UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS"

Transcripción

1 FACULTAD DE CIENCIAS SILVOAGROPECUARIAS Carrera de LABORATORIO DE QUÍMICA BIOLÓGICA I 2 do Semestre / 2012 Profesoras de Laboratorio: Alejandra Moreno O. Maribel Arnes S.

2 1 INSTRUCCIONES GENERALES El trabajo en el laboratorio requiere que los alumnos dominen el tema que se va a desarrollar en la práctica. Los alumnos deben leer cuidadosamente todas las instrucciones antes de ingresar al laboratorio y prepararse para el desarrollo de cualquier práctica. Esta actividad implica conocer teóricamente la experiencia que se va a realizar y los posibles resultados. Exigencia: El porcentaje de exigencia del laboratorio será de un 60%. Asistencia: Se exigirá asistencia del 100 %. Se justificará la inasistencia sólo de un laboratorio en aquellos casos que presenten certificados médicos directamente al profesor encargado del laboratorio, cumpliendo un plazo máximo de 48 horas. La inasistencia a más de un laboratorio, es causal de reprobación de la asignatura pues el alumno con cumple con los requisitos del 100% de asistencia. Quienes tengan justificaciones aceptadas por el Docente, podrán recuperar las evaluaciones perdidas en una fecha asignada por el profesor sin realizar la recuperación del paso práctico. Los alumnos que lleguen atrasados a algún paso práctico solo podrán hacer ingreso al laboratorio una vez terminado el control de entrada, y tendrán una nota 1.0 en tal evaluación. Quienes lleguen después de esta evaluación no podrán ingresar al laboratorio y serán consignados como ausentes, no pudiendo entrar a otro grupo de laboratorio posterior. Presentación: Cada alumno debe presentarse puntualmente al laboratorio llevando: Guía de laboratorio individual Delantal blanco Zapatos cerrados Pantalón o vestido largo Normas: Es obligatorio, que cada alumno: Trabaje sólo en presencia de profesores. Aplique las normas mínimas de seguridad. Mantenga las balanzas limpias y descargadas. Mantenga los frascos de reactivos tapados y en lugares asignados por el profesor. Consigne el material sucio en el lugar asignado por el profesor, al término de cada sesión. Evaluaciones: Controles de entrada: contempla un control de desarrollo individual de aspectos teóricos de la guía a desarrollar, el promedio de estos controles tendrá una ponderación de un 40%. Informes de salida: contempla un informe teórico práctico grupal para medir la aplicación de los conocimientos adquiridos por los alumnos, el promedio de estos informes tendrá una ponderación de un 30%. Prueba de Competencia experimental Teórica: Prueba global del laboratorio teórica, la cual pondera un 15%. Prueba de Competencia experimental Práctica: Prueba global del laboratorio aplicada, la cual pondera un 15%. La Nota Final de Laboratorio representa el 30% de la nota de la asignatura de Química Biológica I.

3 2 FECHAS DE LABORATORIOS 2 DO SEMESTRE / 2012 PRÁCTICO GRUPO Sección Martes (4 y 5 módulo) Sección Jueves (4 y 5 módulo) 1 (parte I) A y B 14 / Agosto 16 / Agosto 1 (parte II) A y B 21 / Agosto 23 / Agosto 2 (parte I) A y B 28 / Agosto 06 / Septiembre 2 (parte II) A y B 04 / Septiembre 13 / Septiembre 3 (parte I) A y B 11 / Septiembre 27 / Septiembre 3 (parte II) A y B 25 / Septiembre 04 / Octubre 4 (parte I) A y B 02 / Octubre 11 / Octubre 4 (parte II) A y B 09 / Octubre 18 / Octubre 5 (parte I) A y B 23 / Octubre 25 / Octubre 5 (parte II) A y B 30 / Octubre 08 / Noviembre P.C.Exp.(*) Teórica P.C.Exp.(*) Práctica (*) = Prueba de Competencia Experimental A y B 06 / Noviembre 15 / Noviembre A y B 13 / Noviembre 22 / Noviembre

