4 PROPIEDADES ÓPTICAS EN EL VISIBLE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "4 PROPIEDADES ÓPTICAS EN EL VISIBLE"

Transcripción

1 4 PROPIEDADES ÓPICAS EN EL VISIBLE 4.1 INRODUCCIÓN La espectrofotometría de transmitancia óptica constituye una de las técnicas más utilizadas en el análisis de las propiedades ópticas de capas finas dieléctricas y semiconductoras. En este trabajo se obtendrán los espectros de transmisión correspondientes a capas finas de diversos materiales, y se determinará la dependencia espectral del índice de refracción, n, (ecuación de Sellmeier) y la posición del frente de absorción (gap) correspondiente a la contribución de la polarización electrónica. 4. FUNDAMENO EÓRICO Los materiales dieléctricos presentan en la región comprendida por el infrarrojo cercano (NIR: nm) y el visible (VIS: nm), un índice de refracción cuyo origen físico es la polarizabilidad electrónica de los átomos del material. Las otras posibles contribuciones (dipolar e iónica) no son capaces de seguir la frecuencia del campo electromagnético, y por tanto, no contribuyen. El mecanismo de la polarización electrónica presenta fenómenos de resonancia para una(s) frecuencia(s) ω 0 en la región del ultravioleta (UV: <350 nm), a partir de la cual el material no presenta ningún fenómeno de polarización. Figura El sistema a estudiar consiste en una capa de material dieléctrico de espesor, d, crecida sobre un substrato de vidrio (Fig.1). Esta estructura permite realizar el análisis óptico de la capa en el dominio del visible ( nm), donde el coeficiente de extinción, k s, del vidrio es nulo. Además, los dieléctricos presentan, en este dominio, un índice de refracción prácticamente constante, y un débil coeficiente de absorción, α, con lo cual la constante dieléctrica ε, a estas frecuencias y el correspondiente índice de refracción, puede considerarse real, y aproximadamente constante, con tanta mejor aproximación, cuanto más lejos estemos de la región del ultravioleta donde tienen lugar los fenómenos de resonancia. Por otra parte, al acercamos a la región del ultravioleta, el índice de refracción presenta una suave dependencia con la frecuencia, que para valores de ω no muy próximos al valor de resonancia ω 0, puede expresarse como: r ( ω) = n ( ω) = 1+ (1) ω0 ω ε A 4-1

2 Si llamamos n al valor límite de altas longitudes de onda (ω=0), esta dependencia puede expresarse en la llamada relación de Sellmeier: A n = 1+ ω0 n ( 0 1 λ n = 1 () λ) 1 λ La dependencia experimental n(λ) se determina a partir de las posiciones y los valores de los máximos y mínimos del espectro de transmisión. En condiciones de débil absorción (nàk), la transmitancia de la estructura aire/capa/substrato/aire (fig 1) viene dada por: ( λ ) = (3) B Cx cosθ + Dx donde A = 16n D = s B = 3 ( n + 1) ( n + s ) C = ( n 1)( n s ) nd λ 3 ( n 1) ( n s ) θ = 4π x = exp( αd ) (3 ) siendo n el índice de refracción de la capa y s el del substrato. Los máximos y mínimos de transmisión aparecen como consecuencia de las interferencias que se producen entre las reflexiones múltiples en las superficies de la capa cuando el grosor de esta es inferior a la longitud de coherencia de la luz empleada (unas pocas longitudes de onda para la luz emitida por un filamento) En la deducción de la expresión anterior se han tenido en cuenta las reflexiones múltiples no coherentes que se producen en las caras del substrato de vidrio (no dan lugar a interferencias ya que el grosor del vidrio - 1 mm - es mucho mayor que la longitud de coherencia de la luz). La transmitancia correspondiente al substrato, sin capa, (basta hacer n=1 y d=0 en (3)) resulta: s s = (4) s + 1 Los extremos (máximos o mínimos) de la función (λ) (ecuación 3) aparecen en valores de λ donde se verifica la condición: cosθ = +1 ó -1, es decir: m nd = λ ( m = 0,1,,...) (5) Hay que distinguir dos casos: Caso que n>s: Entonces C>0 y m será entero si es un máximo, y semientero si es un mínimo. Estos extremos permiten definir las envolventes de la función (λ) mediante: max = (6) B Cx + Dx min = B + Cx + Dx (7) La diferencia de los recíprocos de las ecuaciones (6) y (7) es independiente de x, lo cual permite calcular el índice de refracción del material, n(λ), en función de los valores de max y 4-

3 min (determinados experimentalmente a partir de los extremos (máximos y mínimos locales) del espectro de transmitancia) mediante la expresión: λ ) = N + N (8) n( s siendo 1 1 s + 1 N = s + (8 ) min max Caso que n<s: Ahora C<0 y m será entero si es un mínimo, y semientero si es un máximo. Volviendo a definir las envolventes de la función (λ) mediante: max = (9) B + Cx + Dx min = B Cx + Dx (10) La diferencia de los recíprocos de las ecuaciones (9) y (10) es también independiente de x, lo cual permite calcular el índice de refracción del material, n(λ), de manera similar a la anterior, mediante la expresión: λ ) = N + N (11) n( s siendo ahora: 1 1 s + 1 N = s + (11 ) min max En la figura se presentan dos espectros de transmisión correspondientes a capas no absorbentes depositadas sobre un sustrato con s=1.5, correspondientes a los dos casos estudiados. Figura 4-3

