Algoritmo de factorización LU
|
|
|
- Raquel Agüero Díaz
- hace 9 años
- Vistas:
Transcripción
1 Algoritmo de factorización LU Objetivos. Estudiar el algoritmo de la factorización LU de una matriz cuadrada invertible. Requisitos. Matrices elementales y su relación con operaciones elementales, matriz inversa, propiedades de la multiplicación de matrices. Explicación del método. Definición (factorización LU). Sea A M n (R). Una factorización LU de la matriz A es un par de matrices (L, U), donde L, U M n (R), U es triangular superior y L es unitriangular inferior (es decir, L es triangular inferior y todas las entradas diagonales de L son iguales a ).. Notación (matrices triangulares superiores invertibles y matrices triangulares inferiores invertibles). El conjunto de todas las matrices reales triangulares superiores invertibles de orden n se denota por UT n (R). Para las matrices triangulares inferiores invertibles se usa la notación LT n (R).. Unicidad de la factorización LU en el caso de matrices invertibles (tarea adicional). Sea A M n (R) una matriz invertible que admite una factorización LU. Supóngase que A = L U = L U, donde L, L LT n (R), U, U UT n (R) y todos los elementos diagonales de L, L son iguales a. Demuestre que L = L y U = U. 4. Factorización LU en términos de matrices elementales. Dada una matriz A cuyos menores de esquina todos son no nulos, construyamos las matrices L y U. Vamos a construirlas paso a paso. Primero ponemos L := I, U := A. En cada paso del algoritmo será valida la igualdad A = LU. Empezamos a convertir U en una matriz triangular superior al aplicar operaciones elementales de tipo R i + = λr j, j < i. Cada vez, cuando hacemos la operación R i + = λr j con las filas de U, esto es, multiplicamos U del lado izquiero por E + (i, j, λ), tenemos que multiplicar L del lado derecho por E + (i, j, λ), es decir hacer con L la operación de columnas C j = λc i. 5. Ejemplo con razonamientos extensos. Construyamos la factorización LU de la matriz A = 4 5 Algoritmo de factorización LU, página de 6
2 Solución. Podemos escribir A en forma A = LU con L = I, U = A: 0 0 A = Ahora vamos a eliminar el elemento U, = usando el elemento U, = como pivote. Tenemos que hacer con U la operación por filas R + = R. Es lo mismo que multiplicar U del lado izquierdo por la matriz elemental E + (,, ). Para compensar esta multiplicación y conservar el mismo valor del producto LU, tenemos que multiplicar L del lado derecho por E + (,, ): A = Multipliquemos U por E + (,, ) del lado izquierdo, esto es, hagamos con U la operación por renglones R + = R. Multipliquemos L por E + (,, ) del lado derecho, esto es, hagamos con L la operación por columnas C + = C : A = Es fácil checar que el producto de las matrices nuevas es igual a la matriz A. Ahora queremos eliminar el elemento U, = usando como pivote el elemento U, =. Para esto metemos entre L y U el producto de matrices E + (,, )E + (,, ): A = Hagamos las operaciones elementales correspondientes (R + = R con U, C + = C con L): A = Nos falta eliminar U, = usando U, = 5 como pivote. Metemos entre L y U las matrices elementales E + (,, /5)E + (,, /5): A = /5 0 /5 0 Algoritmo de factorización LU, página de 6
3 Apliquemos la operación elemental por renglones R = a la matriz U y la operación 5 elemental por columnas C + = a la matriz L: 5 A = /5 67/5 Respuesta: L = 0 /5, U = / LU = = /5 67/ Ejemplo sin razonamientos extensos. Construyamos la factorización LU de la matriz 5 A = Solución. Ahora vamos a escribir las matrices L y U juntas y en vez de las matrices elementales escribimos sólo las operaciones correspondientes que hacemos con U y L: U: R = 4R 4 4 U: R += R L: C = 4C L: C = C Respuesta: L = U: R = R L: C += C 4 0 / / /, U = / LU = = / + / Observación. En el algoritmo de factorización LU es fácil hacer la comprobación en cada paso del algoritmo, porque el producto LU siempre debe ser igual a la matriz original A. Algoritmo de factorización LU, página de 6
