Ejemplo de informe: Péndulo simple
|
|
|
- Víctor Manuel Espinoza Silva
- hace 9 años
- Vistas:
Transcripción
1 Introducción Ejemplo de informe: Péndulo simple Se trata de medir la aceleración de la gravedad mediante un péndulo simple. Para oscilaciones pequeñas, el periodo T viene dado [véase cualquier libro de Física General] por la longitud del péndulo l y la aceleración de la gravedad g: T = π Así pues, midiendo T y l podremos determinar g: g = 4π l g l T (Ecuación 1) (Ec. ) Además, lo haremos para varias longitudes l para comprobar que efectivamente se cumple la ley usada.
2 Metodología Como el error relativo, tanto de la longitud l como del periodo T, disminuye al aumentar l, dejamos que el péndulo sobresalga por el borde de la mesa, para que pueda llegar hasta el suelo. Como el corcho de las pletinas, que aprietan y soportan el hilo, está desgastado, el punto exacto de suspensión tiene más error. Por ello hemos insertado unas placas rígidas de plástico, con un borde bien afilado, y hemos medido la longitud del hilo hasta ese borde. Como es menos preciso medir la longitud desde el centro de la bola (donde está su centro de masas), lo hacemos desde su parte superior (con una cinta métrica) y le sumamos la mitad de su diámetro d, medido con un calibre. Como la precisión del calibre es mucho mayor, despreciamos el error en d. Para eliminar un posible error sistemático en la calibración de la cinta métrica, medimos una longitud (la mayor) con tres cintas distintas. Como obtenemos el mismo resultado, en mm, consideramos como error estimado l = 1 mm (la sensibilidad de la cinta). La sensibilidad del cronómetro es de 0.01s, pero la desviación típica de las medidas es bastante mayor, por lo que tomamos ésta como error de tiempo.
3 Diámetro de la bola: d = 0.1 ± 0.1 mm Medidas Medimos la longitud del hilo, desde la parte superior de la bola, y le sumamos el radio de ésta (10 mm). Para cada una de cuatro longitudes l, medimos la duración t de 10 oscilaciones y repetimos la medida 5 veces. Tenemos siempre cuidado de que las oscilaciones sean pequeñas (de unos 5 cm de amplitud). Datos medidos ( crudos ) Datos derivados l(mm) Duración t de 10 oscilaciones (s) t t T (s) T (s) , 9.41, 9.48, 9.40, , 13.04, 1.95, 13.01, , 17.65, 17.7, 17.66, , 19.63, 19.63, 19.64,
4 Resultados Como primer tratamiento más sencillo, utilizamos la ecuación para obtener el valor de g para cada longitud l. Para l = 954 mm: 0.954m g = 4π = 9.814m/s (1.959s) g = l T + = 1mm 954mm 0.003s 1.959s = g l T Donde podemos ver que para mejorar la precisión de g deberíamos sobre todo disminuir el error de T. Ahora g = m/s = Repitiendo lo mismo para todos los valores de l obtenemos l (m) g (m/s ) 9.59 ± ± ± ± 0.04 Si sacamos la media de los valores y su desviación típica: g = 9.75 ± 0.06 m/s (valor medido, método 1) m/s
5 Resultados (cont.) Alternativamente, ajustamos los datos de l frente a t con una recta que pase por el origen. Su pendiente, multiplicada por 4π, debe ser g. La gráfica está en la página siguiente. Del ajuste (realizado mediante un paquete estadístico estándar) obtenemos una pendiente de p = 0.49 ± 0.00 m/s y un valor de g = 4π p = 9.83 ± 0.07 m/s (valor medido, método ) El valor esperado para Madrid lo obtenemos del Handbook of Chemistry and Physics (ver apéndice): Latitud = 40 o 6 N, Altura = 700 m => g = ( )*6/ cm/s = = m/s (valor esperado)
6 Gráfica de l frente a T l (m) l = 0.49 m/s T T (s )
7 Discusión y comentarios El valor medido tiene un error de sólo un % con respecto al esperado, dependiendo del método usado para procesar los datos. Esta discrepancia está dentro del error experimental estimado del ~0.7%. Además, hemos verificado la ecuación, que se cumple con gran precisión. Una posible fuente de error es que la masa del hilo eleve la posición del centro de masas del conjunto bola-hilo y disminuya la longitud efectiva l. Para hacer un tratamiento riguroso de este efecto debemos considerar la teoría del péndulo físico [ver, por ejemplo P.A.Tipler, Física General]. Pero podemos hacer una estimación sencilla de la magnitud del efecto: Masa medida de la bola: m b = 15.5 g Masa medida del hilo: m h = 0. g => l/l = ((m h l/)/(m b + m h )) / l m h / m b = Que es comparable al error de medida de 1mm / 1m = 10-3 De todas formas, hemos visto que la mayor fuente del error g proviene de la medida del periodo, que podríamos haber mejorado midiendo más oscilaciones.
