Funciones de variable compleja.
|
|
|
- Sara Peralta Díaz
- hace 9 años
- Vistas:
Transcripción
1 Funciones de variable compleja. Eleonora Catsigeras * 15 de mayo de 2006 Notas para el curso de Funciones de Variable Compleja de la Facultad de Ingeniería * Instituto de Matemática y Estadística Rafael Laguardia (IMERL), Fac. Ingenieria. Universidad de la República. Uruguay. Address: Herrera y Reissig 565. Montevideo. Uruguay. 1
2 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo PRÓLOGO: Este curso está dirigido a estudiantes universitarios de grado de las carreras de Ingeniería. Se supone conocido el cuerpo de los complejos, la interpretación geométrica en el plano complejo de las operaciones de cuerpo, los conceptos básicos de topología del plano complejo o de R 2, el cálculo diferencial e integral en una y dos variables reales, la geometría de curvas paramétricas planas diferenciables, y el cálculo vectorial, diferencial e integral de campos reales en R 2. El texto está dividido en tres partes. Cada parte está separada en secciones temáticas. En las secciones 4, 11 y 17, se hace la síntesis de los resultados más importantes de las secciones anteriores. El curso se completa con el tema de Transformada de Laplace que se encuentra en las notas de J. Vieitez y N. Möller, y con las listas 1 a 7 de ejercicios publicadas en el año BIBLIOGRAFÍA: Ahlfors, L. : Análisis de Variable Compleja. Editorial Aguilar, España, Rudin, W. : Análisis Real y Complejo. Editorial Alhambra, España, Universidad de Zaragoza : Notas de Funciones de Variable Compleja. Guelfond, A. : Los residuos y sus aplicaciones. Editorial MIR, Moscú, Vieitez, J. - Möller, N. : Apuntes para el curso de funciones de variable compleja. Transformada de Laplace. IMERL, Facultad de Ingeniería, UdelaR. Montevideo, ( IMERL: Listas de ejercicios para el curso de funciones de variable compleja. Repartidos 1 a 7. IMERL, Facultad de Ingeniería, UdelaR. Montevideo, (
3 2 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo Índice Prólogo y Bibliografía 1 Primera parte: FUNCIONES DE VARIABLE COMPLEJA, DERIVACIÓN E INTEGRACIÓN Funciones complejas de variable compleja Notaciones y conceptos previos Argumento, Logaritmo y Raíz n-ésima Compactificación del plano complejo Transformaciones de Moebius o bilineales Derivación y funciones holomorfas Derivación de funciones complejas y funciones holomorfas Transformaciones conformes Funciones armónicas Integración y Convergencia Uniforme Integración compleja Convergencia uniforme de series de funciones complejas Segunda parte: FUNCIONES ANALÍTICAS Y TEORÍA DE CAUCHY Síntesis de la primera parte Derivación y funciones holomorfas Integración compleja Convergencia uniforme de series de funciones complejas Funciones analíticas y teoría del índice Definición y derivabilidad infinita de las funciones analíticas Principio de prolongación analítica Construcción de funciones analíticas mediante integración Teoría del índice Teoría de Cauchy local Sucesión de rectángulos encajados convergentes para acotar integrales Teoría de Cauchy-Goursat en rectángulos Analiticidad de las funciones holomorfas Teoría de Cauchy global Teorema de Cauchy global Fórmulas integrales de Cauchy global Recíprocos de los Teoremas de Cauchy
4 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo Consecuencias de la Teoría de Cauchy Principio del módulo máximo Otras consecuencias de la Teoría de Cauchy Series de Fourier Aplicaciones al cálculo de integrales impropias Lema de deformación de curvas y sus aplicaciones Lema de Jordan y sus aplicaciones Transformada de Fourier Otros resultados y ejercicios resueltos Consecuencias del principio de módulo máximo Aplicaciones de otros teoremas Teoremas de la función inversa y forma local de las transformaciones analíticas Transformaciones del disco unitario en sí mismo Tercera parte: SINGULARIDADES Y TEORÍA DE LOS RESIDUOS Síntesis de la segunda parte Funciones analíticas Teoría del índice Teoría de Cauchy Consecuencias de la teoría de Cauchy Lema de Jordan y de deformación de curvas Ceros y singularidades aisladas Funciones racionales Ceros de las funciones analíticas Clasificación de las singularidades aisladas Polos complejos y en Singularidades esenciales Series de Laurent Definición de serie de Laurent y corona de convergencia Desarrollo en serie de Laurent Caracterización de singularidades aisladas por su desarrollo de Laurent Ejemplos de desarrollo de Laurent Funciones meromorfas y teoremas de aproximación Funciones meromorfas Aproximación por funciones racionales Convergencia uniforme en compactos de funciones analíticas Familias normales