4 Observaciones: La separación en longitud de onda entre máximos y mínimos es función del producto n d. Si n>s, los máximos de coinciden con la transmitancia del substrato, y los mínimos dependen del valor de n (y no del valor de d). Si n<s, los mínimos de coinciden con la transmitancia del substrato, y los máximos dependen del valor de n. Para el valor de n=s 1/, el valor de la transmitancia de los máximos es del 100%. 4.3 REALIZACIÓN EXPERIMENAL En este experimento se estudiará la zona de débil absorción en capas finas de algunos materiales, algunas de ellas obtenidas en nuestro Laboratorio mediante diferentes técnicas: CdS (evaporación en alto vacío), io (evaporación reactiva activada por plasma), silicio amorfo hidrogenado a-si:h (depósito mediante un plasma de radiofrecuencia), y óxido de zinc (pulverización catódica). Figura 3. Esquema del experimento de transmitancia óptica asistida por ordenador Dispositivo experimental El equipo utilizado para realizar el experimento consta de dos partes: el equipo óptico de medida y el equipo de adquisición y de tratamiento de datos con ordenador. Equipo de medida: Monocromador de red de difracción ( nm). Detector de efecto fotovoltaico y amplificador. Multímetro digital. Portamuestras con dispositivo comparador (muestra-referencia). Dispositivo motorizado para el barrido espectral. Fuente luminosa con fuente de alimentación rectificada (30 W). Fuente de alimentación simétrica (±1 V) del amplificador. Fuente de alimentación continua (1 V) del motor paso-paso Equipo informático: 4-4

5 Ordenador. Interfase RS3 y puerto paralelo. Software para la automatización del experimento y el tratamiento de datos Procedimiento experimental Medir los espectros de transmitancia (λ) en la región del visible ( nm) de las diferentes muestras utilizando el software suministrado. Determine con precisión la posición y magnitud de los máximos y mínimos de los espectros (λ) Cálculos y presentación de resultados Deducir la expresión (8). Los cálculos siguientes se realizarán sólo para la muestra de io, y se puede usar una hoja Excel ya preparada para realizarlos: Debido a que no se conoce el orden de interferencia de cada máximo y mínimo, se procede a una indexación provisional j = 0, 1,,..., comenzando por las longitudes de onda más largas. Determinar para cada máximo (y para cada mínimo), su transmitancia y la transmitancia que le correspondería si en lugar de ser un máximo (mínimo), fuera un mínimo (máximo). Con estos valores, construir una tabla: j/, λ, max, min. Utilizar las ecuaciones (8) para calcular los valores de n para cada una de las λ de la tabla. De acuerdo con la expresión (5), si se representa j/ en función de los valores n/λ obtenidos en el punto anterior, la ordenada en el origen ha de ser exactamente un entero, si el primer extremo es un máximo (o un semientero si es un mínimo). Realizar dicha representación y determinar el espesor y el orden del primer extremo del espectro de las capas B, C, D y E. Sugerencias: colocar en el eje j/ únicamente las divisiones correspondientes a los valores posibles, es decir, enteros y semienteros. Además es conveniente que el eje n/λ comience en el valor cero y el eje j/ incluya los valores negativos necesarios para visualizar bien la calidad del ajuste. Recalcular los valores del índice de refracción utilizando la condición (5). Representar 10/(n 1-1) en función de 1/λ y comprobar la validez de la relación de Sellmeier (ecuación ). Calcular los parámetros n y λ 0. Representar en una misma gráfica los valores de la transmitancia experimental y la teórica correspondiente a un modelo de material sin absorción. Representar en una misma gráfica los valores de ε r experimentales, los recalculados y la dependencia deducida de la ecuación de Sellmeier Elementos de discusión Representar en una misma gráfica los espectros de los distintos materiales estudiados. Comentar cualitativamente sus propiedades ópticas. Discutir por qué el vidrio no presenta máximos y mínimos de interferencia, y las otras muestras sí. Observar la presencia en algunas muestras de un frente de absorción. Estimar el valor correspondiente (en ev) a partir del valor de λ en el que dicho frente presenta una máxima pendiente. Comparar con el parámetro correspondiente a cada material. 4-5

6 Cual es la máxima transmisión teórica del sistema vidrio-capa?. Por qué no se puede superar este valor?. De que parámetros depende la posición de los mínimos de interferencia?. Y la separación entre máximos y mínimos?. Comparar los valores de los índices de refracción y de los espesores de las distintas muestras, por simple observación de los espectros de transmisión en la zona de débil absorción. Discutir la gráfica los valores de ε r experimentales, los recalculados y la dependencia deducida de la ecuación de Sellmeier. 4.4 BIBLIOGRAFÍA L.Eckertova, "Physics of hin Films", Plenum ed., N.Y., Apuntes de la asignatura. J.Aranda, esis doctoral, Universidad de Barcelona, E.Bertran, esis doctoral, Universidad de Barcelona, J.L.Andújar, esis doctoral, Universidad de Barcelona, J.Campmany, esina de grado de licenciatura, Universidad de Barcelona,

Crecimiento y caracterización de una lámina delgada

Crecimiento y caracterización de una lámina delgada Crecimiento y caracterización de una lámina delgada Introducción Esta práctica puede considerarse como una práctica especial con respecto a las demás del laboratorio debido a que vamos a trabajar con conceptos

Más detalles

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos Práctica 5: Ondas electromagnéticas planas en medios dieléctricos OBJETIVO Esta práctica de laboratorio se divide en dos partes principales. El primer apartado corresponde a la comprobación experimental

Más detalles

Laboratorio de Optica

Laboratorio de Optica Laboratorio de Optica 8. Interferómetro de Michelson Neil Bruce Laboratorio de Optica Aplicada, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, U.N.A.M., Objetivos A.P. 70-186, México, 04510, D.F.