8 Sugerencias Para aumentar aún más la longitud del péndulo, y disminuir así el error relativo de la medida, convendría disponer de una barra de soporte más larga, o de una forma de colgarlo del techo. Para disminuir el error debido a la masa del hilo, y también para disminuir el efecto del rozamiento (aumentando la fuerza de la gravedad con respecto a éste), convendría aumentar la masa de la bola.
9 Apéndice: tabla de g en la Tierra Fuente: Handbook of Chemistry and Physics, edición 71 ( ). Pag. 14-7
MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. Experimento 1
MECÁNICA ANALÍTICA - CURSO 2011 Práctica de laboratorio Nro. 3 Centros de masa y Momentos de Inercia. 1 Introducción. La dinámica de cuerpos rígidos constituye el caso especial, en que un sistema de partículas
Péndulo físico. m.g. Figura 1: Péndulo físico. cm = centro de masa del sistema; d cm = distancia del punto de suspensión al centro de masa.
Péndulo físico x Consideraciones generales En la Figura 1 está representado un péndulo físico, que consiste de un cuerpo de masa m suspendido de un punto de suspensión que dista una distancia d de su centro
Universidad Nacional de General San Martín Escuela de Ciencia y Tecnología Laboratorio de Física 1 Comparación de métodos para el cálculo de g
Universidad Nacional de General San Martín Escuela de Ciencia y Tecnología Laboratorio de Física 1 Comparación de métodos para el cálculo de g!"profesores: Dr. Salvador Gil y Dr. D. Tomasi!"Integrantes
DINÁMICA DE ROTACIÓN DE UN SÓLIDO
Laboratorio de Física General Primer Curso (Mecánica) DINÁMICA DE ROTACIÓN DE UN SÓLIDO Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la ley de la dinámica de rotación de un sólido rígido alrededor
LAS MEDICIONES FÍSICAS. Estimación y unidades
LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada
Medición del módulo de elasticidad de una barra de acero
Medición del módulo de elasticidad de una barra de acero Horacio Patera y Camilo Pérez [email protected] Escuela de Educación Técnica Nº 3 Florencio Varela, Buenos Aires, Argentina En este trabajo
El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado.
El péndulo físico. Un método para determinar la aceleración de la gravedad. Oscilaciones del péndulo en un plano inclinado. Departamento de Física Aplicada Universidad de Cantabria 3 Diciembre 013 Resumen
DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES
DETERMINACIÓN DE LA CONSTANTE UNIERSAL DE LOS GASES La ley general de los gases relaciona la presión P, el volumen, la temperatura T, el número de moles n, y la constante universal de los gases R, como
Mediciones e Indeterminaciones
Mediciones e Indeterminaciones Introducción Todas las medidas vienen condicionadas por posibles errores o indeterminaciones experimentales (accidentales y sistemáticas) y por la sensibilidad del aparato.
1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1. Exprese y explique el teorema de ejes paralelos.
Laboratorio 1 Péndulo físico 1.1 Objetivos 1. Estudiar el comportamiento del péndulo físico. 2. Determinar la aceleración de la gravedad. 1.2 Preinforme 1. Exprese y explique el teorema de ejes paralelos.
Resumen. En este trabajo estudiamos el movimiento de una máquina de Atwood, en la cual una de sus masas variaba con el tiempo.