5 4 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo Teoría de los residuos Residuos Principio del argumento Teorema de Rouché Ejemplos Ejercicios resueltos sobre cálculo de residuos Integrales de funciones racionales en la circunferencia Integrales impropias mediante el cálculo de residuo en alguna raíz n ésima Integrales impropias de potencias reales de z Otros ejemplos Síntesis de la tercera parte Ceros y singularidades aisladas Series de Laurent Teoremas de aproximación en compactos Teoría de los residuos
Se suponen conocidos los siguientes conceptos previos desarrollados en las secciones 1, 2, 3.1 y 3.2:
112 Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. TERCERA PARTE. SINGULARIDADES Y TEORÍA DE LOS RESIDUOS. Resumen Se estudian las singularidades aisladas: evitables, polos y esenciales
Problemas resueltos de variable compleja con elementos de teoría. Ignacio Monterde, Vicente Montesinos.
Problemas resueltos de variable compleja con elementos de teoría Ignacio Monterde, Vicente Montesinos. Índice general Introducción V 1. Teoría elemental 1 1.1. Elementos de teoría........................
UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO SUBPROGRAMA DE DISEÑO ACADÉMICO ÁREA MATEMATICA PLAN DE CURSO
UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO SUBPROGRAMA DE DISEÑO ACADÉMICO ÁREA MATEMATICA PLAN DE CURSO I. Identificación Nombre: MATEMÁTICA V Código: 739 U.C: 05 Carreras: Ingeniería de Sistemas
PUBLICACIONES ETSIN Página 1
MÉTODOS MATEMÁTICOS DE LA INGENIERÍA I La asignatura Métodos Matemáticos de la Ingeniería I comprende en su temario contenidos muy diversos, que van desde el análisis en varias variables a la ecuaciones
Análisis Matemático 1 para estudiantes de Ingeniería
Alejandro E. García Venturini - Mónica Scardigli Análisis Matemático 1 para estudiantes de Ingeniería EDICIONES COOPERATIVAS , INDICE 505 NOCIONES PREVIAS... 7 Los conjuntos numéricos... 9 Conjuntos de
Contenidos. Importancia del tema. Conocimientos previos para este tema?
Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de
ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103
ÍNDICE Capítulo 2 La transformada de Laplace... 1 1.1 Definición y propiedades básicas... 1 1.2 Solución de problemas con valores iniciales usando la transformada de Laplace... 10 1.3 Teoremas de corrimiento
INDICE Capitulo 1. Números Capitulo 2. Secuencias Capitulo 3. Funciones, Límites y Continuidad
INDICE Capitulo 1. Números 1 Conjuntos 1 Números reales 1 Representación decimal de los números reales 2 Representación geométrica de los números reales 2 Operación con los números reales 2 Desigualdades
PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA ASIGNATURA
PROGRAMA DETALLADO VIGENCIA TURNO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA 2009 DIURNO INGENIERIA ELECTRICA SEMESTRE ASIGNATURA 3er TRANSFORMADAS INTEGRALES CÓDIGO HORAS MAT-20254
Cálculo de una y varias variables (con prácticas en wxmaxima) M.ª Victoria Sebastián Guerrero M.ª Antonia Navascués Sanagustín
Cálculo de una y varias variables (con prácticas en wxmaxima) M.ª Victoria Sebastián Guerrero M.ª Antonia Navascués Sanagustín Prensas Universitarias de Zaragoza Textos Docentes, 201 2011, 450 pp., 17
Apuntes y Ejercicios de Cálculo. Prácticas con Mathematica
Marzo de 2010, Número 21, páginas 199-205 ISSN: 1815-0640 Apuntes y Ejercicios de Cálculo. Prácticas con Mathematica Autor de la Aplicación: Dirección: http://www.ugr.es/~fjperez/ El profesor es profesor
PROGRAMA GENERAL DE CÁLCULO PROGRAMA ASIGNATURA DIPLOMATURA: MÁQUINAS NAVALES. NAVEGACIÓN MARITIMA. ASIGNATURA: CALCULO.