Más detalles

2 PROPIEDADES DIELÉCTRICAS A BAJA FRECUENCIA

2 PROPIEDADES DIELÉCTRICAS A BAJA FRECUENCIA 2 PROPIEDADES DIELÉCTRICAS A BAJA FRECUENCIA 2.1 INTRODUCCIÓN A bajas frecuencias la permitividad de un dieléctrico polar presenta una dependencia con la frecuencia debida únicamente al mecanismo de la

Más detalles

PRACTICO N 1: ESPECTROFOTOMETRIA

PRACTICO N 1: ESPECTROFOTOMETRIA UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE TECNOLOGIA MEDICA BIOQUIMICA PRACTICO N 1: ESPECTROFOTOMETRIA 1.- INTRODUCCIÓN Utilizando términos quizás excesivamente simplistas puede definirse la espectrofotometría

Más detalles

Problemas de Ondas Electromagnéticas

Problemas de Ondas Electromagnéticas Problemas de Ondas Electromagnéticas AP Física B de PSI Nombre Multiopción 1. Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en la "región de sombra"?

Más detalles

TEMA 4: OPTICA. Cómo puede un buceador estimar la profundidad a la que se encuentra?

TEMA 4: OPTICA. Cómo puede un buceador estimar la profundidad a la que se encuentra? Cómo puede un buceador estimar la profundidad a la que se encuentra? http://www.buceando.es/ Física A qué distancia podemos distinguir los ojos de un gato montés? Soy daltónico? La luz: naturaleza dual

Más detalles

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES

LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra abnervelazco@yahoo.com Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional

Más detalles

Problema Interferencia de N ranuras.

Problema Interferencia de N ranuras. Problema 9. 4. Interferencia de N ranuras. Considere un obstáculo con tres ranuras separadas por una distancia d e iluminado con una onda plana de longitud de onda λ. Emplee el método de los fasores para

Más detalles

Caracterización Óptica de Materiales.

Caracterización Óptica de Materiales. Caracterización Óptica de Materiales. Ricardo E. Marotti Marzo 008 * e-mail: khamul@fing.edu.uy nstituto de Física Facultad de ngeniería Universidad de la República Montevideo, URUGUAY Resumen: Conceptos

Más detalles

Capítulo I Óptica lineal, no-lineal y generación de segundo armónico

Capítulo I Óptica lineal, no-lineal y generación de segundo armónico Capítulo I Óptica lineal, no-lineal y generación de segundo armónico 1.1 Óptica lineal La óptica es la rama de la física que estudia el comportamiento de luz y su interacción con la materia, la cual la

Más detalles

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica

Slide 1 / 52. Las Ondas Electromagnéticas Problemas de Práctica Slide 1 / 52 Las Ondas Electromagnéticas Problemas de Práctica Slide 2 / 52 Multiopcion Slide 3 / 52 1 Cuál de las siguientes teorías puede explicar la curvatura de las ondas detrás de los obstáculos en

Más detalles

TRABAJO PRÁCTICO N 14 ESPECTROMETRÍA REDES DE DIFRACCIÓN

TRABAJO PRÁCTICO N 14 ESPECTROMETRÍA REDES DE DIFRACCIÓN TRABAJO PRÁCTICO N 14 Introducción La luz blanca ordinaria (luz del sol, luz de lámparas incandescentes, etc.) es una superposición de ondas cuyas longitudes de onda cubren, en forma continua, todo el

Más detalles

Capítulo 24. Emisión y absorción de la luz. Láser

Capítulo 24. Emisión y absorción de la luz. Láser Capítulo 24 Emisión y absorción de la luz. Láser 1 Absorción y emisión La frecuencia luminosa depende de los niveles atómicos entre los que se produce la transición electrónica a través de: hν = E f E

Más detalles

Magnetismo y Óptica Departamento de Física Universidad de Sonora

Magnetismo y Óptica Departamento de Física Universidad de Sonora Magnetismo y Óptica 2006 Departamento de Física Universidad de Sonora 1 Magnetismo y óptica 6. Difracción. a. Introducción a la difracción. Difracción de Fresnel y de Fraunhofer. b. Difracción de rendijas

Más detalles

POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4)

POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4) POLARIZACIÓN CON LÁMINAS DE CUARTO DE ONDA (λ/4) 1. OBJETIVO - Estudiar cómo varía la intensidad de la luz, al atravesar dos polarizadores, en función del ángulo existente entre sus ejes de transmisión.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO SEGUNDA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO SEGUNDA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 SEGUNDA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

Práctica Nº 7: Red de difracción

Práctica Nº 7: Red de difracción Práctica Nº 7: Red de difracción 1.- INTRODUCCIÓN. INTERFERENCIA o DIFRACCIÓN? Desde el punto de vista físico ambos fenómenos son equivalentes. En general se utiliza el término INTERFERENCIA, para designar

Más detalles

5.- PROPIEDADES ÓPTICAS DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II

5.- PROPIEDADES ÓPTICAS DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II 5.- DE LOS MATERIALES FÍSICA DEL ESTADO SÓLIDO II 4. Propiedades Ópticas de los Materiales Absorción y emisión de luz. Color de los materiales. Interacción de luz con los materiales. Efectos ópticos no

Más detalles

Practica nº n 5: Fenómenos de Difracción.

Practica nº n 5: Fenómenos de Difracción. Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular

Más detalles

Hoja de Problemas 6. Moléculas y Sólidos.