Máquina de Atwood con masa variable Galarza Jorge, Viegener Alejandro, Palacios Pablo, Hesse Eugenia Universidad Favaloro - Julio 1 [email protected] Resumen En este trabajo estudiamos el movimiento
8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO
8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la practica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un
Cálculo de la velocidad angular de la Tierra mediante el empleo de un Péndulo de Foucault
Julio de 2007 Práctica Especial de Laboratorio 1 Facultad de Ciencias Exactas y Naturales U.B.A. Cálculo de la velocidad angular de la Tierra mediante el empleo de un Péndulo de Foucault Emiliano Cabrera,
Péndulo en Plano Inclinado
Péndulo en Plano nclinado Variación del Período en función de g Alejandra Barnfather: [email protected] - Matías Benitez: [email protected] y Victoria Crawley: [email protected] Resumen El
MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas
OBJETIVOS MEDICIÓN Declarar lo que es una medición, error de una medición, diferenciar precisión de exactitud. Reportar correctamente una medición, con las cifras significativas correspondientes utilizando,
MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.
LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre
Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:
Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres
TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN
TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra
MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π
1 Objetivos Departamento de Física Curso cero MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π Utilización de un calibre en la determinación de las dimensiones de un objeto y de una balanza digital
Guía de Laboratorio N 0 0 Análisis de Errores. FIS-1513 Estática y Dinámica. Objetivos. 1. Introducción. 2. Campana de Gauss y error estadístico
FIS-53 Estática y Dinámica Guía de Laboratorio N 0 0 Análisis de Errores Objetivos Aprender acerca de las diferentes fuentes de error que pueden existir en un experimento. Mostrar cómo cuantificar los
ESTUDIO DE UN MODELO NO LINEAL EL CASO DEL PÉNDULO SIMPLE II. OBJETIVOS. Al finalizar esta práctica, el alumno será capaz de:
ESTUDIO DE UN MODELO NO LINEAL EL CASO DEL PÉNDULO SIMPLE II Abraham Vilchis Uribe. OBJETIVOS. Al finalizar esta práctica, el alumno será capaz de: Encontrar la relación que existe entre la longitud L,
Determinación de la aceleración de la gravedad a través del péndulo físico.
Determinación de la aceleración de la gravedad a través del péndulo físico. Laboratorio de Física: 1210 Unidad 2 Temas de interés. 1. Relaciones directamente proporcionales. 2. Péndulo. 3. Movimiento armónico
Fuerzas de Rozamiento
Fuerzas de Rozamiento Universidad Nacional General San Martín. Escuela de Ciencia y Tecnología. Baldi, Romina [email protected] Viale, Tatiana [email protected] Objetivos Estudio de las fuerzas
Leyes de Kirchoff El puente de Wheatstone
Leyes de Kirchoff El puente de Wheatstone 30 de marzo de 2007 Objetivos Aprender el manejo de un multímetro para medir resistencias, voltajes, y corrientes. Comprobar las leyes de Kirchoff. Medir el valor
Sólo cuerdas dinámicas
Efectos de una caída Al caernos desde una cierta altura estando amarrados con una se producen varios sucesos simultáneos. Toda la energía potencial que habíamos ganado con la altura se convierte en cinética
EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO
EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que
Dependencia de la aceleración de un cuerpo en caída libre con su masa
Dependencia de la aceleración de un cuerpo en caída libre con su masa Ramón Ramirez 1 y Guillermo Kondratiuk 2 E. E. T. N 4 Profesor Jorge A. Sábato, Florencio Varela, Buenos Aires 1 [email protected]
FÍSICA EXPERIMENTAL I. Péndulo Simple. Mediciones de Período para amplitudes mayores a 7. 11/11/2013
FÍSICA EXPERIMENTAL I Péndulo Simple Mediciones de Período para amplitudes mayores a 7. 11/11/2013 Autores: Grigera Paladino, Agustina ([email protected]) Lestani, Simón Exequiel ([email protected])
Instrumentos de medida. Estimación de errores en medidas directas.
Instrumentos de medida. Estimación de errores en medidas directas. Objetivos El objetivo de esta primera práctica es la familiarización con el uso de los instrumentos de medida y con el tratamiento de
ECUACIONES DIMENSIONALES
ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?
Mecánica del Cuerpo Rígido
Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.
CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES
OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición
Investigación sobre el cambio en la aceleración de un carrito que rueda hacia abajo sobre un plano inclinado
Investigación sobre el cambio en la aceleración de un carrito que rueda hacia abajo sobre un plano inclinado La investigación Pregunta de investigación: Es constante la aceleración de un carrito que cae
MÁQUINA DE ATWOOD: MOVIMIENTO RECTILÍNEO DE MASAS UNIDAS POR UNA CUERDA EN EL SENO DE AIRE Y DE AGUA
MÁQUINA DE ATWOOD: MOVIMIENTO RECTILÍNEO DE MASAS UNIDAS POR UNA CUERDA EN EL SENO DE AIRE Y DE AGUA (Práctica nº 9: Atrapado en un ascensor) FERNANDO HUESO GONZÁLEZ Pareja 7 - Grupo B-L º DE FÍSICA -
CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS
88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.
Tema 1: Medidas y unidades
Tema 1: Medidas y unidades http://fisicayquimicaenflash.es Curso 3 ESO Qué le ocurre al hielo cuando lo sacamos del congelador y lo colocamos en un plato sobre la mesa? Y si después nos olvidamos del plato,
Práctica de Inducción electromagnética.
Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX
DINÁMICA II - Aplicación de las Leyes de Newton
> INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas
Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.
æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)
PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,
ELECTRICIDAD Y MAGNETISMO. PRÁCTICA DE LABORATORIO No. 6 BALANZA DE CORRIENTE
ELECTRICIDAD Y MAGNETISMO PRÁCTICA DE LABORATORIO No. 6 BALANZA DE CORRIENTE 1. OBJETIVOS 1.1 Corroborar que una corriente eléctrica genera un campo magnético. 1.2 Observar que un campo magnético ejerce
Laboratorio de Física para Ingeniería
Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)
EDGAR MANUEL RODRIGUEZ
EDGAR MANUEL RODRIGUEZ COD. 75 073 300 EL PENDULO SIMPLE 1. HISTORIA DEL PENDULO SIMPLE El principio del péndulo fue descubierto por el físico y astrónomo italiano Galileo, quien estableció que el periodo
Fig. 3.1 Influencia de la incertidumbre de una magnitud x en la determinación de la incertidumbre de una magnitud derivada.
Unidad 3 Mediciones indirectas Propagación de incertidumbres Ha magnitudes que no se miden directamente, sino que se derivan de otras que sí son medidas en forma directa. Por ejemplo, para conocer el área
TEMA I.5. Velocidad de una Onda Transversal. Dr. Juan Pablo Torres-Papaqui
TEMA I.5 Velocidad de una Onda Transversal Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) [email protected] División de Ciencias Naturales y Exactas,
La Hoja de Cálculo en la resolución de problemas de Física.
a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de [email protected]
y d dos vectores de igual módulo, dirección y sentido contrario.
MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo
Guión de Prácticas. PRÁCTICA METROLOGIA. Medición. 2. CONSIDERACIONES PREVIAS a tener en cuenta SIEMPRE
1. OBJETIVOS Guión de Prácticas. PRÁCTICA METROLOGIA. Medición Conocimientos de los fundamentos de medición Aprender a utilizar correctamente los instrumentos básicos de medición. 2. CONSIDERACIONES PREVIAS
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
TEMA 1: CONCEPTOS BASICOS EN FISICA
La Física está dividida en bloques muy definidos, y las leyes físicas deben estar expresadas en términos de cantidades físicas. Entre dichas cantidades físicas están la velocidad, la fuerza, densidad,
VIII CONCURSO NACIONAL DE TALENTOS EN FISICA de 10
VIII CONCURSO NACIONAL DE TALENTOS EN FISICA 2012 1 de 10 Instrucciones: Al final de este examen se encuentra la hoja de respuestas que deberá contestar. No ponga su nombre en ninguna de las hojas, escriba
Movimiento Armónico Simple
Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos
CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS
CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.