PROGRAMA ASIGNATURA DIPLOMATURA: MÁQUINAS NAVALES. NAVEGACIÓN MARITIMA. ASIGNATURA: CALCULO. CURSO: 1º. TEMPORALIDAD: ANUAL. CRÉDITOS: TOTAL: 9 (12) TEÓRICOS: 6 P. TABLERO: 1,5 P. LABORATORIO: 1,5+1,5+1,5
6. Teoría de Cauchy local.
Funciones de variable compleja. Eleonora Catsigeras. 24 Abril 2006. 59 6. Teoría de Cauchy local. Dado un abierto Ω C, se denota con R Ω a un rectángulo contenido en Ω. R indica el conjunto de puntos que
Cronograma completo de Análisis III
Cronograma completo de Análisis III Unidad I Semana I Clase I Transformada de Laplace. Definición. Condiciones de existencia. Cálculo de la transformada de Laplace de las funciones básicas. Propiedades
15. Teoría de los residuos.
162 Funciones de variable compleja. Eleonora Catsigeras. 12 Julio 2006. 15. Teoría de los residuos. 15.1. Residuos. Definición 15.1.1. Residuo de una función en una singularidad aislada. Dada una función
Plantear problemas y resolver situaciones problemáticas concretas facilitando la autosuficiencia profesional y científica del futuro egresado.
Programas de Actividades Curriculares Plan 94A Carrera: Ingeniería Mecánica ANÁLISIS MATEMÁTICO I Área : Bloque: Matemática Ciencias Básicas Nivel: 1º Tipo: Homogénea Modalidad: En las carreras de Ingeniería
Series de Laurent. En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n
Series de Laurent En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n y b n dadas anteriormente. Además se puede demostrar que la
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS FUNDAMENTACIÓN CIENTÍFICA PROGRAMA ACADÉMICO:
UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS 1. IDENTIFICACIÓN DE LA ASIGNATURA. NOMBRE: MATEMÁTICAS II CÓDIGO: CB215 ÁREA: FUNDAMENTACIÓN CIENTÍFICA PROGRAMA
Sucesiones y Series. Capítulo O.
Capítulo O. Sucesiones y Series 0.1 Valor absoluto. Propiedades 0.2 Algunas fórmulas trigonométricas 0.3 Fórmulas de la geometría analítica del plano. Distancia entre dos puntos. Punto medio. Pendiente
INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites
INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.
13. Series de Laurent.
Funciones de variable compleja. Eleonora Catsigeras. 3 Mayo 2006. 33 3. Series de Laurent. 3.. Definición de serie de Laurent y corona de convergencia. Definición 3... Serie de Laurent. Se llama serie
Matemáticas para estudiantes de Química
Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE MATEMÁTICA APLICADA
7 SUPERVISADO:, FUNDAMENTACIÓN Las leyes fundamentales del electromagnetismo, de la Termodinámica, de la Mecánica de fluidos, y del flujo de otras importantes variables físicas de los sistemas en Ingeniería,
