica de eliminación de Gauss sin intercambio de filas, de hecho, la factorización LU se puede interpretar como la versión matricial de la eliminación gaussiana (sin intercambio de filas). La matriz U es la matriz triangular superior obtenida tras aplicar el proceso de eliminación de Gauss a la matriz A. De modo que, si denotamos por P, P,... P r a las matrices elementales utilizadas en el proceso de triangulación de la matriz A, se tiene que luego P r... P P A = U, A = (P )(P )... (Pr )U. Si cada una de estas matrices elementales utilizadas son del tipo P ij (t) con i > j (triangulares inferiores con s en la diagonal), entonces Recuerda: (P ij (t)) = P ij ( t). Completa el siguiente ejemplo. >> A=[ - ; ; - ] A = - - L = (P )(P )... (P r ).
4 >> A=pijt(,,-,)*A A = - - >> % continua >> A=... Cuál es la factorización LU de A? Observa que la matriz L es tal que L =... l l n l n... donde los elementos l ij con j < i n son los opuestos de los multiplicadores utilizados para conseguir un cero en el elemento a ij. Como ya se ha comentado, no siempre existe la factorización LU de una matriz regular A, sin embargo siempre es posible reordenar sus filas de modo que la matriz reordenada B = P A (P matriz permutación) sí admite factorización LU. Si A admite factorización LU, podemos utilizar dicha descomposición para resolver el sistema Ax = b, así, LUx = b { Ly = b (sistema triangular inferior), U x = y (sistema triangular superior). Esta forma de proceder es más práctica (desde el punto de vista computacional) cuando se tienen que resolver varios sistemas con la misma matriz de coeficientes y distintos términos independientes. En este caso, sólo será necesario realizar una sola vez la factorización LU y luego resolver una colección de sistemas triangulares. 5 Ejercicios propuestos. Considera el sistema de ecuaciones lineales 4 4 x 4 (a) Resuelve el sistema de ecuaciones lineales utilizando el método de Gauss. (b) Utiliza las matrices elementales para realizar la factorización LU de la matriz de coeficientes (reordenando, previamente, sus filas si fuera necesario). 4
5 (c) Usa convenientemente esta factorización para obtener la solución del sistema y para calcular el determinante de la matriz de coeficientes.. Discute si los siguientes sistemas de ecuaciones son compatibles (determinado o indeterminado) o incompatibles. a) c) 4. Determina la factorización LU de la matriz A = b)
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J
Dr. Alonso Ramírez Manzanares CIMAT A.C. cimat.mx web: alram/met_num/
Clase No. 4 (Parte 2): MAT 251 Factorización LU Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. e-mail: joaquin@
RESOLUCIÓN DE SISTEMAS LINEALES
Contenido 1 Métodos de Solución Contenido Métodos de Solución 1 Métodos de Solución Desarrollamos el algoritmo de sustitución regresiva, con el que podremos resolver un sistema de ecuaciones lineales cuya
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales José Vicente Romero Bauset ETSIT-curso 2009/200 José Vicente Romero Bauset Tema 2.- Sistemas de Ecuaciones Lineales Sistema de ecuaciones lineales Un sistema de ecuaciones
Matrices y Sistemas de Ecuaciones lineales
Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,
Resolución de sistemas de ecuaciones lineales
Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque
Resolución de Sistema de Ecuaciones Lineales
Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 29 CONTENIDO
SEL - Métodos Directos
Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Métodos Directos Generalidades sobre Métodos Directos Eliminación Gaussiana Pivoteo Factorización LU Generalidades
1. Utilizar el método de Gauss para clasificar y resolver cuando sea posible los siguientes sistemas: x 3y + 7z = 10 5x y + z = 8 x + 4y 10z = 11
Teorema de Rouché Frobenius: Si A es la matriz de coeficientes de un sistema de ecuaciones lineales y AM la matriz ampliada de un sistema de ecuaciones lineales. Si r(a = r(am = número de incógnitas =
Gustavo Rodríguez Gómez. Agosto Dicembre 2011
Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 46 Capítulo II 2 / 46 1 Introducción Métodos Directos Sistemas Triangulares Sustitución Hacia Atrás Invertibilidad de una Matriz