4 Notación breve para la factorización LU 8. Notación breve para la factorización LU. Primera observación. Cuando hacemos una operación R q + = λr p con las filas de U, donde q > p, tenemos que hacer la operación C p = λc q con las columnas de L. Pero en este momento la q-ésima columna de L coincide con la q-ésima columna de la matriz identidad. Consiguientemente la operación C p = λc q con las columnas de L equivale al poner L q,p := λ. Segunda observación. Después de eliminar el elemento U q,p ya no es necesario guardar su valor nuevo porque sabemos que este valor nuevo es cero. En este lugar podemos guardar el valor L q,p = λ. Resumen: trabajamos con una sóla matriz B. En su parte superior (incluyendo la diagonal) construimos paso a paso la matriz U, y en su parte inferior construimos al mismo tiempo la matriz L. 9. Ejemplo. Construyamos la factorización LU de la matriz 4 A = Solución. Marcamos los elementos de L con otro color. 4 R += R 4 R = R R += 5R B 6 4, := B B, := 5, := 5 Respuesta: L = 0 5, U = LU = = Ejercicios. Para cada una de las siguientes matrices construya la factorización LU y haga la comprobación: , 8 5, Algoritmo de factorización LU, página 4 de 6
5 Aplicación de la factorización LU a la solución de los sistemas de ecuaciones lineales. Método. Sean A M n (R) una matriz invertible, (L, U) su factorización LU y b R n. Consideremos el sistema de ecuaciones lineales Ax = b o sea LUx = b. Denotemos Ux por y. El sistema Ax = b se puede resolver en dos pasos. Primero, calculamos la solución y de la ecuación Ly = b. Segundo, calculamos la solución x de la ecuación Ux = y.. Ejemplo. Usando la factorización LU resolver el sistema de ecuaciones lineales Ax = b, donde A = 4 9, b = 4 6 Solución. Primero, factoricemos la matriz A: R += R R 4 9 = R De allí L = 0 0 LU = 0 = , U = Resolvamos el sistema de ecuaciones lineales Ly = b: y 0 y = 4 = y R += R = y = ; y = 4 + y = 0; y = y + y =. Luego resolvamos el sistema de ecuaciones lineales Ux = y. Primero despejemos la incógnita x, luego x y x : x x x = 0 = Algoritmo de factorización LU, página 5 de 6 x = +x x = 4; x = 0 4x = ; x = =.
6 Respuesta: Ax = x = = = 4 = b.. Ejercicios. Usando la factorización LU resuelva los siguientes sistemas de ecuaciones lineales (haga todas comprobaciones): x 8 x x =, x = 6 7 x 5 9 x 5 Algoritmo de factorización LU, página 6 de 6
Algoritmo de la factorización LU
Algoritmo de la factorización LU. Objetivo. Estudiar el algoritmo de la factorización LU de una matriz cuadrada invertible.. Requisitos: Matrices elementales y su relación con operaciones elementales.
Matrices triangulares y descomposición LU
Matrices triangulares y descomposición LU Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el examen será suficiente
Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa
Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación
Matrices y sistemas de ecuaciones lineales
Matrices y sistemas de ecuaciones lineales Problemas para examen Antes de resolver un problema en el caso general, se recomienda considerar casos particulares (por ejemplo, n = 4 y n = 50). En el caso
Métodos directos para resolver sistemas de ecuaciones lineales
Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el
Instituto Tecnológico Autónomo de México. 1. At =..
Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida
Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).
Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales
Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )
MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una
Matrices y Sistemas de Ecuaciones lineales
Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,
Sistemas de Ecuaciones. Lineales II
Sistemas de Ecuaciones Lineales II Factorización LU: Eliminación Gaussiana Relación con la factorización LU 521230-1 - DIM Universidad de Concepción Solución de sistemas con matriz triangular Dadas L =
Operaciones elementales
Operaciones elementales Objetivos Conocer y justificar operaciones elementales con ecuaciones de un sistema de ecuaciones lineales, conocer su forma matricial (operaciones elementales con renglones de
RESOLUCIÓN DE SISTEMAS LINEALES
Contenido 1 Métodos de Solución Contenido Métodos de Solución 1 Métodos de Solución Desarrollamos el algoritmo de sustitución regresiva, con el que podremos resolver un sistema de ecuaciones lineales cuya
Inversas de las matrices triangulares superiores
Inversas de las matrices triangulares superiores Ejercicios Objetivos. Demostrar que la inversa a una matriz triangular superior también es triangular superior. Requisitos. Algoritmo de inversión de una
Definición de la matriz inversa
Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real
Francisco José Vera López
Álgebra y Matemática Discreta Matrices. Sistemas de ecuaciones. Francisco José Vera López Dpto. de Matemática Aplicada Facultad de Informática 2015 1 Matrices 2 Sistemas de Ecuaciones Matrices Una matriz
Construcción de bases de subespacios (ejemplos)
Construcción de bases de subespacios (ejemplos) Objetivos Aprender a construir una base de un subespacio cuando las condiciones que determinan el subespacio se convierten en ecuaciones lineales homogéneas
Vectores y matrices. Problemas para examen
Vectores y matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.
Matrices Inversas. Rango Matrices Elementales
Matrices Inversas. Rango Matrices Elementales Araceli Guzmán y Guillermo Garro Facultad de Ciencias UNAM Semestre 2018-1 doyouwantmektalwar.wordpress.com Matrices Matrices identidad La matriz identidad
Gustavo Rodríguez Gómez. Agosto Dicembre 2011
Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 46 Capítulo II 2 / 46 1 Introducción Métodos Directos Sistemas Triangulares Sustitución Hacia Atrás Invertibilidad de una Matriz
ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2
ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen
Algebra lineal Matrices
Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en
Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que
MATRICES INVERTIBLES Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que AB = BA = I siendo I la matriz identidad. Denominamos a la matriz B la inversa de A
Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.
1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales.
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Ejercicios 1.- Determinar el rango de la siguiente matriz: 0 1 3 4 1 3 5. Solución. 0 1 3 4 1 3 5 AT 1( 1) AT 1 ( 1)T 14 ( 1 )
SISTEMAS DE ECUACIONES LINEALES Y MATRICES
y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015
SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA
MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
CALCULO I UNIDAD I MATRICES. Instituto Profesional Iplacex
CALCULO I UNIDAD I MATRICES 1.3 Transformación de matrices A las matrices se les pueden realizar ciertas transformaciones o cambios internos, siempre y cuando no afecten ni el orden ni el rango de la misma.
Resolución de sistemas de ecuaciones lineales
Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular
MATRICES Y DETERMINANTES MATRIZ INVERSA
Índice Presentación... 3 Determinante de una matriz... 4 Determinante de matrices de orden 2 y 3... 5 Determinante de una matriz... 6 Ejemplo... 7 Propiedades del cálculo de determinantes... 8 Matriz inversa...
Matrices 3. Matrices. Verónica Briceño V. agosto 2012
3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación
Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.
Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Determinantes DETERMINANTES Se trata de una herramienta matemática que sólo se puede utilizar cuando nos encontremos con matrices
TEMA 4: Sistemas de ecuaciones lineales II
TEM 4: Sistemas de ecuaciones lineales II ) Teorema de Rouché-Frobenius. ) Sistemas de Cramer: regla de Cramer. 3) Sistemas homogeneos. 4) Eliminación de parámetros. 5) Métodos de factorización. 5) Métodos
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices
elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas
Matrices invertibles. La inversa de una matriz
Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad
Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...
INTRO. MATRICES Y DETERMINANTES Prof. Gustavo Sosa Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........
Operaciones con matrices
Operaciones con matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.