14. Funciones meromorfas y teoremas de aproximación.
Funciones de variable compleja. Eleonora Catsigeras. 15 Mayo 2006. 145 14. Funciones meromorfas y teoremas de aproximación. 14.1. Funciones meromorfas. Definición 14.1.1. Funciones meromorfas. Una función
Contenido. Funciones de vun'as vunizbles y sus derivadas
Contenido Cafiltulo 1 Funciones de vun'as vunizbles y sus derivadas 1.1 Puntos y con juntos de puntos en el plano y en el espacio a. Sucesiones de puntos: Convergencia, 25 b. Conjuntos de puntos en el
PROGRAMA ANALITICO CALCULO III (MAT 204)
PROGRAMA ANALITICO CALCULO III (MAT 204) 1. IDENTIFICACION Asignatura CALCULO III Código de asignatura(sigla) MAT 204 Semestre 3 Prerrequisitos MAT 102 Horas semanal (HS) HT 3 HP 2 LAB 0 THS 5 Créditos
Análisis Matemático III
Análisis Matemático III Página 1 de 5 Programa de: Análisis Matemático III UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Ingeniería Biomédica
INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales
INDICE Prefacio XIII 1 Preliminares del cálculo: funciones y limites 1 1.1. Qué es el calculo? 3 1.1.1. el limite: la paradoja de Zenón 5 1.1.2. la derivada: el problema de la tangente 6 1.1.3. la integral:
CIRCUITOS ELÉCTRICOS. Temas:
CIRCUITOS ELÉCTRICOS Temas: - Conceptos generales de circuitos eléctricos, ley de Ohm y de Kirchhoff. - Energía almacenada en bobinas y capacitores. - Teoremas de redes: Thevenin, Norton, superposición,
MATEMÁTICAS PARA LA ECONOMÍA II
MATEMÁTICAS PARA LA ECONOMÍA II CÁLCULO EN UNA VARIABLE. Tema 1. - Números Reales. Nociones de topología en R. 1.1 - Números reales racionales e irracionales. El cuerpo de los números reales. 1.2 - Valor
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE MATEMÁTICA APLICADA LABORATORIO:
Fundamentación La matemática es una ciencia esencialmente relacional, estudia las relaciones entre los objetos matemáticos, pero al mismo tiempo es sistemática, es decir tiene organización en el sentido
PROGRAMA DE CURSO. Cálculo Diferencial e Integral. Nombre en Inglés Single variable calculus SCT ,0 2,0 5,0
PROGRAMA DE CURSO Código MA1002 Nombre Cálculo Diferencial e Integral Nombre en Inglés Single variable calculus Unidades Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra Auxiliar Personal
CÁLCULO INTEGRAL TEMARIO
CÁLCULO INTEGRAL TEMARIO 1. LA INTEGRAL 1.1 La integral indefinida Antiderivadas o primitivas. Funciones con la misma derivada. Antiderivada general. Antiderivada particular. Integral indefinida. Elementos
UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS
UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS SILABO 1. INFORMACION GENERAL Nombre del curso Código
Programa de la asignatura Curso: 2007 / 2008 CÁLCULO (1294)
Programa de la asignatura Curso: 2007 / 2008 CÁLCULO (1294) PROFESORADO Profesor/es: ÁNGEL MARÍA ALVÁREZ DÍAZ - correo-e: [email protected] ISABEL RODRÍGUEZ AMIGO - correo-e: [email protected] FICHA TÉCNICA
CONTENIDO PRÓLOGO LAS FUNCIONES... 5
CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.
FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: CALCULO I Código 1.1 PLAN DE ESTUDIOS: 2002 CARRERA: Profesorado en Matemática DEPARTAMENTO: Matemática
Programa de Cálculo II
Programa de Matemáticas Programa de Cálculo II Índice 1. Generalidades. 2 2. Información General 2 3. Descripción General 2 4. Justificación 2 5. Objetivos 3 6. Créditos Académicos 3 7. Competencias a
PROGRAMA INSTRUCCIONAL MATEMÁTICA IV
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL MATEMÁTICA IV CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A THS/SEM