4 3 LABORATORIO N 1 EQUIPOS Y MATERIALES I.- INTRODUCCIÓN A) Exactitud y precisión Al analizar mediciones y cifras significativas, es útil distinguir entre dos términos: exactitud y precisión. La exactitud nos indica cuan cerca esta una medida del valor real de la cantidad medida, por lo tanto, esta relacionado con la sensibilidad del instrumento en la medición (cuantas cifras significativas entrega). La precisión se refiere a cuanto concuerdan dos o más medidas de una misma cantidad utilizando un instrumento, por lo tanto, esta relacionado con la reproducibilidad de la medida, es decir, el error del instrumento. Supóngase que se pide a tres alumnos que determinen la masa de una pieza de alambre de cobre cuya masa real es 2,000 g. Los resultados de dos pesadas sucesivas hechas por cada estudiante son: Estudiante A Estudiante B Estudiante C 1,991 2,000 2,000 1,995 1,968 2,001 Valor promedio 1,993 1,984 2,001 Los resultados del estudiante A son más precisos (error = 0,007) que los del estudiante B (error = 0,016), pero menos precisos que los del estudiante C (error = 0,001). Sin embargo el estudiante C tiene valores más cercanos al valor real, por lo tanto el estudiante C utilizó una balanza de mayor exactitud y precisión que los otros estudiantes. Las medidas muy exactas deben necesariamente ser más precisas, por otro lado, una medida precisa no necesariamente garantiza resultados exactos (estudiante A). B) Normas Generales de Seguridad 1. Conozca y practique las normas mínimas de seguridad. 2. Frente a cualquier accidente, por mínimo que este sea, informe de inmediato al profesor. 3. Lea con calma las instrucciones para el desarrollo del trabajo práctico y no se distraiga durante el desarrollo de éste. 4. Use el delantal siempre abotonado. 5. Mantenga limpio su lugar de trabajo. 6. Tenga cuidado con la barba, pelo largo suelto, ya que puedes enredarte fácilmente, inflamarte o absorber sustancias químicas peligrosas. 7. Sé prohibe beber, comer y fumar durante el desarrollo del práctico. 8. No lleve sus manos a la boca durante el desarrollo de un práctico. 9. No pruebe el sabor de ninguna sustancia o solución química. 10. Jamás caliente material de vidrio graduado directamente a la llama del mechero, utilice la estufa para secar.

5 4 11. Cuando caliente alguna sustancia en un tubo de ensayo, tome éste con una pinza adecuada y dirija su extremo abierto (la boca del tubo de ensayo) hacia un lugar, lejos de usted y de otras personas, donde eventuales salpicaduras no puedan producir daño a ninguna persona. 12. No encienda mecheros de gas cerca de frascos o recipientes que contengan sustancias inflamables. 13. Etiquete siempre los reactivos y el material que este utilizando en el práctico. 14. No succione un reactivo con la boca usando la pipeta, siempre utilice una propipeta. 15. Lea siempre la etiqueta del reactivo. 16. No huela los reactivos directamente. 17. Mantenga siempre las sustancias químicas tapadas. 18. Los líquidos inflamables y tóxicos deben ser utilizados siempre bajo campana. 19. Diluya o neutralice las sustancias antes de botarlas al resumidero. 20. No bote reactivos sólidos al resumidero. 21. Si se derrama algún reactivo sobre la piel, lave inmediatamente con abundante agua e informe a su profesor lo ocurrido. C) Materiales Volumétricos 1) Instrucciones generales para el uso del material volumétrico Cuando un líquido está contenido en algún material volumétrico, la superficie exhibe una curvatura denominada menisco, en general se utiliza la parte inferior del menisco en la medición y lectura. En la lectura del material volumétrico, el ojo del observador debe estar a nivel del líquido (ver figura); de otro modo existirá un error de paralaje. Ajuste el menisco con la línea de graduación y proceda a realizar la medida. El material volumétrico se diferencia en: I. No clasificado: No se conoce su precisión, la medición con él implica errores muy grandes. II. Clasificados: Material calibrado individualmente; en general, traen una banda de color blanca con líneas azules que facilita su empleo. Son de alta precisión y exactitud y de acuerdo al margen de error se clasifican en: Clase A: muy exactos e indican tiempo de escurrimiento. Clase B: 2 a 3 % de error.

6 5 2) Material volumétrico de uso más frecuente Vasos precipitados: Son de amplio uso, entre ellos, para contener volúmenes de líquidos, para evaporar líquidos por calentamiento, para realizar reacciones químicas, etc. Su capacidad va desde los 10 ml hasta los 2000 ml Matraz erlenmeyer: Se utiliza para realizar reacciones químicas, como por ejemplo, reacciones de neutralización (titulación). Su capacidad va desde los 10 ml hasta los 2000 ml Matraces aforados: Son recipientes de fondo plano y cuello estrecho, en los cuales pequeñas variaciones de volumen del líquido se traducen en cambios visibles en la marca en el cuello (aforo). Los matraces aforados se utilizan solamente para preparar soluciones, no para almacenar por largos períodos de tiempo; para esto se usa el frasco de reactivo. Deben permanecer tapados, ya que la evaporación del líquido que contienen se traduce posteriormente en una alteración de la concentración de la solución. Existen de 5, 10, 25, 50, 100, 250, 500, 1000 y 2000 ml. Matraz kitazato: se parece al matraz erlenmeyer, pero este tiene una salida lateral. Se utiliza en la filtración al vacío, en done la salida lateral es conectada a la bomba de vacío para producir la succión y arrastrar los líquidos que son recogidos en este recipiente. Existen de 100, 250 y 500 ml Probetas: Son recipientes cilíndricos provistos de una base, presentan una escala graduada y las hay de diferentes capacidades. Las probetas no son muy precisas y sólo se emplean para medir volúmenes de líquidos en forma aproximada. Existen de 5, 10, 25, 50, 100, 250, 500 y 1000 ml. Para vaciar la probeta debe inclinarse ligeramente hasta que haya salido todo el líquido, manteniendo esta posición algunos segundos. Pipetas graduadas: Presentan una escala graduada y son instrumentos diseñados para entregar un volumen conocido de líquido, transfiriéndolo de un recipiente a otro. Tienen la ventaja de que se pueden medir volúmenes intermedios de la escala de graduación. Por ejemplo, en una pipeta graduada de 10 ml se pueden medir 7,2 ml. Existen pipetas graduadas de 1, 2, 5, 10 y 25 ml. Para medir un volumen se debe llenar la pipeta sobre la graduación, recuerde que los líquidos se introducen en la pipeta por capilaridad, si es necesario hacer que el líquido ascienda debe utilizarse una propipeta evitando succionar con la boca para evitar una ingestión accidental, y la contaminación de la muestra con saliva.

7 6 Pipetas volumétricas: Estas pipetas al igual que las graduadas, sirven para medir volúmenes, pero en este caso los volúmenes son únicos o fijos. Es decir, si la pipeta es de 5 ml sólo sirve para medir 5 ml y no otro volumen. La medición de volúmenes con este tipo de pipeta es más exacta que con las pipetas graduadas. Para medir una cantidad de líquido se procede de la misma forma señalada para la pipeta graduada. Buretas: Consiste de un tubo calibrado provisto de una llave por la cual se controla el flujo del líquido. Poseen una precisión y exactitud superior a las pipetas y siempre se utiliza en forma vertical, sostenida por un soporte universal mediante una pinza para bureta ubicada en su tercio inferior. Para medir un volumen llene la bureta por sobre la graduación con ayuda de un embudo analítico de vástago corto y un vaso de precipitado. Abra la llave y deje escurrir el líquido de tal manera que se llene esta zona con líquido. Verifique que no haya burbujas de aire en el extremo inferior retire el embudo y ajuste el nivel del líquido al punto cero. Ubique su mano izquierda en la llave y manipule utilizando los dedos índice y pulgar. Deje escurrir el líquido paulatinamente hasta la medida deseada. No olvide mantener sus ojos a nivel del líquido para registrar la medida.

8 7 3) Material de filtración La filtración es la separación de un sólido del líquido, el cual se encuentra en suspención, para ello se usan medios porosos que permiten sólo el paso de líquido o solución y retienen el sólido. Como material filtrante con frecuencia se utiliza el papel filtro. Papel filtro: Se fabrica de celulosa que es un material económico, químicamente inerte, flexible, incinerable, desintegrable, liviano, fácil de almacenar y retener las partículas más finas del precipitado. El tipo de papel filtro y la velocidad de filtración depende del tamaño de las partículas que se desean separar. Los factores que afectan una filtración son: el tamaño de los poros del medio filtrante, la temperatura, el área de filtración y la presión del sistema. El tamaño del medio filtrante se escoge de acuerdo con la cantidad de sólido a ser retenido y no con respecto a la cantidad de líquido a filtrar. Existen dos tipos de filtración: la filtración simple y la filtración a presión reducida. Filtración simple: Los materiales requeridos consisten en: un embudo corriente (A), un porta embudo o argolla (B), papel filtro (C) y un recipiente colector (D). El papel filtro debe doblarse de modo que se adapte al embudo. Se ubica el papel filtro en el embudo, se humedece con el solvente y se presiona cuidadosamente contra las paredes del embudo para eliminar burbujas de aire. El extremo inferior del embudo (vástago) debe tocar la pared interior del recipiente colector, con el fin de que el líquido escurra por la pared, evitando pérdidas por salpicaduras. La filtración es más rápida si primero se deja decantar el sólido en el vaso contenedor, luego se filtra el sobrenadante y al final se vacía el sólido sobre el filtro. Se recomienda utilizar una varilla de vidrio (bagueta), ojalá con un trozo de goma o caucho en uno de sus extremos. La bagueta se adosa al pico del vaso, orientando hacia el centro del embudo, sin apoyarla. El líquido debe escurrir lentamente sin que tenga pérdida por derramamiento. Para arrastrar del vaso contenedor la totalidad del líquido y partículas de la suspención a filtrar, se usa la pizeta con agua destilada. La goma o caucho de la bagueta permite desprender el precipitado adherido a las paredes del vaso, sin rayarlo. El precipitado debe ser lavado inmediatamente después que la solución sobrenadante ha sido removida. Se recomienda usar varias porciones pequeñas de solución lavadora, en vez de uno o dos volúmenes mayores. En general, la solución elegida para lavar el precipitado depende de varios factores: solubilidad del precipitado, naturaleza de los contaminantes ha ser removidos y facilidad de remoción del solvente en la etapa final del secado de cristales.

9 8 Filtración a presión reducida: El equipo usado consiste en: un embudo Büchner (A), unido a un matraz Kitazato (B) a través de un tapón de goma taladrado; el Kitazato se conecta con una manguera a un frasco o trampa de seguridad (C), el cual esta comunicado con la trampa de agua o bomba de vacío (D). El papel filtro debe ser del diámetro del embudo Büchner de modo que se adapte a éste. Se ubica el papel filtro en el embudo y se humedece con el solvente. Se activa la bomba de vacío, la bagueta se adosa al vaso de precipitado y se orienta hacia el centro del embudo, sin apoyarla. El líquido debe escurrir lentamente sin que tenga pérdida por derramamiento a través de la bagueta. Para arrastrar del vaso contenedor la totalidad del líquido y partículas de la suspención a filtrar, se usa la pizeta con agua destilada. La goma o caucho de la bagueta permite desprender el precipitado adherido a las paredes del vaso, sin rayarlo. El precipitado debe ser lavado inmediatamente después que la solución sobrenadante ha sido removida. Se recomienda usar varias porciones pequeñas de solución lavadora, en vez de uno o dos volúmenes mayores. Una vez termina la filtración, el matraz Kitazato se desconecta de la bomba de vacío y luego se apaga la bomba. 4) Material de Calentamiento Mecheros: Existe gran variedad de mecheros, siendo el de uso común el Bunsen. Éstos aprovechan el poder calorífico del gas para combustionarse con el aire. Mechero Bunsen: Posee una base metálica en el cual se encuentra el inyector de gas y una salida lateral para la conexión del gas. Atornillada a su base tiene una chimenea con orificios regulares para la entrada del aire. Como se puede observar, cada mechero tiene pequeñas diferencias entre ellos, pero existen elementos básicos que son comunes: chimenea, entrada de aire, conexión de gas, inyector de gas y base.

10 9 Si la entrada de aire se encuentra tapada, se produce una llama amarilla de bajo poder calorífico; debido a la presencia de gases reductores, tales como hidrógeno y monóxido de carbono esta se conoce como llama Reductora. Al colocar un objeto frío en contacto con esta llama, se deposita una capa de hollín debido a la combustión incompleta. Si la entrada de aire se encuentra abierta, se produce una llama de color azul de alto poder calorífico, ésta es la llama Oxidante. Al colocar un objeto frío en contacto con esta llama, no se deposita una capa de hollín debido a que la combustión es completa. Esta llama presenta diferentes zonas de temperatura. Si el paso de gas es insuficiente o bien hay exceso de aire, puede ocurrir que la llama descienda por el interior de la chimenea y se pose finalmente en el inyector de gas, provocando calentamiento excesivo del tubo. Cuando ocurre esto, se dice que el mechero está calado y se debe cortar inmediatamente el paso de gas, cerrar el paso del aire a la mitad y luego volver a encender. Si el mechero continúa calado, se le debe dar un golpe seco a la goma para que la llama ascienda a la boca del tubo donde debe quedar. Siempre debe encenderse el mechero teniendo la entrada de aire cerrada Baño de agua termorregulado: Es un recipiente lleno de agua, el cual se calienta mediante una resistencia eléctrica. Es más fácil el control de la temperatura en ellos debido a que poseen un regulador del paso de corriente. Calefactores eléctricos: Se usan en síntesis de compuestos y ciertas titulaciones donde es necesario un calentamiento y/o agitación controlada.