Resolución de Sistema de Ecuaciones Lineales
Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 29 CONTENIDO
Matriz asociada a una transformación lineal respecto a un par de bases
Matriz asociada a una transformación lineal respecto a un par de bases Ejercicios Objetivos Comprender cómo se describe una transformación lineal (que actúa en espacios vectoriales de dimensiones finitas)
1. Matrices. Operaciones con matrices
REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)
Rango de una matriz. Objetivos. Definir el rango de renglones y el rango de columnas de una matriz. Mostrar que estos rangos coinciden.
Rango de una matriz Objetivos. Definir el rango de renglones y el rango de columnas de una matriz. Mostrar que estos rangos coinciden. Requisitos. Rango de una lista de vectores, operaciones elementales
TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES)
TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) Instrucciones: Resolver los 5 problemas justificando todas sus afirmaciones y presentando todos sus cálculos. 1. Sea F un campo.
Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.
UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.
MATRICES Y DETERMINANTES II.
MATRICES Y DETERMINANTES II. Matriz adjunta es la matriz cuadrada que se obtiene al sustituir cada elemento por su adjunto correspondiente. Calcula la matriz adjunta: 2 2 2 A =( 2 1 0 ) 3 2 2 Primero calculamos
Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.
Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES
Matrices y Determinantes
Apuntes de Álgebra Lineal Capítulo 3 Matrices y Determinantes 31 Operaciones con matrices 311 Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta
TAREA 1 ALGEBRA ING. AMBIENTAL UNIVERSIDAD DE CÒRDOBA Vanessa Aldana, Cristian Gonzales, María De La Ossa
TAREA 1 ALGEBRA ING. AMBIENTAL UNIVERSIDAD DE CÒRDOBA Vanessa Aldana, Cristian Gonzales, María De La Ossa EJERCICIO 1 Para una matriz A nxn. En qué consiste la factorización o descomposición LU? Explique
Subespacios de espacios vectoriales
Subespacios de espacios vectoriales Objetivos. Estudiar la definición, el criterio y algunos ejemplos de subespacios vectoriales. Muchos espacios vectoriales importantes (por ejemplo, espacio de soluciones
MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).
1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden
Matrices y sistemas lineales
Matrices y sistemas lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices elementales En esta sección vamos a crear funciones en MATLAB que nos permitan construir matrices elementales.
Cambio de base. Objetivos. Estudiar la relación entre las coordenadas de un vector en dos bases.
Cambio de base Objetivos Estudiar la relación entre las coordenadas de un vector en dos bases Requisitos Definición de una base, multiplicación de una matriz por un vector, delta de Kronecker Definición
SEL - Métodos Directos
Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Métodos Directos Generalidades sobre Métodos Directos Eliminación Gaussiana Pivoteo Factorización LU Generalidades
TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades
TEMA 8 F MATEMÁTICOS TEMA 8 Sistemas de Ecuaciones Lineales: Método de Gauss 1 Sistemas de ecuaciones lineales Generalidades Uno de los problemas centrales del álgebra lineal es la resolución de ecuaciones
Sistemas de ecuaciones lineales
Tema 1 Sistemas de ecuaciones lineales 11 Definiciones Sea K un cuerpo Una ECUACIÓN LINEAL CON COEFICIENTES EN K es una expresión del tipo a 1 x 1 + + a n x n = b, en la que n es un número natural y a
Matrices y Determinantes
Apuntes de Álgebra Lineal Capítulo 3 Matrices y Determinantes 31 Operaciones con matrices 311 Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método
3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta)
Operaciones con matrices Suma, resta, producto y traspuesta Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta operación de sumar se puede definir
Prerrequisitos de la asignatura Álgebra Lineal Numérica
Prerrequisitos de la asignatura Álgebra Lineal Numérica El propósito de Álgebra Lineal Numérica es analizar algoritmos típicos de álgebra lineal, optimizando la rapidez y la precisión. Para analizar la
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
Matrices. Observación: Es usual designar una matriz por letras mayúsculas: A, B, C,... 3 B =
Definición: A una ordenación o arreglo rectangular de ciertos objetos se define como matriz (en este curso nos interesa que los objetos de la matriz sean numeros reales. Observación: Es usual designar
Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31
Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Generalidades Definición [Sistema de ecuaciones lineales] Un sistema de m ecuaciones lineales con n incógnitas, es un conjunto de m igualdades
PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) a) A = ( 1 0
PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) JUNIO 6: OPCIÓN B. Ejercicio. (Puntuación máxima: 3 puntos) Encontrar todas las matrices X cuadradas x que satisfacen la
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
Factorización de matrices
CAPÍTULO Factorización de matrices En este capítulo se estudian algunas de las técnicas más utilizadas para factorizar matrices, es decir, técnicas que permiten escribir una matriz como producto de dos
Ejercicio 3 de la Opción A del modelo 1 de 2008.
Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1
Matrices. En este capítulo: matrices, determinantes. matriz inversa
Matrices En este capítulo: matrices, determinantes matriz inversa 1 1.1 Matrices De manera informal una matriz es un rectángulo de números dentro de unos paréntesis. A = a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a
Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3
1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de
Estrategias de pivoteo
Estrategias de pivoteo Objetivos. Resolver sistemas de ecuaciones lineales aplicando varias técnicas de pivoteo; programar estos algoritmos. Requisitos. Operaciones elementales, experiencia de resolver
3- Sistemas de Ecuaciones Lineales
Nivelación de Matemática MTHA UNLP 1 3- Sistemas de Ecuaciones Lineales 1. Introducción Consideremos el siguiente sistema, en él tenemos k ecuaciones y n incógnitas. Los coeficientes a ij son números reales
TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:
TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,
3.7. Determinantes. Definición. El determinante de una matriz cuadrada es la suma equilibrada de todos esos posibles Definición de determinante.
37 Determinantes 11 Definición de determinante Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de
Tema 4: Determinantes
Tema 4: Determinantes Curso 2016/2017 Ruzica Jevtic Universidad San Pablo CEU Madrid Índice de contenidos Introducción Propiedades de los determinantes Regla de Cramer Inversión de matrices Áreas y volúmenes
Relación de problemas. Álgebra lineal.
Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE ECONOMIA LICENCIATURA DE ACTUARIA Algebra Lineal Práctica: Matriz inversa 1 M. en I. Elizabeth Almazán Torres 2 Resultado de Aprendizaje El estudiante
Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43
Determinante de una matriz cuadrada Toda matriz cuadrada A lleva asociado un número, llamado determinante de A, y que denotaremos mediante el símbolo. Este número, entre otras cosas, permite saber cuándo
ACTIVIDADES SELECTIVIDAD MATRICES
ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden
Factorización de rango completo y aplicaciones
XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 21-25 septiembre 2009 (pp. 1 8) Factorización de rango completo y aplicaciones R. Cantó 1, B. Ricarte
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a
1. Página 10 La matriz consta de dos filas que corresponden a los alumnos y cuatro columnas con sus calificaciones. Así:
Matrices 1 ACTIVIDADES 1. Página 10 La matriz consta de dos filas que corresponden a los alumnos y cuatro columnas con sus calificaciones. Así: 2. Página 10 La matriz solución es. 3. Página 10 La matriz
Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I
Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion
Matrices simétricas y antisimétricas
Matrices simétricas y antisimétricas Ejercicios Objetivos Definir matrices simétricas y antisimétricas estudiar sus propiedades básicas Requisitos Matriz transpuesta propiedades de la matriz transpuesta
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CSI/ITESM 20 de agosto de 2008 Índice 121 Introducción 1 122 Transpuesta 1 123 Propiedades de la transpuesta 2 124 Matrices
Curso cero Matemáticas en informática : Sistemas de ecuaciones lineales
lineales -Jordan Curso cero Matemáticas en informática : de ecuaciones lineales Septiembre 2005 lineales -Jordan lineales -Jordan Se llama ecuación lineal con n incógnitas a a x + a 2 x 2 + a 3 x 3 + +
Sistemas de Ecuaciones Lineales. Matrices y determinantes.
Capítulo 3 Sistemas de Ecuaciones Lineales Matrices y determinantes 31 Sistemas de Ecuaciones Lineales El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación
