Clase 8 Matrices Álgebra Lineal
|
|
|
- María Dolores Guzmán Aguilera
- hace 9 años
- Vistas:
Transcripción
1 Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas (o elementos) de la matriz A = Los siguientes son ejemplos de matrices, B =, C =, D = p X Definición Una matriz se denomina de tamaño m n si tiene m filas y n columnas Las matrices del ejemplo anterior son matrices de órdenes,, y, respectivamente Definición Una matriz de tamaño m se denomina matriz fila y una matriz de tamaño n se llama matriz columna Nota Usaremos la notación de subíndice doble para hacer referencia a las entradas de una matriz: la entrada de A en la fila i y la columna j se denotará por a ij Así, podemos escribir una matriz en forma compacta: A = a ij = aij mn (si es necesario especificar el tamaño) Por tanto, una matriz tiene la forma a a a n a a a n A = a m a m a mn Si las columnas de A son los vectores b, b,, b n, entonces podemos representar a A por A = b b b n A y si las filas de A son los vectores A, A,, A m, entonces podemos representar a A por A = A m Definición Sea A = a ij mn Las entradas diagonales de A son a, a, a,, a kk, Si m = n, entonces A se denomina matriz cuadrada de tamaño n Si A es una matriz cuadrada y todas sus entradas no diagonales son cero, A se denomina una matriz diagonal Una matriz diagonal en la cual todas las entradas diagonales sean todas iguales se conoce como una matriz escalar Si el escalar en la diagonal es, la matriz escalar se llama matriz identidad y es denotada por I n A Definición Dos matrices son iguales si tienen el mismo tamaño y sus entradas correspondientes son iguales
2 Operaciones Matriciales Adición de matrices y multiplicación por escalar Si A = a ij y B = bij son matrices m n, su suma A + B es la matriz m n cuya entrada ij es aij + b ij ; es decir, A + B = a ij + b ij Si además c es un escalar, entonces el producto escalar ca es la matriz m n obtenida al multiplicar cada entrada de A por c Así, ca = ca ij Multiplicación de matrices Si A es una matriz de tamaño m n y B es una matriz de tamaño n r entonces el producto matricial C = AB es una matriz de tamaño m r, donde la entrada (ij) de C está dada por: c ij = a i b j + a i b j + + a in b nj Nota Para que el producto de A por B tenga sentido se debe cumplir que # columnas de A = # filas de B Si la i-ésima fila de A es a i a i a in y la j-ésima columna de B es, entonces la entrada ij de C se computa así: (a) A = a i a i a in Calcule, si es posible, AB y BA, B = b j b j b nj b j b j c ij = = a ib j + a i b j + + a in b nj (b) A = b nj, B = Solución (a) Puesto que A es de tamaño y B de tamaño, tanto el producto AB como el producto BA están definidos Calculemos estas matrices Recordemos que para calcular la entrada ij de la matriz AB, realizamos el producto punto de los vectores dados por la i-ésima fila de A y la j-ésima columna de B Luego, ( ) AB = = = ( ) Similarmente, BA = ( ) + ( ) + ( ) = =
3 (b) Dado que A es de tamaño y B de tamaño, ambos productos están definidos Se puede verificar que AB = y BA = X Nota En general, el producto de matrices no es conmutativo Teorema Todo sistema lineal de m ecuaciones con n incógnitas se puede representar en la forma AX = b, donde A es la matriz de coeficientes, X es el vector que contiene las variables del sistema y b es el vector de términos independientes Exprese el siguiente sistema lineal en la forma AX = b Solución Notemos que A = x + y z + w = x + y + z + w = x + y z + w =, X = x y z w y b = Luego, el sistema lineal () se puede representar como AX = b; es decir, x y z w = () X Teorema Sean A una matriz m n, e i un vector unitario estándar de m y e j un vector unitario estándar de n Entonces (a) e i A = i-ésima fila de A (b) Ae j = j-ésima columna de A Potencias de una matriz Definición 8 Sea A una matriz cuadrada n n Para k, definimos A k = A A A {z } k factores (si k =, definimos A = I n ) Proposición 9 Si A es una matriz cuadrada y r, s son enteros no negativos, entonces (a) A r A s = A r+s (b) (A r ) s = A rs Transpuesta de una matriz Definición Sea A una matriz de tamaño m n La transpuesta de A, denotada A T, es la matriz de tamaño n m que se obtiene cuando se intercambian las filas y columnas de A Es decir, la i-ésima columna de A T es la i-ésima fila de A para todo i Sea A = Halle A T Solución Notemos que A es de tamaño Por tanto, A T = es de tamaño X
4 Definición Sea A una matriz cuadrada A se dice simétrica si A T = A (o equivalentemente, si a ij = a ji, para todo i, j) A se dice antisimétrica si A T = A Determine si la matriz es simétrica o antisimétrica (a) A = (b) B = (c) C = Solución Calculemos la transpuesta para cada una de las matrices anteriores A T =, B T = y C T = Notemos que A T = A; por lo tanto, A no es simétrica y puesto que A T = A, A tampoco es antisimétrica Por otro lado, B T = B; luego, B es antisimétrica Finalmente, se cumple que C T = C; por lo tanto, C es simétrica X Nota Si A es antisimétrica, entonces las entradas en su diagonal son todas ceros Algebra de matrices Teorema (Propiedades de la suma de matrices y la multiplicación por escalares) Sean A, B, C matrices del mismo tamaño y sean c, d escalares Entonces : (a) A + B = B + A (b) (A + B) + C = A + (B + C) (c) A + O = O + A = A (d) A + ( A) = O (e) c (A + B) = ca + cb (f) (c + d) A = ca + da (g) c(da) = (cd) A (h) A = A Definición Sean A,, A k y B matrices del mismo tamaño Decimos que B es combinación lineal de A,, A k si existen escalares c,, c k tales que B = c A + + c k A k Definimos el espacio de A,, A k, denotado por espacio (A,, A k ) como el conjunto de todas las combinaciones lineales de A,, A k Sean A =, A =, A =, A =, A =, A = y B = (a) Encuentre espacio (A, A,, A ) (b) B espacio (A, A,, A )? Solución (a) Notemos que una matriz A está en espacio (A, A,, A ) sii existen escalares c, c,, c k tales que A = c A + c A + + c k A k Luego, a a a a = c a = c a = c A = a a a espacio (A, A,, A ) sii a = c a = c a = c a a a a = c a = c a = c
5 Luego, vemos que A espacio (A, A,, A ) sii su entrada ij es igual a su entrada ji; es decir, sii A es simétrica Por tanto, espacio (A, A,, A ) = fa M j A es simétricag (b) Sí, ya que B es simétrica X Teorema (Propiedades del producto de matrices) Sean A, B y C matrices (con tamaños tales que las siguientes operaciones son válidas) y sea k un escalar Entonces (a) A (BC) = (AB) C (b) A (B + C) = AB + AC (c) (A + B) C = AC + BC (d) k (AB) = (ka) B = A (kb) (e) I m A = A = AI n, si A es de tamaño m n Teorema (Propiedades de la transpuesta) Sean A, B matrices (con tamaños tales que las siguientes operaciones son válidas) y k escalar Entonces (a) (A T ) T = A (b) (A + B) T = A T + B T (c) (ka) T = ka T (d) (AB) T = B T A T (e) (A r ) T = A T r, para todo entero r no negativo Prueba Veamos que se cumple la propiedad (b) Sean A, B matrices de tamaño m n Entonces, la j-ésima fila de (A + B) T es la j-ésima columna de A + B, la cual se obtiene al sumar la j-ésima columna de A y la j-ésima columna de B;,es decir, al sumar la j-ésima fila de A T y la j-ésima fila de B T Teorema (a) Si A es una matriz cuadrada, entonces A + A T es simétrica (b) Para cualquier matriz A, AA T y A T A son simétricas Prueba (a) Para ver que la matriz A + A T es simétrica, calculemos su transpuesta (A + A T ) T = A T + (A T ) T (por teorema (b)) = A T + A (por teorema (a)) = A + A T (por teorema (a)) Así que A + A T es simétrica (b) Veamos que AA T es simétrica: (AA T ) T = (A T ) T A T (por teorema (d)) = AA T (por teorema (a)) Análogamente, se prueba que A T A es simétrica
Una matriz es un arreglo rectangular de elementos. Por ejemplo:
1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con
Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =
Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente
Matemáticas Discretas TC1003
Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo
Matrices y operaciones con Matrices.
Matrices y operaciones con Matrices En clases anteriores hemos usado arreglos rectangulares de números, denominados matrices aumentadas, para resolver sistemas de ecuaciones lineales Denición Una matriz
Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B =
Definición: A una ordenación o arreglo rectangular de ciertos objetos se define como matriz (en este curso nos interesa que los objetos de la matriz sean numeros reales. Observación: Es usual designar
Algebra de Matrices 1
Algebra de Matrices Definición Una matriz es un arreglo rectangular de valores llamados elementos, organizados por filas y columnas. Ejemplo: Notas: A 6. Las matrices son denotadas con letras mayúsculas..
MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS
Índice Presentación... 3 Matrices... 4 Tipos de matrices I... 5 Tipos de matrices II... 6 Suma de matrices... 7 Multiplicación por un escalar... 8 Producto de matrices... 9 Trasposición de matrices...
MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).
1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden
Algebra lineal Matrices
Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
INVERSA DE UNA MATRIZ
INVERSA DE UNA MATRIZ Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Sean x = x 1 x n y y = y 1 y n vectores de n componentes, definimos el producto interno o producto
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...
Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:
MATRICES OPERACIONES BÁSICAS CON MATRICES
MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.
Matrices y Determinantes.
Tema II Capítulo 1 Matrices Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC Tema II Matrices y Determinantes 1 Matrices 1 Definiciones básicas Definición 11 Una matriz A de
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2
Matrices 2º curso de Bachillerato Ciencias y tecnología
MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------
Matrices. Álgebra de matrices.
Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,
Matemáticas Aplicadas a los Negocios
LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:
TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:
TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos
El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo
Tema 1: Matrices y Determinantes
Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz
Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.
UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.
ALGEBRA y ALGEBRA LINEAL
520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean
MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS
Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K
Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1
Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que
TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...
TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos
3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices.
Tema I Capítulo 3 Matrices Álgebra Departamento de Métodos Matemáticos y de Representación UDC 3 Matrices 1 Definiciones básicas Definición 11 Una matriz A de dimensión m n es un conjunto de escalares
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones
Matrices y sistemas lineales
15 Matemáticas I : Preliminares Tema 2 Matrices y sistemas lineales 2.1 Definiciones básicas Una matriz es una tabla rectangular de números, es decir, una distribución ordenada de números. Los números
DOCENTE: JESÚS E. BARRIOS P.
DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos
TEMA 7: MATRICES. OPERACIONES.
TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
Matrices y Determinantes. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC
Matrices y Determinantes Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC Origen y Usos Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J.
MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz.
Concepto de matriz. Igualdad de matrices MATRICES 2º Bachillerato Concepto de matriz. Igualdad de matrices Concepto de matriz. Igualdad de matrices Se llama matriz a una disposición rectangular de números
A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn
Máster en Materiales y Sistemas Sensores para Tecnologías Medioambientales Erasmus Mundus NOTAS DE CÁLCULO NUMÉRICO Damián Ginestar Peiró ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA
Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL
Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL Práctica N 2: Matrices Ejercicio 1 Probar que los siguientes
MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES
CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno
ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2
ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen
Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices
elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas
Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.
Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................
SISTEMAS DE ECUACIONES LINEALES Y MATRICES
y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015
Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.
1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5
2.- TIPOS DE MATRICES
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA.- MATRICES PROFESOR: RAFAEL NÚÑEZ NOGALES.- CONCEPTO DE MATRIZ. Definición de matriz Una matriz real A es un conjunto de números reales
DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES
ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas
UNIVERSIDAD TECNICA LUIS VARGAS TORRES Esmeraldas - Ecuador MATRICES Y VECTORES
UNIVERSIDAD TECNICA LUIS VARGAS TORRES Esmeraldas - Ecuador MATRICES Y VECTORES Facultad de Ingenierías y Tecnologías Ing. Paúl Viscaino Valencia DOCENTE OBJETIVO Interpretar y resolver los problemas básicos
BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss:
*** OBLIGATORIOS *** 1. Efectúa todos los posibles productos: 2. Calcula la matriz inversa, si existe, usando el método de Gauss: 3. Sean y. Encuentra X para que cumpla: 3 X 2 A = 5 B 4. Encuentra dos
Matrices, determinantes y sistemas de ecuaciones lineales
Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente
Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales
Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley
Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )
MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
Lección 8. Matrices y Sistemas de Ecuaciones Lineales
Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En
Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5.
Unidad. Matrices.. Conceptos básicos.. Operaciones con matrices.. Matriz Inversa.. El método de Gauss-Jordan.. Aplicaciones Objetivos particulares de la unidad Al culminar el aprendizaje de la unidad,
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes
APÉNDICE A. Algebra matricial
APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos
ALGEBRA LINEAL - Práctica N 2 - Segundo cuatrimestre de 2017 Matrices y coordenadas
Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 2 - Segundo cuatrimestre de 2017 Matrices y coordenadas Ejercicio 1 Sean m n y r N i) Probar que
Matrices y Sistemas de Ecuaciones lineales
Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,
Relación de problemas. Álgebra lineal.
Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1
Sistemas Lineales y Matrices
Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este
TEMA 7. Matrices y determinantes.
TEMA 7 Matrices y determinantes. 1. Matrices. Generalidades Definición 1 Sea E un conjunto cualquiera, m, n IN. Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12... a 1n a 21
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta)
Operaciones con matrices Suma, resta, producto y traspuesta Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta operación de sumar se puede definir
Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector
UNIDAD I: MATRICES Vectores en el plano Un vector,, es un segmento con una dirección que va del punto A (origen) al punto B (etremo).un vector es un segmento orientado que va del punto A (origen) al punto
TEMA 1: MATRICES Y DETERMINANTES
TEMA 1: MATRICES Y DETERMINANTES 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales de la forma a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Las líneas horizontales (verticales)
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso
Depto de Álgebra, curso 2017-2018 2 Álgebra matricial Inversa de una matriz Ejercicio 21 Calcule la matriz inversa de cada una de las matrices siguientes: a 2 1 1 3 2 1 h e, b 2 1 1 5 2 3 2 0 1 1 2 1 1
INFORMÁTICA MATLAB GUÍA 3 Operaciones con Matrices
1. ARREGLOS BIDIMENSIONALES (MATRICES) A las matrices también se les conoce como arreglos bidimensionales, y son una colección de números distribuidos en filas y columnas: Usos de las matrices: Electricidad
Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.
Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a
Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso
Tema 4: Matrices y Determinantes Algunas Notas sobre Matrices y Determinantes Álgebra Lineal Curso 2004-2005 Prof. Manu Vega Índice 1. Determinantes 3 2. Regla de Sarrus 3 3. Propiedades de los determinantes
Métodos directos para resolver sistemas de ecuaciones lineales
Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el
1. Matrices. Operaciones con matrices
REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se
Matrices: Una ordenación de números dispuestos en filas y columnas, encerrados entre corchetes
Matrices: Una ordenación de números dispuestos en filas y columnas, encerrados entre corchetes Ejemplos: Verifican ciertas reglas o algebra, denominada algebra de matrices.la matriz representa en general
de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).
INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.
MATRICES. Jaime Garrido Oliver
MATRICES Jaime Garrido Oliver ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS... 2 MATRICES... 3 1.1. INTRODUCCIÓN.... 3 2. TIPOS DE MATRICES... 4 2.1. Matriz Fila, Matriz Columna... 4 2.2. Matrices cuadradas...
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método
Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3
1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n
Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?
MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?
Matrices Inversas. Rango Matrices Elementales
Matrices Inversas. Rango Matrices Elementales Araceli Guzmán y Guillermo Garro Facultad de Ciencias UNAM Semestre 2018-1 doyouwantmektalwar.wordpress.com Matrices Matrices identidad La matriz identidad
Tema I. Matrices y determinantes
Tema I. Matrices y determinantes 2007 Carmen Moreno Valencia 1. Matrices sobre un cuerpo 2. Operaciones con matrices 3. Determinante de una matriz cuadrada 4. Menor complementario y adjunto 5. Cálculo
Matrices, determinantes y sistemas de ecuaciones lineales
Capítulo 4 Matrices, determinantes y sistemas de ecuaciones lineales DEFINICIÓN DE MATRIZ DE NÚMEROS REALES Una matriz de números reales de tamaño m n es un conjunto ordenado por filas y columnas de números
MATRICES Y DETERMINANTES MATRIZ INVERSA
Índice Presentación... 3 Determinante de una matriz... 4 Determinante de matrices de orden 2 y 3... 5 Determinante de una matriz... 6 Ejemplo... 7 Propiedades del cálculo de determinantes... 8 Matriz inversa...
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Matrices Definición: Una matriz es un conjunto de números ordenados en filas y columnas. Para definirla se utilizan letras
Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES.
Ejercicios de MATRICES y SISTEMAS DE ECUACIONES LINEALES. 1. a) Hallar números Α y Β tales que b) Idem para que Α Β 2 Α Β Α Β 2 Β 1 Α Β 0 1 1 Β 3 5 Α 0 10 19 8 2 2. a) Sean A 2 1 3 2, B 1 1 4 2, C 2 3
Advanced Engineering for Real Solutions CURSO BÁSICO DE ELEMENTOS FINITOS 1.2 CONCEPTOS DE ÁLGEBRA LINEAL
CURSO BÁSICO DE ELEMENTOS FINITOS. CONCEPTOS DE ÁLGEBR LINEL Siguiente Paso: Conceptos de Álgebra Lineal Métodos Numéricos Álgebra matricial y solución de ecuaciones Módulo MEF. Introducción al Método