Hoja de Problemas 6. Moléculas y Sólidos. Hoja de Problemas 6. Moléculas y Sólidos. Fundamentos de Física III. Grado en Física. Curso 2015/2016. Grupo 516. UAM. 13-04-2016 Problema 1 La separación de equilibrio de los iones de K + y Cl en el KCl

Más detalles

La ley de desplazamiento de Wien (Premio Nobel 1911):

La ley de desplazamiento de Wien (Premio Nobel 1911): Trabajo de laboratorio Nro 1: Verificación de la ley de Stefan Boltzmann y determinación de la constante de Planck mediante el análisis de la radiación del cuerpo negro Introducción Toda superficie cuya

Más detalles

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas

Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones

Más detalles

REVISIÓN DE MÉTODOS ESPECTROSCÓPICOS Y ELABORACIÓN DE CURVA ESTÁNDAR DE PROTEÍNA

REVISIÓN DE MÉTODOS ESPECTROSCÓPICOS Y ELABORACIÓN DE CURVA ESTÁNDAR DE PROTEÍNA REVISIÓN DE MÉTODOS ESPECTROSCÓPICOS Y ELABORACIÓN DE CURVA ESTÁNDAR DE PROTEÍNA OBJETIVOS Aplicar un método espectrofotométrico para medir la concentración de una proteína. Conocer el manejo de micropipetas

Más detalles

Difracción producida por un glóbulo rojo Fundamento

Difracción producida por un glóbulo rojo Fundamento Difracción producida por un glóbulo rojo Fundamento En los seres humanos la sangre es un líquido con un contenido muy diverso. Aproximadamente el 60% es el plasma cuyo componente más abundante es agua

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

Laboratorio 5: Óptica Física y Espectroscopía

Laboratorio 5: Óptica Física y Espectroscopía Laboratorio 5: Óptica Física y Espectroscopía Objetivos - Verificar el comportamiento ondulatorio de la luz - Verificar que la emisión de energía (luz) se encuentra cuantizada. Introducción A través de

Más detalles

PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO

PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO Labor ator io Dinámica de Máquinas UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DINÁMICA DE MÁQUINAS 3.1. Objetivos PRACTICA 3 VIBRACIONES FORZADAS CON AMORTIGUADOR DINÁMICO 1.

Más detalles

Radiación, óptica, microscopía. Prof. Martin Reich

Radiación, óptica, microscopía. Prof. Martin Reich Radiación, óptica, microscopía Prof. Martin Reich un mineral es una sociedad altamente ordenada y que obecede a reglas bien definidas EC = A + R + S 1. Átomos 2. Retículo (lattice) es una construcción

Más detalles

Práctica Nº8. REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma.

Práctica Nº8. REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma. Práctica Nº8 REFLEXIÓN Y REFRACCIÓN DE LA LUZ. Aplicación: índice de refracción del prisma. 1 Introducción. En esta práctica estudiaremos un elemento óptico: el prisma, que nos permitirá analizar los fenómenos

Más detalles

1 LA LUZ. 2 La velocidad de la luz

1 LA LUZ. 2 La velocidad de la luz 1 LA LUZ -Newton: La luz está formada por corpúsculos -Hyugens: La luz es una onda -Interferencia -Las ecuaciones de Maxwell -El éter. -Einstein y la teorí a de los fotones. E=hν La luz posee una naturalez

Más detalles

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1

ÓPTICA FÍSICA. (luz) Física 2º bachillerato Óptica física (luz) 1 ÓPTICA FÍSICA (luz) 1. Ondas electromagnéticas. 2. Espectro electromagnético 3. Naturaleza de la luz. 4. Propagación de la luz. 5. Fenómenos ondulatorios. 6. Fenómenos corpusculares. Física 2º bachillerato

Más detalles

LABORATORIO DE FÍSICA 2 - E.T.S.E.T.-CURSO 2004/2005 PRÁCTICA 4 MICROONDAS

LABORATORIO DE FÍSICA 2 - E.T.S.E.T.-CURSO 2004/2005 PRÁCTICA 4 MICROONDAS MICROONDAS Libro de texto: Francis W. Sears, Mark W. Zemansky, et al., Física Universitaria, Tomo 2, 11ª edición, Pearson Educación, Mexico (2004), Capítulos: 32-6 El espectro electromagnético (páginas

Más detalles

TÉCNICAS BASADAS EN LA ABSORCIÓN DE RADIACIÓN

TÉCNICAS BASADAS EN LA ABSORCIÓN DE RADIACIÓN TÉCNICAS BASADAS EN LA ABSORCIÓN DE RADIACIÓN Absorción de radiación y concentración. Ley de Beer. La espectroscopia de absorción molecular se basa en la medida de la transmitancia T o de la absorbancia

Más detalles

Unidad 8 Fibras Ópticas

Unidad 8 Fibras Ópticas Unidad 8 Fibras Ópticas Contenidos - Introducción: transmisión en fibras ópticas. - Óptica geométrica: reflexión total interna. - Cono de admisión y apertura numérica. - Óptica ondulatoria: modos de propagación.

Más detalles

Espectroscopía óptica

Espectroscopía óptica El color del mundo CNyN-UNAM En esta práctica estudiaremos la razón de los colores que vemos. Esto tiene diferentes ángulos, fuente de luz, interacción luz materia, separación de los colores para mejor

Más detalles

Red de difracción (medida de λ del láser) Fundamento

Red de difracción (medida de λ del láser) Fundamento Red de difracción (medida de λ del láser) Fundamento Si sobre una superficie transparente marcamos en un gran número de rayas paralelas y equidistantes tendremos una red de difracción. El número de rayas

Más detalles

Difracción e Interferencia: Experimento de Young

Difracción e Interferencia: Experimento de Young Introducción Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Para dar explicación a ciertos fenómenos producidos por a

Más detalles

PÉNDULO SIMPLE 2 (2) ( ) y el péndulo realizará oscilaciones armónicas simples (MAS) de período

PÉNDULO SIMPLE 2 (2) ( ) y el péndulo realizará oscilaciones armónicas simples (MAS) de período PÉNDULO SIMPLE 1.- OBJETIVOS 1) Estudio experimental de la ecuación de movimiento del péndulo simple. ) Cálculo de la aceleración de la gravedad terrestre..- FUNDAMENTO TEÓRICO Una masa m cuelga verticalmente

Más detalles

Óptica geométrica (I). Reflexión y refracción en superficies planas. Dispersión de la luz.

Óptica geométrica (I). Reflexión y refracción en superficies planas. Dispersión de la luz. Óptica geométrica (I). Reflexión y refracción en superficies planas. Dispersión de la luz. Libro de texto: Paul A. Tipler, Física, Tomo 2, 5ª edición, Reverté, Barcelona (2005), pp. 939 946 (4ª edición

Más detalles

Difracción e Interferencia: Experimento de Young

Difracción e Interferencia: Experimento de Young Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Difracción e Interferencia: Experimento de Young Elaborado por: Sofía D. Escobar, Miguel A. Serrano y Jorge A. Pérez Introducción

Más detalles

Teoría corpuscular: considera la luz como un conjunto de partículas Naturaleza de la luz

Teoría corpuscular: considera la luz como un conjunto de partículas Naturaleza de la luz 9. La luz (I) Teoría corpuscular: considera la luz como un conjunto de partículas Naturaleza de la luz Teoría ondulatoria: considera la luz como una onda Dualidad onda-corpúsculo: la luz tiene doble naturaleza,

Más detalles

12.9. Aplicaciones Bibliografía

12.9. Aplicaciones Bibliografía Índice 1. INTRODUCCIÓN... 17 1.1. Objetivos... 17 1.2. Definición de términos... 18 1.3. Métodos clásicos y métodos instrumentales... 19 1.4. Componentes de los instrumentos analíticos... 21 1.5. Clasificación

Más detalles

Interferencia Luminosa: Experiencia de Young

Interferencia Luminosa: Experiencia de Young Interferencia Luminosa: Experiencia de Young Objetivo emostrar el comportamiento ondulatorio de la luz a través de un diagrama de interferencia. Equipamiento - Lámpara de Filamento rectilíneo - Soporte

Más detalles

INTRODUCCIÓN A LA ESPECTROFOTOMETRÍA

INTRODUCCIÓN A LA ESPECTROFOTOMETRÍA INTRODUCCIÓN A LA ESPECTROFOTOMETRÍA Objetivos Al finalizar el trabajo práctico los estudiantes estarán en capacidad de: - Conocer el principio que rige la espectrofotometría. - Interpretar el basamento

Más detalles

Laboratorio 5 - Dpto. de Física - FCEyN - UBA Diciembre 2000

Laboratorio 5 - Dpto. de Física - FCEyN - UBA Diciembre 2000 Medición del ancho de banda en Si y Ge mediante un método óptico Martín G. Bellino E-mail : colquide@starmedia.com.ar y bellino@cnea.gov.ar Práctica especial Laboratorio 5 - Dpto. de Física - FCEyN - UBA

Más detalles

Longitud de onda del láser en el agua Fundamento

Longitud de onda del láser en el agua Fundamento Longitud de onda del láser en el agua Fundamento La luz de cualquier longitud de onda se propaga en el vacío con la misma velocidad, la cual se designa con la letra c y cuyo valor es aproximadamente 300.000

Más detalles

Experiencia N 8: Espectro Visible del Hidrógeno

Experiencia N 8: Espectro Visible del Hidrógeno 1 Experiencia N 8: Espectro Visible del Hidrógeno OBJETIVOS 1.- Calcular experimentalmente la constante de Rydberg. 2.- Calcular experimentalmente las líneas espectrales visibles del hidrógeno utilizando

Más detalles

CAPÍTULO 3 DISPOSITIVOS ELECTRO-ÓPTICOS

CAPÍTULO 3 DISPOSITIVOS ELECTRO-ÓPTICOS CAPÍTULO 3 3.1 Sensores optoelectrónicos Una gran ventaja de los dispositivos electro-ópticos es que presentan mayores velocidades de operaciones y menores voltajes ya que la configuración es transversal

Más detalles

ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en

ONDAS. Clasificación y magnitudes que las caracterizan. Ecuación de las ondas armónicas. Energía e intensidad. Ondas transversales en IES JIMENA MENÉNDEZ PIDAL DEPARTAMENTO DE FÍSICA Y QUÍMICA MATERIA: FÍSICA 2º bachillerato SEGUNDO TRIMESTRE CONTENIDOS, CRITERIOS DE EVALUACIÓN, ESTÁNDARES DE APRENDIZAJE, INSTRUMENTOS DE CALIFICACIÓN

Más detalles

Fundamentos de espectroscopia: aspectos de óptica

Fundamentos de espectroscopia: aspectos de óptica Fundamentos de espectroscopia: aspectos de óptica Jesús Hernández Trujillo Abril de 2015 Óptica/JHT 1 / 20 Óptica: Estudio del comportamiento de la luz y en general de la radiación electromagnética Óptica

Más detalles

Medición del índice de refracción de líquidos.

Medición del índice de refracción de líquidos. Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II Proyecto Experimental: Medición del índice de refracción de líquidos.

Más detalles

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff

LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO Aproximarnos a los procesos que absorben y generan radiación electromagnética en la Tierra y en el espacio. Basada en presentación de Tabaré

Más detalles

REVISTA COLOMBIANA DE FÍSICA, VOL. 34, No

REVISTA COLOMBIANA DE FÍSICA, VOL. 34, No REVISTA COLOMBIANA DE FÍSICA, VOL. 34, No. 1. 2002 ESTUDIO DE PROPIEDADES ÓPTICAS Y CRISTALOGRÁFICAS DE PELÍCULAS DELGADAS DE CdS DEPOSITADAS SOBRE SUSTRATOS DE SnO 2 Y VIDRIO. L. M. Caicedo, L. C. Moreno*,

Más detalles

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN 22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN OBJETIVOS Determinación del índice de refracción de un cuerpo semicircular, así como del ángulo límite. Observación de la dispersión cromática. Determinación

Más detalles

. En qué dirección se propaga la onda?

. En qué dirección se propaga la onda? TEMA 1) Introducción: Qué es la luz? Pr. 1-1. Determinar el campo B y hacer el esquema de una onda electromagnética armónica plana cuyo campo E vale. En qué dirección se propaga la onda? Pr. 1-2. Cuál

Más detalles

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas.

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas. Física Teórica 1 Guia 5 - Ondas 1 cuat. 2014 Ondas electromagnéticas. 1. (Análisis de las experiencias de Wiener) En 1890, Wiener realizó tres experiencias para demostrar la existencia de ondas electromagnéticas

Más detalles

1. Fundamentos de óptica

1. Fundamentos de óptica Relación microscopio - ojo Espectro radiación electromagnética Diferencias en intensidad o brillo Propiedades de la luz Teoría corpuscular Teoría ondulatoria Dualidad onda-corpúsculo Propiedades de la

Más detalles

Estudio de la coherencia espacial de una fuente de luz

Estudio de la coherencia espacial de una fuente de luz Estudio de la coherencia espacial de una fuente de luz Clase del miércoles 29 de octubre de 2008 Prof. María Luisa Calvo Coherencia espacial Está ligada a las dimensiones finitas de las fuentes de luz.

Más detalles

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN

22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN 22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN OBJETIVOS Determinación del índice de refracción de un cuerpo semicircular, así como del ángulo límite. Observación de la dispersión cromática. Determinación

Más detalles

TRABAJO PRÁCTICO N 12 INTERFERENCIA

TRABAJO PRÁCTICO N 12 INTERFERENCIA TRABAJO PRÁCTICO N 12 Introducción Interferencia es un fenómeno que se presenta en todo tipo de ondas; tiene lugar cuando en una región del espacio actúan dos o más ondas simultáneamente superponiendo

Más detalles

2- Describa y deduzca las expresiones matemáticas correspondientes al experimento de la doble rendija de Young.

2- Describa y deduzca las expresiones matemáticas correspondientes al experimento de la doble rendija de Young. ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 14 INTERFERENCIA, DIFRACCION Y POLARIZACION Bibliografía Obligatoria (mínima) Capítulos 37 y 38 Física de Serway Tomo II PREGUNTAS SOBRE LA TEORIA Las preguntas

Más detalles

PROGRAMA PLANEAMIENTO EDUCATIVO DEPARTAMENTO DE DISEÑO Y DESARROLLO CURRICULAR. Código en SIPE. 325 Telecomunicaciones. 324 Física Especializada

PROGRAMA PLANEAMIENTO EDUCATIVO DEPARTAMENTO DE DISEÑO Y DESARROLLO CURRICULAR. Código en SIPE. 325 Telecomunicaciones. 324 Física Especializada PROGRAMA PLANEAMIENTO EDUCATIVO DEPARTAMENTO DE DISEÑO Y DESARROLLO CURRICULAR PROGRAMA Código en SIPE Descripción en SIPE TIPO DE CURSO 050 Curso Técnico Terciario PLAN 2013 2013 SECTOR ESTUDIO DE 325

Más detalles

E x de E x y E y, cada una con sus correspondientes amplitud y fase. Cuando estas componentes oscilan sin mantener

E x de E x y E y, cada una con sus correspondientes amplitud y fase. Cuando estas componentes oscilan sin mantener Física Experimental III 1 1. Objetivos EXPERIMENTO 7 POLARIZACIÓN DE LA LUZ Generar diferentes estados de polarización de un haz de luz, por diferentes métodos, y estudiar experimentalmente el comportamiento

Más detalles

a) La vlocidad de propagación de la luz en el agua. b) La frecuencia y la longitud de onda de dicha luz en el agua.

a) La vlocidad de propagación de la luz en el agua. b) La frecuencia y la longitud de onda de dicha luz en el agua. Capítulo 1 SEMINARIO 1. Un teléfono móvil opera con ondas electromagnéticas cuya frecuencia es 1, 2 10 9 Hz. a) Determina la longitud de onda. b) Esas ondas entran en un medio en el que la velocidad de

Más detalles

Serie 2 Fundamentos de Espectroscopia. = kg m/(s 2 A 2 2

Serie 2 Fundamentos de Espectroscopia. = kg m/(s 2 A 2 2 Serie Fundamentos de Espectroscopia. Las cuatro ecuaciones de Maxwell están dadas por: E B () E () t B E (3) B j (4) t Donde E y B son los campos eléctrico y magnético respectivamente, la densidad de carga,