METROLOGÍA. Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:
ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 2: METROLOGÍA Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Conocimiento y uso de los instrumentos
GUÍA Nº4: Sistema de partículas
Junio - 014 GUÍA Nº4: Sistema de partículas PROBLEMA 1: Tres partículas inicialmente ocupan las posiciones determinadas por los extremos de un triángulo equilátero, tal como se muestra en la figura. a)
UNIDAD DIDÁCTICA 6: Trigonometría
UNIDAD DIDÁCTICA 6: Trigonometría 1. ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4. Funciones trigonométricas de un ángulo 5. Teorema de Pitágoras 6. Problemas sobre resolución
FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN
FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta
COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI
Laboratorio de Física de Procesos Biológicos COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 13/1/006 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos
ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que
COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI
Laboratorio de Física General (Fluidos) COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 0/10/013 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos
Capítulo 10. Efectos de superficie. Sistema respiratorio
Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:
Movimiento rectilíneo uniformemente acelerado
Movimiento rectilíneo uniormemente acelerado Objetivo General El alumno estudiará el movimiento rectilíneo uniormemente acelerado Objetivos particulares 1. Determinar experimentalmente la relación entre
3. La circunferencia.
UNIDAD 8: RESOLVAMOS CON GEOMETRÍA ANALITICA. 3. La circunferencia. Objetivos conceptuales. Definir el concepto de circunferencia. Objetivos procedimentales. Calular el radio, el centro, algunos puntos
Slide 1 / 71. Movimiento Armónico Simple
Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Boletín de problemas 3 Problema 1 Las dos masas a la derecha del dibujo están ligeramente separadas e inicialmente en reposo. La masa de la izquierda
BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA
Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA 1. Halla la energía potencial gravitatoria de un libro de 500 gramos que se sitúa a 80 cm de altura sobre una mesa. Calcula la energía cinética
1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de
1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO.
PROBLEMAS PARA RESOLVER CON ECUACIONES DE SEGUNDO GRADO. 1. Cuál es el número cuyo quíntuplo aumentado en 6 es igual a su cuadrado?. Qué número multiplicado por 3 es 40 unidades menor que su cuadrado?
EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica
Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete
Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD
Práctica 5.Métodos descriptivos para determinar la normalidad 1 Práctica 5 MÉTODOS DESCRIPTIVOS PARA DETERMINAR LA NORMALIDAD Objetivos: En esta práctica utilizaremos el paquete SPSS para determinar si
PROPIEDADES GENERALES DE LA MATERIA. ESQUEMA 1
PROPIEDADES GENERALES DE LA MATERIA. ESQUEMA 1 La materia es todo aquello que tiene se describe por sus Volumen Masa Propiedades que se pueden clasificar de dos formas Generales Específicas Extensivas
Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.
Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar
PRÁCTICA 6 : TEORÍA CINÉTICA DE GASES: PARTE I VISCOSIDAD DE UN GAS: ESTIMACIÓN DEL DIÁMETRO MOLECULAR
Práctica 5: Teoría Cinética de Gases PRÁCTICA 6 : TEORÍA CINÉTICA DE GASES: PARTE I VISCOSIDAD DE UN GAS: ESTIMACIÓN DEL DIÁMETRO MOLECULAR Objetivos. Medida de las viscosidades de dos gases : nitrógeno
DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS.
PRÁCTICA Nº 1. DESVIACIÓN DE UN HAZ DE ELECTRONES POR CAMPOS ELÉCTRICOS Y MAGNÉTICOS. 1. OBJETIVOS: a) Observar la trayectoria de partículas cargadas en el seno de campos eléctricos y magnéticos. b) Determinar
Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que
Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que se toma como unidad. El proceso de medida se puede realizar comparando directamente
QUÉ ES LA TEMPERATURA?
1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente
Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son:
Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: R 2 = (20 + 10t)i + (100 4t )j y V = 10i 8t j Calcula: a) osición y velocidad en el instante inicial y a los 4
CARGA AL VIENTO. Q'v = 9 kg 9.81 N/kg = N
1 CARGA AL VIENTO. La carga al viento o resistencia al viento nos indica el efecto que tiene el viento sobre la antena. El fabricante la expresa para una velocidad del viento de 120 km/h (130 km/h en la
TOLERANCIAS. Eje: todo elemento exterior de una pieza, no necesariamente cilíndrico, que se aloja en el interior de un agujero.
