INVERSA DE UNA MATRIZ
|
|
|
- Lorenzo Sosa Romero
- hace 9 años
- Vistas:
Transcripción
1 INVERSA DE UNA MATRIZ Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009
2 Definición Sean x = x 1 x n y y = y 1 y n vectores de n componentes, definimos el producto interno o producto escalar de los vectores x y y, denotado por x y, por la fórmula n x y = x 1y x ny n = x iy i i=1
3 Ejemplo Sea u = y v = Definición a 11 a 1n Sea A = una matriz de tamaño m n, definimos la a m1 a mn matriz transpuesta de A, denotada por A t, como la matriz que se obtiene al intercambiar las filas y las columnas de A, esto es: a 11 a m1 A t = a 1n a mn
4 Ejemplo Sea u = y v = Definición a 11 a 1n Sea A = una matriz de tamaño m n, definimos la a m1 a mn matriz transpuesta de A, denotada por A t, como la matriz que se obtiene al intercambiar las filas y las columnas de A, esto es: a 11 a m1 A t = a 1n a mn
5 Definición a 11 a 1n Sea A = una matriz de tamaño m n y a m1 a mn b 11 b 1q B = de tamaño n q Definimos el producto A B como b n1 b nq c 11 c 1q la matriz A B de tamaño m q dada por AB = donde c m1 c mq c ij = n a ik b kj = a i1b 1j + a i2b 2j + + a inb nj k=1 para i = 1,, m y j = 1,, q Este producto coincide con el producto escalar ( A i) t Bj donde A i es la i-ésima fila de A y B j es la j-ésima columna de B
6 Ejemplo Calcular el producto AB donde A = [ ] y B = Inplementación al Matlab Sean A = [ ] y B = matrices en MatLab con el comando >> A B >> B A ,podemos calcular el producto de 1 0
7 Ejemplo Calcular el producto AB donde A = [ ] y B = Inplementación al Matlab Sean A = [ ] y B = matrices en MatLab con el comando >> A B >> B A ,podemos calcular el producto de 1 0
8 Teorema Sean A, B y C matrices de tamaños m n, n p y p q, respectivamente Entonces se tiene que A(BC) = (AB)C Teorema Sean A y C matrices de tamaños m n y n q respectivamente, entonces se tiene lo siguiente 1 I ma = A y AI n = A En particular si A es una matriz cuadrada de tamaño n n entonces AI n = I na = A 2 O qma = O qn y AO nq = O mq para cualquier q = 1, 2, 3, En particular si A es una matriz cuadrada de tamaño n n entonces AO nn = O nna = O nn 3 (A + B)C = AC + BC, donde B es una matriz de tamaño m n 4 A(B + C) = AB + AC, donde B es una matriz de tamaño n q
9 Teorema Sean A, B y C matrices de tamaños m n, n p y p q, respectivamente Entonces se tiene que A(BC) = (AB)C Teorema Sean A y C matrices de tamaños m n y n q respectivamente, entonces se tiene lo siguiente 1 I ma = A y AI n = A En particular si A es una matriz cuadrada de tamaño n n entonces AI n = I na = A 2 O qma = O qn y AO nq = O mq para cualquier q = 1, 2, 3, En particular si A es una matriz cuadrada de tamaño n n entonces AO nn = O nna = O nn 3 (A + B)C = AC + BC, donde B es una matriz de tamaño m n 4 A(B + C) = AB + AC, donde B es una matriz de tamaño n q
10 Lema Sean A = A 1 A m una matriz de tamaño m n donde A 1,, A m son las filas de A, B = [ ] B 1 B q de tamaño n q donde B1,, B q son las columnas de B y x = x 1 x q un vector columna, entonces 1 Las columnas del producto AB son los vectores AB 1,, AB q, es decir AB = [ AB 1 AB q ] 2 las filas del producto AB son los vectores fila A 1 B,, A m B, es decir A 1 B AB = A m B 3 El producto Bx es el vector x 1B x qb q Es decir, el vector Bx es una combinacion lineal de las columnas de B con coeficientes tomados de x
11 Ejemplo Sean A = [ ] 1 3, B = 4 1 [ ] y x = Teorema Sea A una matriz de tamanõ m n y A su forma escalonada reducida Entonces Ax = 0 si y solo si A x = 0, es decir, x es una solución al sistema homogeneo Ax = 0 si y solo si x es una solución al sistema A x = 0
12 Ejemplo Sean A = [ ] 1 3, B = 4 1 [ ] y x = Teorema Sea A una matriz de tamanõ m n y A su forma escalonada reducida Entonces Ax = 0 si y solo si A x = 0, es decir, x es una solución al sistema homogeneo Ax = 0 si y solo si x es una solución al sistema A x = 0
13 Definición Sea A una matriz cuadrada de tamaño n n, decimos que A es invertible si existe una matriz B de tamaño n n tal que AB = BA = I n Ejemplo La matriz A = A [ ] 2 1 es invertible ya que el producto 1 1 [ ] 1 1 = 1 2 [ ] [ ] 1 1 = 1 2 [ ] 1 0 = I 0 1 2
14 Definición Sea A una matriz cuadrada de tamaño n n, decimos que A es invertible si existe una matriz B de tamaño n n tal que AB = BA = I n Ejemplo La matriz A = A [ ] 2 1 es invertible ya que el producto 1 1 [ ] 1 1 = 1 2 [ ] [ ] 1 1 = 1 2 [ ] 1 0 = I Ejemplo No toda matriz tiene inversa, por ejemplo A = [ ]
15 Definición Sea A una matriz cuadrada de tamaño n n, decimos que A es invertible si existe una matriz B de tamaño n n tal que AB = BA = I n Ejemplo La matriz A = A [ ] 2 1 es invertible ya que el producto 1 1 [ ] 1 1 = 1 2 [ ] [ ] 1 1 = 1 2 [ ] 1 0 = I Ejemplo No toda matriz tiene inversa, por ejemplo A = [ ]