2. Sistemas de ecuaciones lineales.
2. Sistemas de ecuaciones lineales. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2002 Contents 1 Introducción 2 2 Operaciones elementales
Sistemas de Ecuaciones. Lineales II
Sistemas de Ecuaciones Lineales II Factorización LU: Eliminación Gaussiana Relación con la factorización LU 521230-1 - DIM Universidad de Concepción Solución de sistemas con matriz triangular Dadas L =
Lección 10. Eliminación Gaussiana
Lección 10. Eliminación Gaussiana MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida. En esta lección analizaremos
Tema 3 o - Sistemas de Ecuaciones Lineales
Tema 3 o - Sistemas de Ecuaciones Lineales Definición de Sistema y de Solución 2 Clasificación de los Sistemas atendiendo al n o de Soluciones 3 Sistemas de Cramer FÓRMULS DE CRMER 4 Teorema de Rouchée
Algoritmo de la factorización LU
Algoritmo de la factorización LU. Objetivo. Estudiar el algoritmo de la factorización LU de una matriz cuadrada invertible.. Requisitos: Matrices elementales y su relación con operaciones elementales.
Método de eliminación de Gauss Utilidad del método. Transformaciones elementales. Teorema Rouché-Frobenius
Método de eliminación de Gauss Utilidad del método. Transformaciones elementales. Teorema Rouché-Frobenius c Jana Rodriguez Hertz p. 1/2 Método de eliminación de Gauss La clase pasada presentamos el método
Instituto Tecnológico Autónomo de México. 1. At =..
Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida
Curso cero Matemáticas en informática : Sistemas de ecuaciones lineales
lineales -Jordan Curso cero Matemáticas en informática : de ecuaciones lineales Septiembre 2005 lineales -Jordan lineales -Jordan Se llama ecuación lineal con n incógnitas a a x + a 2 x 2 + a 3 x 3 + +
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)
Matemática Superior Aplicada Descomposición PLU
Matemática Superior Aplicada Descomposición PLU Prof.: Dr. Alejandro S. M. Santa Cruz J.T.P.: Ing. Juan Ignacio Manassaldi Aux. 1 ra : Ing. Juan Pablo Camponovo Aux. 2 ra : Sr. Alejandro Jesús Ladreyt
Tema 6.- Sistemas de ecuaciones lineales Resolución por el método de Gauss.
Sistemas de ecuaciones equivalentes. Tema 6.- Sistemas de ecuaciones lineales. 6.1.- Resolución por el método de Gauss. Son los que tienen las mismas soluciones Hay dos operaciones básicas que transforman
Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).
Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales
Algoritmo de factorización LU
Algoritmo de factorización LU Objetivos. Estudiar el algoritmo de la factorización LU de una matriz cuadrada invertible. Requisitos. Matrices elementales y su relación con operaciones elementales, matriz
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........
TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades
TEMA 8 F MATEMÁTICOS TEMA 8 Sistemas de Ecuaciones Lineales: Método de Gauss 1 Sistemas de ecuaciones lineales Generalidades Uno de los problemas centrales del álgebra lineal es la resolución de ecuaciones
Sistemas de Ecuaciones. Lineales III
Sistemas de Ecuaciones Lineales III Pivoteo: Estrategia de pivoteo parcial Adaptación a matrices con estructuras particulares: Matrices banda y tridiagonales Método de holesky 52123-1 - DIM Universidad
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva
Matemática 2 MAT022. Clase 4 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Sistemas de Ecuaciones. logo.
Matemática 2 MAT022 Clase 4 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Tabla de Contenidos Sistemas de Ecuaciones 1 Sistemas de Ecuaciones Consideremos el sistema
SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA
MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes
Sistema de ecuaciones Parte II
Regla de Cramer Sistema de ecuaciones Parte II La regla de Cramer sirve para resolver sistemas de ecuaciones lineales. Se aplica a sistemas que cumplan las dos condiciones siguientes: El número de ecuaciones
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 206 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva,
Formas cuadráticas. Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza
Formas cuadráticas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza A lo largo de todo el capítulo consideraremos que V un espacio vectorial real de dimensión finita n. 1 Formas bilineales
Matemática II Tema 3: resolución de sistemas de ecuaciones lineales
Matemática II Tema 3: resolución de sistemas de ecuaciones lineales 2012 2013 Índice Sistemas de ecuaciones lineales 1 Interpretación geométrica y definición 1 Método de eliminación 4 Resolución de sistemas
TEMA 4: Sistemas de ecuaciones lineales II
TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos
Matrices 3. Matrices. Verónica Briceño V. agosto 2012
3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación
Cap 3: Álgebra lineal
Universidad Nacional de Ingeniería Facultad de Ciencias Cálculo Numérico 1 IF321 Cap 3: Álgebra lineal Prof: J. Solano 2018-I INTRODUCCION Aqui trabjaremos con operaciones basicas con matrices, tales como
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades
Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I
Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion
Matrices triangulares y descomposición LU
Matrices triangulares y descomposición LU Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el examen será suficiente
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales 1. Estudiar el sistema de ecuaciones según los valores del parámetro a. ax + y + z = a x y + z = a 1 x + (a 1)y + az = a + 3 Resolverlo (si es posible) para a = 1. (Junio
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
Tema 4: Sistemas de ecuaciones lineales.
Tema 4: Sistemas de ecuaciones lineales 1 Rango de una matriz Definición Sea A Mat n m (K) Se llama rango de filas de A, y se denota por rg f (A) la dimensión del subespacio vectorial generado por las
Lección 11. Eliminación Gaussiana con Pivoteo y Matrices de Banda
Lección 11. Eliminación Gaussiana con Pivoteo y Matrices de Banda MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre de 2014 1 Centro de Investigación en Matemáticas,
Métodos Numéricos: ecuaciones lineales Eduardo P. Serrano
Métodos Numéricos: ecuaciones lineales Eduardo P. Serrano Versión previa Feb 2012 1. Ecuaciones lineales. El álgebra lineal numérica aborda principalmente dos problemas: - El análisis y resolución de sistemas
Ejercicio 3 de la Opción A del modelo 1 de 2008.
Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1
11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN
ÍNDICE 11SISTEMAS DE ECUACIONES LINEALES 219 111 DEFINICIÓN DE ECUACIÓN LINEAL 219 112 DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN 220 113 EQUIVALENCIA Y COMPATIBILIDAD 220 11 REPRESENTACIÓN MATRICIAL
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
Tema 1: Sistemas de ecuaciones lineales
Universidad de Oviedo 5 de octubre de 2009 email: [email protected] Índice 1 2 3 Resolución geométrica Ejemplo 1.1 En R 2, vamos a calcular el punto intersección de las rectas de ecuaciones 2x + y =
Resolución de sistemas lineales
Resolución de sistemas lineales Contenidos Introducción Métodos directos Métodos iterativos La operación \ Introducción Queremos resolver sistemas de ecuaciones lineales con el mismo número de ecuaciones
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...
SISTEMAS DE ECUACIONES LINEALES MÉTODO DE ELIMINACIÓN DE GAUSS
Índice Presentación... 3 Introducción... 4 Sistemas equivalentes... 5 Método de Gauss... 6 Ejemplo de aplicación del método de Gauss... 7 Discusión del sistema... 8 Ejemplos de la aplicación de la discusión
Métodos directos de resolución de sistemas lineales
3 Versión: Métodos directos de resolución de sistemas lineales 2 de abril de 208 3 Introducción Una ecuación lineal (sistema de orden ) es de la forma: ax = b, donde a y b son números reales dados y x
Sistema de ecuaciones algebraicas. Descomposición LU.
Sistema de ecuaciones algebraicas. Descomposición LU. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: [email protected] web: http://metodosnumericoscem.weebly.com
Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n.
En un artículo anterior dijimos que el rango de una matriz A, ra), es el número de filas que son linealmente independientes. También se hizo uso del método de Gauss para calcular el rango de una matriz:
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a
Sistemas lineales con parámetros
4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Reserva, Ejercicio 3, Opción A Reserva, Ejercicio 4, Opción A Reserva 3, Ejercicio 3, Opción A Reserva
I. Operaciones con matrices usando Mathematica
PRÁCTICA 9: RESOLUCIÓN DE SISTEMAS LINEALES II I. Operaciones con matrices usando Mathematica Introducir matrices en Mathematica: listas y escritura de cuadro. Matrices identidad y diagonales. El programa
MÉTODOS MATEMÁTICOS (Curso ) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla
MÉTODOS MATEMÁTICOS (Curso 2012-201) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II Universidad de Sevilla Lección 2: Sistemas de ecuaciones lineales ELIMINACIÓN GAUSSIANA
Guión de prácticas de los Temas 3 y 4 de Cálculo Numérico
Guión de prácticas de los Temas 3 y 4 de Cálculo Numérico José Luis Bravo Trinidad, Pedro Martín Jiménez Preliminares Antes de comenzar la práctica, descárgate los archivos de ejemplo de Avuex. Después,
Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid. Hoja 2, sistemas de ecuaciones lineales, curso
Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja 2, sistemas de ecuaciones lineales, curso 200 20.. Discuta y resuelva los siguientes sistemas de ecuaciones lineales:
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva 2, Ejercicio 4, Opción A Reserva
ALGEBRA LINEAL. Capítulo I: Sistemas de Ecuaciones lineales y Matrices. MsC. Andrés Baquero. jueves, 7 de mayo de 15
ALGEBRA LINEAL Capítulo I: Sistemas de Ecuaciones lineales y Matrices MsC. Andrés Baquero jueves, 7 de mayo de 15 Introducción Ecuaciones Lineales Ecuaciones Lineales Ecuaciones Lineales Sistemas Lineales
ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE A 2 1 0
ÁLGEBRA (Selectividad 017) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 017 1 Andalucía, junio 17 0 x Ejercicio 3- Considera las matrices
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales.
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Ejercicios 1.- Determinar el rango de la siguiente matriz: 0 1 3 4 1 3 5. Solución. 0 1 3 4 1 3 5 AT 1( 1) AT 1 ( 1)T 14 ( 1 )
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011
Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................
Propiedades de los Determinantes
Propiedades de los Determinantes Departamento de Matemáticas, CCIR/ITESM 26 de mayo de 2010 Índice 19.1. Propiedades............................................... 1 19.2. La adjunta de una matriz cuadrada..................................
SISTEMAS DE ECUACIONES LINEALES
SISTEMAS DE ECUACIONES LINEALES CONCEPTO Un sistema de m ecuaciones lineales con n incógnitas es un sistema de la forma: a 11 x 1 + a 12 x 2 +... + a 1n x n b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n b 2.........................
TEMA 2: SISTEMAS LINEALES. 1. Introducción Un sistema de m ecuaciones lineales con n incógnitas viene dado por a 11 x a 1n x n = b 1
TEMA 2: SISTEMAS LINEALES 1 Introducción Un sistema de m ecuaciones lineales con n incógnitas viene dado por a 11 x 1 + + a 1n x n b 1 a m1 x 1 + + a mn x n b m donde a ij y b k son números reales fijos
INGENIERO EN COMPUTACION TEMA: SISTEMAS DE ECUACIONES LINEALES Y MATRICES
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA: SISTEMAS DE ECUACIONES LINEALES Y MATRICES ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: ENERO
ACTIVIDADES INICIALES
2 Determinantes ACTIVIDADES INICIALES I. Enumera las inversiones que aparecen en las siguientes permutaciones y calcula su paridad, comparándolas con la permutación principal 1234. a) 1342 b) 3412 c) 4321
Práctica 2: Matrices. Sistemas de ecuaciones lineales.
Práctica 2: Matrices. Sistemas de ecuaciones lineales. 1 Matrices en MATLAB. El nombre MATLAB es una contracción de matrix laboratory, y como su nombre indica, este paquete es especialmente útil para efectuar
Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43
Determinante de una matriz cuadrada Toda matriz cuadrada A lleva asociado un número, llamado determinante de A, y que denotaremos mediante el símbolo. Este número, entre otras cosas, permite saber cuándo
