Cap 3: Álgebra lineal
|
|
|
- María Teresa Piñeiro Belmonte
- hace 7 años
- Vistas:
Transcripción
1 Universidad Nacional de Ingeniería Facultad de Ciencias Cálculo Numérico 1 IF321 Cap 3: Álgebra lineal Prof: J. Solano 2018-I
2 INTRODUCCION Aqui trabjaremos con operaciones basicas con matrices, tales como solucion de ecuaciones lineales, calculo de inversa de matriz, su determinante, etc. Detalles importantes de programacion tales como manejo de asignacion de memoria para matrices, introduccion al concepto de clases, templates. Trabajaremos principlamente con matrices simetricas o hermitianas. En aras de la simplicidad, echemos un vistazo a una matriz (4x4) A y una matriz identidad correspondiente I. La inversa de una matriz es definida por Una propiedad de las matrices simetricas y hermitianas es que tienen autovalores reales 2
3 Propiedades de matrices 3
4 Declaracion de vectores y matrices de tamanho fijo 4
5 Declaracion de vectores y matrices de tamanho fijo 5
6 Declaracion de vectores y matrices de tamanho fijo 6
7 Declaracion de vectores y matrices de tamanho dinámico 7
8 Declaracion de vectores y matrices de tamanho dinámico 8
9 Declaracion de vectores y matrices de tamanho dinámico 9
10 Declaracion de vectores y matrices de tamanho dinámico 10
11 Declaracion de vectores y matrices de tamanho dinámico 11
12 Declaracion de vectores y matrices de tamanho dinámico 12
13 Descomposicion-LU de una matriz Una matriz mxn se dice que tiene descomposicion-lu si existen matrices L y U con las siguientes propiedades: - L es una matriz triangular inferior mxn con todas los elementos en la diagonal siendo 1 - U es una matriz m n en alguna forma escalonada - A = LU Ventajas de la descomposicion: Suponga que queremos resolver el sistema mxn, Ax = b Si podemos hallar una descomposicion-lu para A, entonces para resolver AX=b es suficiente resolver los sistemas (Ax=b equivale a LUx=b) Ly = b Ux = y Entonces el sistema Ly = b puede ser resuelto por el método de sustitución hacia adelante y el sistema Ux = y puede ser resuelto por el método de sustitución hacia atrás. Para ilustrar esto, le damos algunos ejemplos 13
14 Descomposicion-LU de una matriz Considere el sistema Ax = b, donde x x 2 = 2 3 x x 2 x 3 = 8 x x 2 + x 3 = 0 Es facil chequear que A=LU, donde Para resolver Ax=b, primero resolvemos Ly = b por sustitucion hacia adelante para obtener Ahora resolvemos Ux = y por sustitucion hacia atras: obteniendose x 1 = 6, x 2 = -2, x 3 =
15 Descomposicion-LU de una matriz Sea matriz A 4x4 tq A=BC Comenzamos con la primera columna Que determina los elementos c 11, b 21, b 31, b 41. Ahora para la segunda columna Aqui los valores desconocidos son c 12, c 22, b 32 y b 42, que pueden ser evaluados por A y por el resultado anterior 15 15
16 Descomposicion-LU: algoritmo de Crout Podemos generalizar este procedimiento en tres ecuaciones Para cada columna (j) calculemos el primer elemento c 1j por: Luego calculamos todos los elementos c ij, i = 2,, j-1 c 1j = a 1j Ahora calculamos los elementos de la diagonal c jj, Finalmente calculamos los elementos b ij, i > j. En el caso que es cero o cercano a cero, lo que lleva a perdida de precision, hay que usar un metodo de pivoteo (intercambiano filas) en torno al mayor elemento de la columna 16
17 Solucion de sistema de ecuaciones lineales Con la descomposicion-lu es simple resolver un sistema de ecuaciones lineales En forma matricial: Ax = w Usando la descomposicion-lu: Ax = BCx = w Se puede calcular esta ecuacion en dos pasos: By = w ; Cx = y Para nuestro ejemplo 4-d esto toma la forma: y 17 17
18 Inversa de una matriz y determinante Def. basica de determinante: la suma es sobre todas las permutaciones p de los indices 1,2,...,n, que dan n! terminos. Igual, para caclular la inversa de A hay que calcular el cofactor de c/elemento a ij, que es un (j-1) determinante. Esto significa el calculo de n 2 determinantes. DEMASIADO!!! Una matriz A con descomposicion-lu: det{a} = det{b} x det{c) = det{c} ya que los elementos diagonales de B son 1. Entonces el determinante de A es: La inversa es algo mas complicada. Formalmente, dado A=BC: A -1 = C -1 B -1 La razon es que la inversa de una matriz triangular superior (inferior) tambien es una matriz triangular superior (inferior) 18