Más detalles

Actividad I Leyes de la reflexión y de la refracción

Actividad I Leyes de la reflexión y de la refracción Actividad I Leyes de la reflexión y de la refracción Objetivos Estudio experimental de las leyes de la reflexión y la refracción de la luz. Determinación del índice de refracción de un material. Observación

Más detalles

RESPUESTAS AL PIR FISICA 5 AÑO DE CIENCIAS NATURALES-

RESPUESTAS AL PIR FISICA 5 AÑO DE CIENCIAS NATURALES- RESPUESTAS AL PIR FISICA 5 AÑO DE CIENCIAS NATURALES- 1.- Palabras del acróstico: resistencia coulomb potencial cocodrilo intensidad electrolitointerruptor conductores 2.- q = 4500 C 3.- a) L = 6 Joule

Más detalles

Ley de reflexión y refracción de la luz.

Ley de reflexión y refracción de la luz. Física 1 Químicos - Óptica Geométrica Ley de reflexión y refracción de la luz. 1. (a) Un haz de luz se propaga en cierto tipo de vidrio. Sabiendo que la velocidad de la luz es c = 3 10 8 m/s, la longitud

Más detalles

Paso de partículas α a traves medios materiales: pérdida de energía en aire

Paso de partículas α a traves medios materiales: pérdida de energía en aire Departamento de Fisica Atomica, Molecular y Nuclear Facultad de Ciencias Fisicas. UCM Asignatura: Radiofísica Paso de partículas α a traves medios materiales: pérdida de energía en aire 1. Introducción

Más detalles

Tema 7: Espectroscopia Vibracional (IR)

Tema 7: Espectroscopia Vibracional (IR) Tabla 1. El espectro electromagnético Región Longitud de onda Energía de excitación Tipo de excitación Rayos x, rayos cósmicos 286 (Kcal/mol) Ultravioleta Visible Infrarrojo próximo Infrarrojo

Más detalles

FARMACOPEA MERCOSUR: MÉTODO GENERAL PARA ESPECTROFOTOMETRIA ULTRAVIOLETA Y VISIBLE

FARMACOPEA MERCOSUR: MÉTODO GENERAL PARA ESPECTROFOTOMETRIA ULTRAVIOLETA Y VISIBLE MERCOSUL/XLIII SGT Nº 11/P.RES. Nº FARMACOPEA MERCOSUR: MÉTODO GENERAL PARA ESPECTROFOTOMETRIA ULTRAVIOLETA Y VISIBLE VISTO: El Tratado de Asunción, el Protocolo de Ouro Preto y las Resoluciones N 31/11

Más detalles

Anillos de Newton. FCEyN - UBA Grupo 6 ΘΘΘΘΘ. Maltauro, Fabio Lavia, Edmundo

Anillos de Newton. FCEyN - UBA Grupo 6 ΘΘΘΘΘ. Maltauro, Fabio Lavia, Edmundo Anillos de Newton FCEyN - UBA Grupo 6 ΘΘΘΘΘ Maltauro, Fabio Lavia, Edmundo Anillos de Newton: Introducción Si se apoya una lente sobre una placa de vidrio plana se observa un patrón de interferencia. Patrón

Más detalles

Física III clase 22 (09/06/2011) Partícula cuántica

Física III clase 22 (09/06/2011) Partícula cuántica Física III clase 22 (09/06/2011) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería Civil Mecánica, Ingeniería

Más detalles

ε = = d σ (2) I. INTRODUCCIÓN

ε = = d σ (2) I. INTRODUCCIÓN Estudio del comportamiento de un material piezoeléctrico en un campo eléctrico alterno. Eduardo Misael Honoré, Pablo Daniel Mininni Laboratorio - Dpto. de Física -FCEyN- UBA-996. Un material piezoeléctrico

Más detalles

Preguntas del capítulo Ondas electromagnéticas

Preguntas del capítulo Ondas electromagnéticas Preguntas del capítulo Ondas electromagnéticas 1. Isaac Newton fue uno de los primeros físicos en estudiar la luz. Qué propiedades de la luz explicó usando el modelo de partícula? 2. Quién fue la primer

Más detalles

Capítulo 25. Rayos X

Capítulo 25. Rayos X Capítulo 25 Rayos X 1 Generación y absorción de rayos X La frecuencia máxima de rayos X producidos por una diferencia de potencial V vale: ν max = e V h Para que un fotón de rayos X se pueda desintegrar

Más detalles

Seminario 1: Reflexión, Refracción y ángulo crítico

Seminario 1: Reflexión, Refracción y ángulo crítico Seminario 1: Reflexión, Refracción y ángulo crítico Fabián Andrés Torres Ruiz Departamento de Física,, Chile 21 de Marzo de 2007. Problemas 1. Problema 16, capitulo 33,física para la ciencia y la tecnología,

Más detalles

PRÁCTICA 2 Determinación espectrofotométrica del pk de un indicador

PRÁCTICA 2 Determinación espectrofotométrica del pk de un indicador Laboratorio de Química Física 1 Grado en Química PRÁCTICA 2 Determinación espectrofotométrica del pk de un indicador Material 2 matraces aforados de 250 ml 1 varilla de vidrio/ 1 pesasustancias/ 1 cuentagotas/

Más detalles

PRÁCTICA Nº4 INTERFERENCIA Y DIFRACCIÓN

PRÁCTICA Nº4 INTERFERENCIA Y DIFRACCIÓN PRÁCTICA Nº4 INTERFERENCIA Y DIFRACCIÓN 1.- Objetivo El objetivo de esta práctica es examinar el patrón de difracción a través de una sola rendija y de interferencia a través de una rendija múltiple, utilizando

Más detalles

Naturaleza ondulatoria de la luz. Difracción.

Naturaleza ondulatoria de la luz. Difracción. Objetivos Comprobar la naturaleza ondulatoria de la luz. Estudio de la difracción de la luz en diferentes rendijas y obstáculos. Estudiar la difracción de Fraunhofer por una rendija. Material Láser de

Más detalles

CARACTERIZACIÓN DE LÁSERES DE DIODO

CARACTERIZACIÓN DE LÁSERES DE DIODO Física del láser CARACTERIZACIÓN DE LÁSERES DE DIODO OBJETIVOS A Estudio de la potencia de salida en función del bombeo. B Estudio del estrechamiento espectral. C Estudio de la coherencia temporal. MATERIAL

Más detalles

TRANSDUCTORES OPTOELECTRONICOS

TRANSDUCTORES OPTOELECTRONICOS TRANSDUCTORES OPTOELECTRONICOS Hay dos aspectos relacionados con la luz que se utilizan, juntos o separados, para explicar muchos fenómenos relacionados con ella. Fenómenos ópticos, tales como la interferencia

Más detalles

Esquema general de un fotómetro sencillo

Esquema general de un fotómetro sencillo Esquema general de un fotómetro sencillo 1. Una fuente de radiaciones (lámpara) que genera la señal emitiendo un espectro continuo o de líneas según el instrumento. 2. Un sistema selector que permite seleccionar

Más detalles

Tema 1: Electrones, energía, átomos y sólidos

Tema 1: Electrones, energía, átomos y sólidos Tema 1: Electrones, energía, átomos y sólidos K. Kano: cap. 1 y cap. El modelo de Bohr Mecánica cuántica. Dualidad onda corpúsculo. Ecuación de Schrödinger en un átomo hidrogenoide. Números cuánticos Formación

Más detalles

ESPECTROSCOPIA Q.F. ALEX SILVA ARAUJO

ESPECTROSCOPIA Q.F. ALEX SILVA ARAUJO Q.F. ALEX SILVA ARAUJO INSTRUMENTOS PARA ESPECTROSCOPIA OPTICA Los primeros instrumentos espectroscópicos se desarrollaron para ser utilizados en la región del visible (instrumentos ópticos). En la actualidad

Más detalles

Práctica de Óptica Física

Práctica de Óptica Física Práctica de Estudio de fenómenos de interferencia difracción 2 Pre - requisitos para realizar la práctica...2 Bibliografía recomendada en referencia la modelo teórico...2 Competencias a desarrollar por

Más detalles

Ejercicios de Interferencia en láminas delgadas.

Ejercicios de Interferencia en láminas delgadas. Ejercicios de Interferencia en láminas delgadas. 1.- Sobre una película delgada y transparente de índice de refracción n 2 y espesor uniforme d, situada en un medio de índice de refracción n 1, incide

Más detalles

BLOQUE 4.1 ÓPTICA FÍSICA

BLOQUE 4.1 ÓPTICA FÍSICA BLOQUE 4.1 ÓPTICA FÍSICA 1. NATURALEZA DE LA LUZ Hasta ahora hemos considerado a la luz como algo que transporta energía de un lugar a otro. Por otra parte, sabemos que existen dos formas básicas de transportar

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

Recubrimientos antirreflectivos

Recubrimientos antirreflectivos Recubrimientos antirreflectivos P. Cobelli Fecha de última actualización: 22 de Noviembre de 2015 Índice 1 Antes de comenzar 1 2 El principio de funcionamiento 1 3 Cómo elegir el material que compone el

Más detalles

CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN 5.2 GENERACIÓN DE MICROONDAS

CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN 5.2 GENERACIÓN DE MICROONDAS CAPÍTULO 5 ARREGLO EXPERIMENTAL 5.1 INTRODUCCIÓN En este capítulo se presenta una técnica fotónica que permite medir la potencia de reflexión en una antena microstrip, como resultado de las señales de

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE. LEY DE HOOKE

MOVIMIENTO ARMÓNICO SIMPLE. LEY DE HOOKE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas.

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. 201. Escribir las ecuaciones de Maxwell válidas en medios materiales. Definir los diferentes términos y su significado físico. Deducir las condiciones

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Las Ondas y la Luz. Las Ondas

Las Ondas y la Luz. Las Ondas Las Ondas Una onda consiste en la propagación de una perturbación física en un medio que puede ser material (aire, agua, tierra, etc) o inmaterial (vacío), según la cual existe transporte de energía, pero

Más detalles

Difracción de rayos X. Química Analítica Inorgánica Tecnólogo Minero

Difracción de rayos X. Química Analítica Inorgánica Tecnólogo Minero Difracción de rayos X Química Analítica Inorgánica Tecnólogo Minero Por qué estudiar difracción de rayos X? Composición Difracción üfenómeno característico de las ondas üdesviación de éstas al encontrar

Más detalles

Propagación de la luz.

Propagación de la luz. Propagación de la luz. El espectro electromagnético en la vida diaria En todas las clases de ondas la velocidad de propagación depende de alguna propiedad física del medio a través del cual la onda se

Más detalles

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005

Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Práctica 6: Redes de difracción F2 ByG 2º Cuat 2005 Objetivos: Se propone medir el espectro de una lámpara de sodio utilizando redes de difracción. Se propone determinar los límites del espectro visible

Más detalles