12. Ceros y singularidades aisladas.
118 Funciones de variable compleja. Eleonora Catsigeras. 01 Julio 2006. 12. Ceros y singularidades aisladas. 12.1. Funciones racionales. Una función racional es un cociente de dos polinomios no idénticamente
Universidad de Guanajuato Tronco Común de Ingnierías
Objetivo del Area. Programa. Universidad de Guanajuato Tronco Común de Ingnierías Diseñar modelos matemáticos y proponer alternativas de solución a problemas. AREA: Matemáticas MATERIA: Cálculo II CLAVE:
INGENIERIA MECANICA - INGENIERIA INDUSTRIAL - EN SISTEMAS DE INFORMACION - CIVIL - ELECTRICA - ELECTRONICA NAVAL - QUIMICA - TEXTIL
ASIGNATURA: ANÁLISIS MATEMÁTICO I CÓDIGO: 95-0702 ORIENTACIÓN : GENERAL Clase:Cuatr./Anual DEPARTAMENTO: MATERIAS BÁSICAS - U.D.B. MATEMÁTICA Horas Sem.: 10 / 5 ÁREA: MATEMÁTICA Horas/año: 160 FORMACIÓN
IES RECREO ANALISIS MATEMATICO I
Programa Analítico ANALISIS MATEMATICO I PROFESORADO DE EDUCACION SECUNDARIA EN MATEMATICA ciclo lectivo 2010 Integrantes de la Cátedra Docente a Cargo: Lic. Francisco López FUNDAMENTACION La asignatura
CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física
CÁLCULO DIFERENCIAL E INTEGRAL I Programa para la Licenciatura en Física BIBLIOGRAFÍA: M.Spivak, Cálculo Infinitesimal N. Piskunov, Cálculo Diferencial e Integral 4 1/2 hs de Teórico por semana (67 1/2
PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251
No. DE EMPLEADO: SEMANA: 5 NO. DE ALUMNOS: O PROPOSITO GENERAL DE LA 1. Teorema fundamental del cálculo. - Contextualizar el concepto de - Visualizar la relación entre cálculo diferencial y el cálculo
INDICE Capitulo Primero. Número. Variable. Función Capitulo II. Límite y Continuidad de las Funciones Capitulo III. Derivada y Diferencial
INDICE Capitulo Primero. Número. Variable. Función 1. Números reales. Representación de números reales por los puntos 1 del eje numérico 2. Valor absoluto de un número real 3 3. Magnitudes variables y
Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL
DATOS GENERALES PROGRAMA ANALITICO DE LA ASIGNATURA CALCULO I (MAT-101) ASIGNATURA:. SIGLA Y CODIGO:... CURSO:.. PREREQUISITOS: HORAS SEMANAS:... CREDITOS: PROFESOR: Calculo I MAT-101 Primer Semestre MAT-101
Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias:
Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias: donde conocida como serie de Taylor (o serie de Maclaurin cuando ). Además la
Cálculo diferencial e integral I. Eleonora Catsigeras
Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones
Series numéricas y de potencias. 24 de Noviembre de 2014
Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL
FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA AMBIENTAL MATEMATICA III I. DATOS GENERALES 1.0. Unidad Académica : Ingeniería Ambiental 1.1. Semestre Académico : 2018-1B 1.2. Código
INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS
PROGRAMA SINTÉTICO CARRERA: Ingeniería Control y Automatización, Ingeniería Eléctrica ASIGNATURA: Variable Compleja y Transformadas de Fourier y Z. SEMESTRE: Tercero OBJETIVO GENERAL: El alumno resolverá
FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS
FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto
INDICE Presentación Preliminar del Cálculo 1. Funciones y Modelos 2. Límites y Derivadas Problemas especiales 3. Reglas de Derivación
INDICE Presentación Preliminar del Cálculo 2 1. Funciones y Modelos 10 1.1. Cuatro maneras de representar una función 11 1.2. Modelos matemáticos 24 1.3. Nuevas funciones a partir de funciones ya conocidas
Introducción. { x si x [0,
En el Cálculo Infinitesimal desarrollado por Newton y Leibnitz es el cálculo diferencial el que cobra mayor importancia, quedando la integral relegada al papel de operación inversa de la diferencial. Una
Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini.