19 Inversa de una matriz y determinante Si llamamos D a la inversa de B, se pueden determinar los elementos de la matriz de la ec que lleva al algoritmo general que es valido para i > j. La diagonal es 1 y los elementos del triangulo superior son cero. Resolvemos la ecuacion columna por columna (incrementando j). 19
20 Inversa de una matriz y determinante Similarmente definimos una ecuacion que da la inversa de C (la llamamos E) con la ecuacion general (para i<= j) 20
21 Solucion de sistema de ecuaciones lineales Con la descomposicion-lu es simple resolver un sistema de ecuaciones lineales En forma matricial: A x = w A -1 A x = A -1 w I x = A -1 w x = A -1 w Tambien se puede resolver usando las librerias de Matlab 21
22 Descomposicion-QR de una matriz Descomposición QR (factorización QR) de una matriz es una descomposición de una matriz A en un producto A = QR de una matriz ortogonal Q y una matriz triangular superior R. La descomposición QR se usa a menudo para resolver el problema de mínimos cuadrados lineales. y es la base para el algoritmo QR (eigenvalues). Factorización QR de una matriz. Dada una matriz A (no necesariamente cuadrada), con columnas linealmente independientes, encontraremos matrices Q, R tales que: (i) A = QR. (ii) Las columnas de Q son ortonormales. (iii) Q es del mismo tamaño que A. (iv) R es triangular superior invertible
23 Descomposicion-QR de una matriz La forma de hacerlo es aplicar el proceso de Gram-Schmidt a las columnas de A. Ejemplo. Tomemos Las columnas son Aplicando Gram-Schmidt 23
24 Ahora tenemos Descomposicion-QR de una matriz 24
Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I
Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion
Resolución de Sistema de Ecuaciones Lineales
Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 29 CONTENIDO
SEL - Métodos Directos
Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Métodos Directos Generalidades sobre Métodos Directos Eliminación Gaussiana Pivoteo Factorización LU Generalidades
Instituto Tecnológico Autónomo de México. 1. At =..
Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida
Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).
Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales
Dr. Alonso Ramírez Manzanares CIMAT A.C. cimat.mx web: alram/met_num/
Clase No. 4 (Parte 2): MAT 251 Factorización LU Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. e-mail: joaquin@
Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16
Clase No 13: Factorización QR MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 03102011 1 / 16 Factorización QR Sea A R m n con m n La factorización QR de A es A = QR = [Q 1 Q 2 ] R1 = Q 0 1 R
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque
Ejercicios de Álgebra Lineal Parcial 1
Ejercicios de Álgebra Lineal Parcial 1 1. Ejercicios de respuesta corta ( ) 3 1 a) Si A = encuentre la entrada c 6 2 12 de la matriz A 2 { x 3y = 1 b) Si para k R el sistema tiene solución única, verique
Matrices 3. Matrices. Verónica Briceño V. agosto 2012
3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación
Tema 4: Determinantes
Tema 4: Determinantes Curso 2016/2017 Ruzica Jevtic Universidad San Pablo CEU Madrid Índice de contenidos Introducción Propiedades de los determinantes Regla de Cramer Inversión de matrices Áreas y volúmenes
ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios:
Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación MÉTODOS ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES Profesor: Jaime Álvarez Maldonado Ayudante:
Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.
Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES
Matrices y Sistemas de Ecuaciones lineales
Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,
Solución de sistemas lineales
Solución de sistemas lineales Felipe Osorio http://www.ies.ucv.cl/fosorio Instituto de Estadística Pontificia Universidad Católica de Valparaíso Marzo 31, 2015 1 / 12 Solución de sistemas lineales El problema
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS // Curso 2017-18 3.1.1. Resolución de sistemas de ecuaciones lineales. Método
Algoritmo de la factorización LU
Algoritmo de la factorización LU. Objetivo. Estudiar el algoritmo de la factorización LU de una matriz cuadrada invertible.. Requisitos: Matrices elementales y su relación con operaciones elementales.