16 Lema Sea A una matriz n n una matriz invertible, entonces la inversa es única Observaciones Como la inversa de una matriz invertible es única, entonces de ahora en adelante denotaremos la inversa de A por A 1
17 Lema Sea A una matriz n n una matriz invertible, entonces la inversa es única Observaciones Como la inversa de una matriz invertible es única, entonces de ahora en adelante denotaremos la inversa de A por A 1 Teorema Sean A y B matrices de tamaños n n, entonces: 1 Si A y B son invertibles entonces AB es invertible y (AB) 1 = B 1 A 1 2 A es invertible si y solo si A t es invertible y ( A t) 1 = ( A 1)t
18 Lema Sea A una matriz n n una matriz invertible, entonces la inversa es única Observaciones Como la inversa de una matriz invertible es única, entonces de ahora en adelante denotaremos la inversa de A por A 1 Teorema Sean A y B matrices de tamaños n n, entonces: 1 Si A y B son invertibles entonces AB es invertible y (AB) 1 = B 1 A 1 2 A es invertible si y solo si A t es invertible y ( A t) 1 = ( A 1)t
19 Inplementación al Matlab Sean A = y B = 0 0 1, hallar (AB) 1, podemos calcular en MatLab con los comandos: >> A = [1 1 3; 1 1 2; 2 0 2], B = [1 1 1; 0 0 1; 2 1 2] >> C = inv(a B) o D = inv(b) inv(a) Teorema Sea Ax = b un sistema de ecuaciones lineales de n ecuaciones con n incognitas Si A es invertible entonces el sistema tiene solución única y esta está dada por x = A 1 b
20 Inplementación al Matlab Sean A = y B = 0 0 1, hallar (AB) 1, podemos calcular en MatLab con los comandos: >> A = [1 1 3; 1 1 2; 2 0 2], B = [1 1 1; 0 0 1; 2 1 2] >> C = inv(a B) o D = inv(b) inv(a) Teorema Sea Ax = b un sistema de ecuaciones lineales de n ecuaciones con n incognitas Si A es invertible entonces el sistema tiene solución única y esta está dada por x = A 1 b Inplementación al Matlab x y + 3z = 2 Resuelva el sistema lineal x 2y + 2z = 1 >> A=[1-1 3;1-2 2;2 0 2]; 2x + 2z = 0 b=[2;1;0]; x=inv(a)*b
21 Inplementación al Matlab Sean A = y B = 0 0 1, hallar (AB) 1, podemos calcular en MatLab con los comandos: >> A = [1 1 3; 1 1 2; 2 0 2], B = [1 1 1; 0 0 1; 2 1 2] >> C = inv(a B) o D = inv(b) inv(a) Teorema Sea Ax = b un sistema de ecuaciones lineales de n ecuaciones con n incognitas Si A es invertible entonces el sistema tiene solución única y esta está dada por x = A 1 b Inplementación al Matlab x y + 3z = 2 Resuelva el sistema lineal x 2y + 2z = 1 >> A=[1-1 3;1-2 2;2 0 2]; 2x + 2z = 0 b=[2;1;0]; x=inv(a)*b
Sistemas Lineales y Matrices
Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este
SISTEMAS DE ECUACIONES LINEALES
SISTEMAS DE ECUACIONES LINEALES Profesores Omar Darío Saldarriaga Ortíz Ivan Darío Gómez Hernán Giraldo 2009 Definición Una matriz es un arreglo rectangular de números reales en m filas y n a 11 a 1n columnas
Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =
Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente
Clase 8 Matrices Álgebra Lineal
Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas
Lección 8. Matrices y Sistemas de Ecuaciones Lineales
Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En
SISTEMAS DE ECUACIONES LINEALES Y MATRICES
y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015
Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices
elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas
Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1
Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que
Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B =
Definición: A una ordenación o arreglo rectangular de ciertos objetos se define como matriz (en este curso nos interesa que los objetos de la matriz sean numeros reales. Observación: Es usual designar
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes
Tema 1: Matrices y Determinantes
Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz
ÁLGEBRA LINEAL CON EL USO DE MATLAB AUTORES
ÁLGEBRA LINEAL CON EL USO DE MATLAB AUTORES Omar Saldarriaga PhD, State University of New York at Binghamton Profesor Asociado Instituto de Matemáticas Universidad de Antioquia Hernán Giraldo PhD, Universidad
Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo
Determinantes Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 2009 Definición Sea A una matriz de tamaño m n, para 1 i m y 1 j n, definimos el ij-ésimo menor de A, al cual denotaremos
Transformaciones Inyectivas y Sobreyectivas
Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia 2014 Definición (Transformación lineal inyectiva) Si una transformación
Matrices y Sistemas de Ecuaciones lineales
Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,
Relación de problemas. Álgebra lineal.
Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1
Matrices Inversas. Rango Matrices Elementales
Matrices Inversas. Rango Matrices Elementales Araceli Guzmán y Guillermo Garro Facultad de Ciencias UNAM Semestre 2018-1 doyouwantmektalwar.wordpress.com Matrices Matrices identidad La matriz identidad
ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2
ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen
RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS
RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES
6 de Abril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase ) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela . Producto de matrices. Aplicaciones
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices
Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2
Matrices y sistemas lineales
15 Matemáticas I : Preliminares Tema 2 Matrices y sistemas lineales 2.1 Definiciones básicas Una matriz es una tabla rectangular de números, es decir, una distribución ordenada de números. Los números
Capítulo 5. Cálculo matricial. 5.1 Matrices
Capítulo 5 Cálculo matricial 5. Matrices Una matriz de m filas y n columnas, en adelante matriz m n, es una configuración rectangular de elementos, con n entradas por cada fila, y m por cada columna, encerrada,
1. Matrices. Operaciones con matrices
REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se
TEMA 1: MATRICES Y DETERMINANTES
TEMA 1: MATRICES Y DETERMINANTES 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales de la forma a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Las líneas horizontales (verticales)
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2
Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.
Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones
El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos
El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo
Matriz sobre K = R o C de dimensión m n
2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0
Determinantes. Definiciones básicas sobre determinantes. José de Jesús Angel Angel.
Determinantes Definiciones básicas sobre determinantes wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Determinantes 2 11 Propiedades de determinantes 4 2 Inversa
Algebra Lineal XXVI: La Regla de Cramer.
Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx
Matemática 2 MAT022. Clase 6 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Determinante de una matriz
Matemática 2 MAT022 Clase 6 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Tabla de Contenidos 1 Determinante de una matriz Sea A la matriz de orden 2 2 con coeficientes
Matemática 2 MAT022. Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Matrices
Matemática 2 MAT022 Clase 1 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Tabla de Contenidos 1 Matrices Propiedades Tabla de Contenidos Matrices 1 Matrices Propiedades
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método
A = , B = 2 2. a 11 a 1n a 21 a 2n A = a m1 a mn
Máster en Materiales y Sistemas Sensores para Tecnologías Medioambientales Erasmus Mundus NOTAS DE CÁLCULO NUMÉRICO Damián Ginestar Peiró ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO UNIVERSIDAD POLITÉCNICA
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN
ÍNDICE 11SISTEMAS DE ECUACIONES LINEALES 219 111 DEFINICIÓN DE ECUACIÓN LINEAL 219 112 DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN 220 113 EQUIVALENCIA Y COMPATIBILIDAD 220 11 REPRESENTACIÓN MATRICIAL
ALGEBRA y ALGEBRA LINEAL
520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.
102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina
Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)
Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).
Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
TEMA 7. Matrices y determinantes.
TEMA 7 Matrices y determinantes. 1. Matrices. Generalidades Definición 1 Sea E un conjunto cualquiera, m, n IN. Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12... a 1n a 21
MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES
CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno
TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:
TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,
Matrices 3. Matrices. Verónica Briceño V. agosto 2012
3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación
MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS
Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K
Matrices. Álgebra de matrices.
Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,
Ejemplo 1. Ejemplo introductorio
. -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo
Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL
Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL Práctica N 2: Matrices Ejercicio 1 Probar que los siguientes
Algebra lineal Matrices
Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
Tema 3: MATRICES. Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada
Tema 3: MATRICES Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura: Matemáticas
INFORMÁTICA MATLAB GUÍA 3 Operaciones con Matrices
1. ARREGLOS BIDIMENSIONALES (MATRICES) A las matrices también se les conoce como arreglos bidimensionales, y son una colección de números distribuidos en filas y columnas: Usos de las matrices: Electricidad
MENORES, COFACTORES Y DETERMINANTES
MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una
A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o
DETERMINANTES A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o Una tabla ordenada n ð n de escalares situada entre dos líneas
UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :
UNIVERSIDAD SIMON BOLIVAR MA6 abril-julio de 29 I / Ejercicios sugeridos para : los temas de las clases del 2 y 23 de abril de 29. Tema : Matrices. Operaciones con matrices. Ejemplos. Operaciones elementales
Vectores y matrices. Problemas para examen
Vectores y matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.
MATEMÁTICAS PARA ECONOMISTAS I MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
MATEMÁTICAS PARA ECONOMISTAS I MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES 1.- Dadas las siguientes matrices Efectúe si es posible : a) A + B b) B A c) B 2.- Dadas las siguientes matrices Efectúe
Operaciones con matrices
Operaciones con matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.
Ejercicios de la práctica 3
Ejercicios de la práctica 3 Ejercicio 1. Consideremos la siguiente matriz 4 2 4 0 A = 2 10 22 4 5 2 5 2. 24 6 16 8 Si R es la forma escalonada por filas de A, calcular, usando MATLAB, las matrices Q y
de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).
INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.
ALGEBRA LINEAL - Práctica N 2 - Segundo cuatrimestre de 2017 Matrices y coordenadas
Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 2 - Segundo cuatrimestre de 2017 Matrices y coordenadas Ejercicio 1 Sean m n y r N i) Probar que
Matrices y determinantes. Sistemas de ecuaciones lineales
Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo
3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta)
Operaciones con matrices Suma, resta, producto y traspuesta Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta operación de sumar se puede definir
Propiedades de los Determinantes
Propiedades de los Determinantes Departamento de Matemáticas, CCIR/ITESM 26 de mayo de 2010 Índice 19.1. Propiedades............................................... 1 19.2. La adjunta de una matriz cuadrada..................................
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
Matrices, determinantes, sistemas de ecuaciones lineales.
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m
ACTIVIDADES SELECTIVIDAD MATRICES
ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden
Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.
1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5
Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3
1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de
Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...
INTRO. MATRICES Y DETERMINANTES Prof. Gustavo Sosa Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas
Métodos directos para resolver sistemas de ecuaciones lineales
Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el
Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector
UNIDAD I: MATRICES Vectores en el plano Un vector,, es un segmento con una dirección que va del punto A (origen) al punto B (etremo).un vector es un segmento orientado que va del punto A (origen) al punto
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden 2 y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 24 24 = 0 Aplica la teoría.
Inducción a MATLAB. Álgebra Lineal. Escuela de Matemáticas. Facultad de Ciencias Universidad Nacional de Colombia Sede Medellín
Inducción a MATLAB Álgebra Lineal Escuela de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Sede Medellín Inducción a MATLAB (Álgebra Lineal) Escuela de Matemáticas Universidad Nacional
Instituto Tecnológico Autónomo de México. 1. At =..
Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida
APÉNDICE A. Algebra matricial
APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos
Matrices y Determinantes.
Tema II Capítulo 1 Matrices Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC Tema II Matrices y Determinantes 1 Matrices 1 Definiciones básicas Definición 11 Una matriz A de
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Determinantes DETERMINANTES Se trata de una herramienta matemática que sólo se puede utilizar cuando nos encontremos con matrices
UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :
II / 7 UNIVERSIDAD SIMON BOLIVAR MA6 abril-julio de 29 Ejercicios sugeridos para : los temas de las clases del 28 y de abril de 29. Temas : Métodos de Gauss y Gauss-Jordan. Sistemas homogéneos y no homogéneos.
Sistemas de Ecuaciones Lineales. Matrices y determinantes.
Capítulo 3 Sistemas de Ecuaciones Lineales Matrices y determinantes 31 Sistemas de Ecuaciones Lineales El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