Otras páginas Matemáticas 5º Matemáticas I. Bloque I: ARITMÉTICA Y ÁLGEBRA Los números reales Los números reales, concepto y características. Estructura algebraica, orden, representación en la recta real
I.E.S. DE INGENIO Avda. de los Artesanos, INGENIO POC-PC EVALUACIÓN CONTENIDOS MÍNIMOS CURSO CURSO: 1º BACH.
CURSO 2009-2010 CURSO: 1º BACH. CCSS Números reales (Intervalos y entornos, valor absoluto, logaritmo). ÁREA: MATEMATICAS AP. CCSS I Polinomios y fracciones algebraicas (operaciones básicas, divisibilidad,
Integrales paramétricas e integrales dobles y triples.
Integrales paramétricas e integrales dobles y triples. Eleonora Catsigeras * 19 de julio de 2006 PRÓLOGO: Notas para el curso de Cálculo II de la Facultad de Ingeniería. Este texto es complementario al
CALCULO 1 COMISION 1
PROGRAMA ANALÍTICO CALCULO 1 COMISION 1 Unidad 1: Funciones, Límite y Continuidad de funciones Desigualdades. Inecuaciones. Valor absoluto. Funciones: Dominio, Imagen, Intersecciones con los ejes. Funciones
CALCULO INTEGRAL 2AMB
INSTITUTO TECNOLÓGICO SUPERIOR DEL SUR DEL ESTADO DE YUCATÁN Organismo Público Descentralizado del Gobierno del Estado de Yucatán CALCULO INTEGRAL 2AMB Horario: Martes: 9:30 a 11:30 Jueves: 8:30 a 9:30
Matemáticas I Grado en Ingeniería Electrónica Industrial y Automática
Matemáticas I GUÍA DOCENTE Curso 2011-2012 Titulación: Código : 805 Centro: Escuela Técnica Superior de Ingeniería Industrial Dirección: Luis de Ulloa, 20 Código postal: 26004 Teléfono: +34 941 299 218
GUÍA DE APRENDIZAJE DE CÁLCULO I
GUÍA DE APRENDIZAJE DE CÁLCULO I Datos generales Nombre de la asignatura: Cálculo I Tipo de la asignatura: Troncal Número de créditos: 6 ECTS (5 horas de clase) Departamento: Matemática Aplicada a la Ingeniería
INSTITUTO POLITÉCNICO NACIONAL
PROGRAMA SINTÉTICO UNIDAD ACADÉMICA: ESCUELA SUPERIOR DE COMPUTO PROGRAMA Ingeniería en Sistemas Computacionales ACADÉMICO: UNIDAD DE APRENDIZAJE: Matemáticas Avanzadas para la Ingeniería NIVEL: II OBJETIVO
diferencial e integral con funciones de varias variables
Andrés Abella Ernesto Mordecki Cálculo diferencial e integral con funciones de varias variables Universidad de la República Facultad de Ciencias DIRAC 2015 Los conceptos vertidos en los libros editados
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA SYLLABUS. PROYECTOS CURRICULAR: Ingeniería de sistemas NOMBRE DEL DOCENTE:
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS FACULTAD DE INGENIERÍA SYLLABUS PROYECTOS CURRICULAR: Ingeniería de sistemas NOMBRE DEL DOCENTE: ESPACIO ACADÉMICO (Asignatura) : Matemáticas especiales Obligatorio
TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS
HOJA INFORMATIVA A.5.2.33 TEMARIO DE PROFESORES DE ENSEÑANZA SECUNDARIA MATEMÁTICAS Publicado en el B.O.E. de 21 de Septiembre de 1.993 MARZO 1998 MATEMÁTICAS 1. Números naturales. Sistemas de numeración.
DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE ASIGNATURA
CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE ASIGNATURA NOMBRE DE MATERIA CLAVE DE MATERIA DEPARTAMENTO CÁLCULO DIFERENCIAL
Universidad Ricardo Palma
1. DATOS ADMINISTRATIVOS Universidad Ricardo Palma FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRONICA DEPARTAMENTO ACADÉMICO DE CIENCIAS SÍLABO 1.1 Nombre del curso : METODOS
Probabilidad y Estadística: Ardanuy y Soldevilla. Estadística Básica. Editorial Hesperides.
1 / 5 PROGRAMA DE LA ASIGNATURA: CURSO: 1º TIPO: TRONCAL - Nº CRÉDITOS: 10,5 PLAN DE ESTUDIOS: ARQUITECTURA TÉCNICA (B.O.E. 18 DE FEBRERO DE 1999) DPTO.: MATEMÁTICAS Y COMPUTACIÓN AREA: MATEMÁTICA APLICADA
MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Nombre de asignatura: AMPLIACIÓN DE MATEMÁTICAS. Módulo: FORMACIÓN FUNDAMENTAL
MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE MATEMÁTICAS Código:603356 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: Obligatorio
GUÍA DOCENTE DE ANÁLISIS MATEMÁTICO I
GUÍA DOCENTE DE ANÁLISIS MATEMÁTICO I La presente guía docente corresponde a la asignatura Análisis Matemático I, aprobada para el curso lectivo 2014-2015 en Junta de Centro y publicada en su versión definitiva
MATEMÁTICAS I Y II CONTENIDOS BACHILLERATO
MATEMÁTICAS I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto de los bloques. Resolución de
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA PROGRAMA DE LA ASIGNATURA DE: Cálculo Diferencial e Integral IDENTIFICACIÓN
TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA
Saint Gaspar College Misio nero s de la Precio sa Sangre F o r m a n d o P e r s o n a s Í n t e g r a s TEMARIOS PRUEBAS SEMESTRALES 2015 PRIMER SEMESTRE DEPARTAMENTO DE MATEMÁTICA NIVEL FECHA *TEMARIO*
CONTENIDO VARIABLE COMPLEJA 1 HISTORIA DE LA VARIABLE COMPLEJA 2
ÍNDICE CONTENIDO PRÓLOGO I XI VARIABLE COMPLEJA 1 HISTORIA DE LA VARIABLE COMPLEJA 2 Los números complejos 2 Funciones de variable compleja 5 La función logaritmo 7 Integración 9 Cauchy y la variable compleja
GUÍA DOCENTE. Matemáticas II
GUÍA DOCENTE Matemáticas II 34787 I.- DATOS INICIALES DE IDENTIFICACIÓN Nombre de la asignatura: Matemáticas II Número de créditos ECTS: 6 Unidad temporal: Segundo cuatrimestre, primer curso Materia: Matemáticas
FUNDAMENTOS DE MATEMÁTICAS. ISBN: Depósito Legal: M Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93
FUNDAMENTOS DE MATEMÁTICAS ISBN: 978-84-941559-0-1 Depósito Legal: M-20468-2013 Número de páginas: 487 Tamaño: 21 x 14,6 cm Precio: 23,93 FUNDAMENTOS DE MATEMÁTICAS INDICE MATEMÁTICAS BÁSICAS CONJUNTOS
PROGRAMA DE CURSO PRECALCULUS. Horas de Cátedra. Trabajo Personal
Código Nombre IN1000 Nombre en Inglés SCT Horas semestrales PROGRAMA DE CURSO PRECÁLCULO PRECALCULUS Cátedra ayudantías y laboratorios Trabajo Personal 6 180 45 21 114 Requisitos Carácter del Curso Curso
INGENIERIA INDUSTRIAL TRENQUE LAUQUEN RACEDO Tel.: (02392) ARGENTINA
ANÁLISIS MATEMÁTICO I CARGA HORARIA: Hs/año: 160; Hs/sem: 5 TEORICAS PRACTICAS 1/5 PROFESOR RESPONSABLE Ing. Abel Márquez Semanales Totales Semanales Totales AUXILIAR 2h 30min 80 2h 30min 80 ALEJANDRO