TOLERANCIAS 1. DEFINICIONES. Tolerancia: Como se ha visto en las nociones de metrología, una magnitud no se puede dar de forma exacta, siendo preciso señalar un intervalo en el que se pueda asegurar, que
Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:
Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,
LABORATORIO DE FENÓMENOS COLECTIVOS
LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,
Tipos de magnitudes físicas. Magnitudes de base o fundamentales
Magnitudes físicas - unidades y clasificación Una magnitud física es un valor asociado a una propiedad física o cualidad medible de un sistema físico, es decir, a la que se le pueden asignar distintos
ELECTROSTÁTICA EN PRESENCIA DE MEDIOS CONDUCTORES
Técnicas experimentales I Práctica nº3 de Electromagnetismo 1.- ELECTROSTÁTICA EN PRESENCIA DE MEDIOS CONDUCTORES 3.1.- CAMPO ELECTROSTÁTICO CREADO POR UNA ESFERA CONDUCTORA. IMÁGENES ELÉCTRICAS 3.2.-
Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera.
Laboratorio de Física Universitaria A. Autor: Enrique Sánchez y Aguilera. OBJETIVO: Ser capaz de determinar la incertidumbre de un aparato de medición. Ser capaz de calcular la incertidumbre en mediciones
ESTIMACIÓN DE LA ALTURA DE UNA MONTAÑA EN LA LUNA. ASTRONOMÍA Y EDUCACIÓN. GALILEO TEACHER TRAINING PROGRAM.
ESTIMACIÓN DE LA ALTURA DE UNA MONTAÑA EN LA LUNA. ASTRONOMÍA Y EDUCACIÓN. GALILEO TEACHER TRAINING PROGRAM. Carolina Pérez Muñoz Equipo HOU SPAIN 30/07/2009 Paso 0: Desde la página www.houspain.com entramos
UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA
FUERZA CENRÍPEA OBJEIVO Estudiar los efectos de la fuerza centrípeta en un objeto que describe una trayectoria circular, al variar la masa del objeto, y el radio del círculo que describe en su movimiento.
En esta imagen podemos ver las seis vistas que podemos representar de un objeto. En la tercera figura, es necesario representar el perfil Por qué?
TEMA: DIBUJO TÉCNICO COMO REPRESENTAR UN OBJETO. Principalmente existen dos formas de representación diferentes. Una de ellas es la llamada representación en perspectiva. Consiste en simular el volumen
1.- La materia y clasificación. La materia es cualquier cosa que ocupa un espacio y tiene masas Estados: sólido, líquido, gaseoso
La Química La Química se encarga del estudio de las propiedades de la materia y de los cambios que en ella se producen. La Química es una ciencia cuantitativa y requiere el uso de mediciones. Las cantidades
Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón
Resistencia eléctrica y resistividad: Experimentos con líneas de tinta de impresora y un resistor de carbón María Inés Aguilar Centro Educativo San Francisco Javier, [email protected] Mariana Ceraolo
Números en Ciencias Explorando Medidas, Dígitos Significativos y Análisis Dimensional
Números en Ciencias Explorando Medidas, Dígitos Significativos y Análisis Dimensional Tomando Medidas La precisión de una medida depende de dos factores: las destrezas del individuo tomando las medidas
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO
Pág. 1 ENUNCIADOS 1 Piensa, tantea y encuentra una solución para estas ecuaciones: a) 5 5 b) 5 1 c) 1 4 d) 1 e) 1 f ) 6 1 Despeja la incógnita y encuentra la solución: a) 6 b) 4 c) 7 d) 7 4 Resuelve las
Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.
Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos
ROTACIÓN. Datos: v, ω y x. Calcular: n. Solución:
1. Una bola de béisbol se lanza a 88 mi/h y con una velocidad de giro de 1.500 rev/min. Si la distancia entre el punto de lanzamiento y el receptor es de 61 pies, estimar las revoluciones completadas por
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 42 EXPANSIÓN VOLUMÉTRICA EN GASES. OBJETIVOS DEL APRENDIZAJE:
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 42 EXPANSIÓN VOLUMÉTRICA EN GASES. OBJETIVOS DEL APRENDIZAJE: DETERMINAR EL CAMBIO DE LAS DIMENSIONES VOLUMÉTRICAS