Algoritmo de factorización LU
Algoritmo de factorización LU Objetivos. Estudiar el algoritmo de la factorización LU de una matriz cuadrada invertible. Requisitos. Matrices elementales y su relación con operaciones elementales, matriz
1.5.3 Sistemas, Matrices y Determinantes
1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,
Universidad Sergio Arboleda Álgebra Lineal 1 (201610) Ejercicios
Álgebra Lineal 1 (2161) Prof: Otaivin Martínez Mármol (1) Encuentre el polinomio característico Calcule los valores y vectores propios de las siguientes matrices (a) [ ] 7 5 1 8 (b) [ ] 1 1 (c) 2 1 1 2
Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares
Clase 1. Resolución de sistemas de ecuaciones lineales: preliminares 2. Método directo y exacto: Gauss 3. Método directo y exacto (II): descomposición LU 4. Métodos indirectos: Jacobi, Gauss-Seidel 2 Sistemas
Soluciones a los ejercicios del examen final
Álgebra Lineal Curso 206/7 6 de junio de 207 Soluciones a los ejercicios del examen final Se considera la aplicación lineal L : R 3 R 3 definida por L(x, y, z) = (z x, x + y + z, x y 3z). a) Hallar la
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina
Matemática Superior Aplicada Descomposición PLU
Matemática Superior Aplicada Descomposición PLU Prof.: Dr. Alejandro S. M. Santa Cruz J.T.P.: Ing. Juan Ignacio Manassaldi Aux. 1 ra : Ing. Juan Pablo Camponovo Aux. 2 ra : Sr. Alejandro Jesús Ladreyt
Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso
Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes
Factorización QR Método iterativo de Jacobi
Clase No. 13: MAT 251 Factorización QR Método iterativo de Jacobi Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT
Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011
Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................
Lección 8. Matrices y Sistemas de Ecuaciones Lineales
Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En
RESOLUCIÓN DE SISTEMAS LINEALES
Contenido 1 Métodos de Solución Contenido Métodos de Solución 1 Métodos de Solución Desarrollamos el algoritmo de sustitución regresiva, con el que podremos resolver un sistema de ecuaciones lineales cuya
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J
Edgar Acuña/ ESMA 6665 Lecc1-2 1 ESTADISTICA COMPUTACIONAL. Capítulo I. Matrices y solución de Ecuaciones lineales
Edgar Acuña/ ESMA 6665 Lecc1-2 1 ESTADISTICA COMPUTACIONAL Capítulo I. Matrices y solución de Ecuaciones lineales Referencias: 1. Datta, B. (1995) Numerical Linear Algebra. Brooks Cole 2. Golub, G. and
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes
Métodos Numéricos. Grado en Ingeniería en Informática Tema 4. Análisis Numérico Matricial I
Métodos Numéricos. Grado en Ingeniería en Informática Tema 4. Análisis Numérico Matricial I Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C.
Prerrequisitos de la asignatura Álgebra Lineal Numérica
Prerrequisitos de la asignatura Álgebra Lineal Numérica El propósito de Álgebra Lineal Numérica es analizar algoritmos típicos de álgebra lineal, optimizando la rapidez y la precisión. Para analizar la
Descomposición QR. Problemas para examen. Agradezco a Aldo Iván Leal García por varias correcciones importantes.
Descomposición QR Problemas para examen Agradezco a Aldo Iván Leal García por varias correcciones importantes. Reflexión de Householder (repaso) 1. Reflexión ortogonal respecto a un hipersubespacio (repaso).
Matrices ortogonales y descomposición QR
Matrices ortogonales y descomposición QR Problemas para examen Agradezco a Aldo Iván Leal García por varias correcciones importantes. Invertibilidad por la izquierda y por la derecha (repaso) 1. Conceptos
Determinantes. Definiciones básicas sobre determinantes. José de Jesús Angel Angel.
Determinantes Definiciones básicas sobre determinantes wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Determinantes 2 11 Propiedades de determinantes 4 2 Inversa
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Departamento de Matemáticas ITESM Álgebra Lineal - p. 1/16 En esta lectura veremos el proceso para obtener la factorización QR de una matriz. Esta factorización es utilizada para
Gustavo Rodríguez Gómez. Agosto Dicembre 2011
Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 46 Capítulo II 2 / 46 1 Introducción Métodos Directos Sistemas Triangulares Sustitución Hacia Atrás Invertibilidad de una Matriz
Lección 10. Eliminación Gaussiana
Lección 10. Eliminación Gaussiana MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida. En esta lección analizaremos
Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31
Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular
Algebra Lineal XXVI: La Regla de Cramer.
Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx
Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES. 1. Una matriz A de n n es diagonalmente dominante (estrictamente) por filas si
Cuarta relación de problemas Técnicas Numéricas Profesor Francisco R. Villatoro 13 de Diciembre de 1999 SOLUCIONES 1. Una matriz A de n n es diagonalmente dominante estrictamente por filas si a ii > a
Solución de problemas I 1
Universidad Autónoma de Madrid Álgebra II. Físicas. Curso 5 6 Solución de problemas I Álgebra II Curso 5-6. Proyecciones en el producto escalar estándar Ejercicio 7.7. (a) Dada la ecuación x + y z, dar
Álgebra. Ingeniería Industrial. Curso 2006/2007 Examen de Septiembre
Álgebra. Ingeniería Industrial. Curso / Examen de Septiembre OBSERVACIONES: Cada hoja entregada debe contener el nombre, apellidos y número de identificación escrito de forma clara. No mezclar ejercicios
MATE 4031: Álgebra Lineal [ 4 + 6i 4i (a) Encuentre el polinomio característico de cada una de ellas.
Solución Asignación 9. Universidad de Puerto Rico, Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan, Puerto Rico MATE 43: Álgebra Lineal. Considere las siguientes matrices
Resolución de sistemas lineales
Resolución de sistemas lineales Contenidos Introducción Métodos directos Métodos iterativos La operación \ Introducción Queremos resolver sistemas de ecuaciones lineales con el mismo número de ecuaciones
RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS
RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a
Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =
Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente
ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República
ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto
ALGEBRA y ALGEBRA LINEAL
520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean
MATRICES OPERACIONES BÁSICAS CON MATRICES
MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.
4.1. Determinante de una matriz cuadrada de orden 2. , entonces el determinante de A es a 21 a 22 a 11 a 12 = a 11a 22 a 12 a 21
Capítulo 4 Determinante Los determinantes se calculan para matrices cuadradas. Se usan para saber cuando una matriz tiene inversa, en el cálculo de autovalores y también para resolver sistemas de ecuaciones
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales José Vicente Romero Bauset ETSIT-curso 2009/200 José Vicente Romero Bauset Tema 2.- Sistemas de Ecuaciones Lineales Sistema de ecuaciones lineales Un sistema de ecuaciones
Relación de problemas. Álgebra lineal.
Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1
Estadística III Repaso de Algebra Lineal
Repaso de Algebra Lineal Vectores Un vector columna de dimensión n 1 es una serie de números dispuestos como sigue: x 1 x 2 x =. x n Un vector fila de dimensión 1 p es una serie de números dispuestos como
ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio
ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO
Propiedades de los Determinantes
Propiedades de los Determinantes Departamento de Matemáticas, CCIR/ITESM 26 de mayo de 2010 Índice 19.1. Propiedades............................................... 1 19.2. La adjunta de una matriz cuadrada..................................
0 a b X = b c 0. f X (A) = AX XA.
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Industriales Álgebra Lineal Convocatoria de Junio 8 de Junio de 2007 (3 ptos.). Sea V = {A M 3 3 (R) / A t = A}. (a) Demostrar que toda
Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.
Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................
Elementos de Cálculo Numérico
Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico Primer cuatrimestre 2006 Práctica N 2: Condicionamiento de una matriz. Descomposición
Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43
Determinante de una matriz cuadrada Toda matriz cuadrada A lleva asociado un número, llamado determinante de A, y que denotaremos mediante el símbolo. Este número, entre otras cosas, permite saber cuándo
Cálculo Numérico - CO3211. Ejercicios. d ) Sabiendo que la inversa de la matriz A = es A c d
Cálculo Numérico - CO32 Ejercicios Decida cuáles de las siguientes proposiciones son verdaderas y cuáles son falsas Si una proposición es verdadera, demuéstrela, y si es falsa dé un contraejemplo: a Sea
VALORES Y VECTORES PROPIOS
VALORES Y VECTORES PROPIOS En diversos campos de la ingeniería y las matemáticas surge el problema de calcular los valores escalares λ y los vectores x 0 tales que para la matriz cuadrada A se cumple Ax
AUTOVALORES Y AUTOVECTORES
12 de Julio de 2011 AUTOVALORES Y AUTOVECTORES (Clase 01) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1 Puntos a tratar 1. Valores y vectores propios 2.
Clase 8 Matrices Álgebra Lineal
Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
Sistema de ecuaciones algebraicas. Descomposición LU.
Sistema de ecuaciones algebraicas. Descomposición LU. Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: [email protected] web: http://metodosnumericoscem.weebly.com
Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas
Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema
Elementos de Cálculo Numérico (M) - Cálculo Numérico
Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico (M) - Cálculo Numérico Primer Cuatrimestre 204 Práctica N 2: Normas y Condicionamiento.
Aplicar este algoritmo para resolver el sistema de ecuaciones: º «« º ««
Introducción al Cálculo Numérico y Programación 1 MÓDULO 8: SISTEMA DE ECUACIONES LINEALES. A- MÉTODOS DIRECTOS 6LVWHPDVIiFLOHVGHUHVROYHU Ejercicio 1: Escribe una función MATLAB llamada =sp(a,b) que admita
MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES
Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,
TAREA 1 ALGEBRA ING. AMBIENTAL UNIVERSIDAD DE CÒRDOBA Vanessa Aldana, Cristian Gonzales, María De La Ossa
TAREA 1 ALGEBRA ING. AMBIENTAL UNIVERSIDAD DE CÒRDOBA Vanessa Aldana, Cristian Gonzales, María De La Ossa EJERCICIO 1 Para una matriz A nxn. En qué consiste la factorización o descomposición LU? Explique