11 10 5) Material de medición de temperatura Existen dos conceptos que se confunden con frecuencia: Cantidad de calor y temperatura. 1) Cantidad de calor Se mide en calorías (cal), kilocalorías (Kcal) y British Thermal Unity (BTU). Una caloría es la cantidad de calor que es capaz de incrementar en un grado Celsius la temperatura de un gramo de agua pura, desde 14,5 a 15,5 C. 2) Temperatura Es el resultado del aporte o sustracción de calor a un cuerpo dado; se puede expresar en grados Celsius o centígrados, Kelvin o absoluto y grados Fahrenheit. La escala Centígrado: Toma como 0 C la temperatura del hielo fundente (agua-hielo) y como 100 C la temperatura de ebullición del agua pura, cuando la presión es de una atmósfera. La temperatura expresada en esta escala se designa con la letra t. La escala Kelvin: Se diferencia de la escala centígrada en que el cero Kelvin corresponde a 273,15 grados Celsius bajo cero. La temperatura expresada en esta escala se designa con la letra T. La relación existente entre ambas escalas es: T = C + 273,15 La escala Fahrenheit: La temperatura del hielo fúndente corresponde a 32 F y la de ebullición del agua a 212 F. Por lo tanto, la relación existente entre la escala centígrado y Fahrenheit es: F = (1,8 C) ) Termómetro de mercurio Sirven para medir temperaturas entre -30 C y +300 C, límites impuestos por la temperatura de solidificación del mercurio (-38,8 C) y la temperatura de ebullición de éste elemento (+357 C). Este termómetro es un cilindro que posee un depósito o bulbo de mercurio, unido a un capilar, para poder advertir claramente las pequeñas variaciones de volumen generadas por la dilatación o contracción del líquido. Para medir temperaturas bajas se utilizan termómetros con otros líquidos que generalmente se colorean. Por ejemplo para medir temperaturas entre -110 C y +40 C se usa alcohol etílico. Las causas de error en la medición de temperatura con termómetros de contenido líquido son: Falta de tiempo para que la columna llegue a adquirir la temperatura del ambiente en que se hace la medida Error de paralaje del observador. Debido a que el vidrio se contrae por envejecimiento y puede provocar la variación del cero hasta un par de grados, los termómetros deben calibrarse periódicamente.

12 11 6) Material de medición de masa 1) Balanzas Balanza analítica: Es un instrumento de alta exactitud y precisión, utilizada para medir cantidades pequeñas de masa con exactitud de 0,1 miligramo (mg). Presenta un sistema oscilante, que a través de un mecanismo interno determina el peso. Una balanza analítica debe cumplir los siguientes requisitos: ser exacta, estable, sensible y tener un período de oscilación corto. Se detallará el procedimiento de pesada de la balanza Mettler AC100, aunque los pasos son muy similares con cualquier otra balanza. Para ejecutar una pesada sin error, es necesario seguir secuencialmente el procedimiento que se describe a continuación: a) Posar la balanza en una cubierta horizontal sin movimiento cerca de una fuente de energía. b) Nivelar la balanza y conectar a la corriente eléctrica. c) Encender y presionar la tecla de lectura (TARE) para llevar la cifra a 0,0000 gramos. d) Si desea pesar un objeto, abra la puerta lateral, coloque el objeto a pesar, cierre la puerta y registre la medida. e) Si desea pesar una cantidad determinada de sustancia, primero hay que tarar el recipiente en el que se depositará la sustancia a pesar. Coloque el recipiente en el interior de la balanza cierre la puerta lateral y presione la tecla de lectura (TARE) de manera de tarar el recipiente. Agregue la cantidad sustancia deseada cierre las puertas y lea la medida. f) Retirar el recipiente con la sustancia pesada y vuelva a tarar. g) Limpie la balanza una vez que haya terminado de usarla. 7) Material de medición de densidad La densidad es una propiedad física que depende de la temperatura debido a la dilatación que sufren los cuerpos; su valor numérico es característico de la sustancia y ayuda a identificarla. La densidad de líquidos y sólidos se expresa normalmente en gramos por mililitro (g/ml), mientras que la densidad de gases se expresa en gramos por litro (g/l). Su valor corresponde a la razón entre su masa y el volumen que ocupa dicha masa: masa de la sustancia densidad = Volumen de la sustancia w (g) d = V (ml) d = densidad w = masa V = volumen Como la densidad del agua no varía apreciablemente con la temperatura entre 0 C y 30 C, se puede utilizar el valor aproximado de 1,00 g/ml para los cálculos.

13 12 Densímetro: Sirve para determinar la densidad de líquidos. Es un cilindro de vidrio hueco, herméticamente cerrado que presenta, en su parte superior, una escala graduada en su interior y en su parte inferior contiene municiones que sirven de lastre, de modo que, al sumergirlo en el líquido, cuya densidad se desea determinar, se hunde hasta cierto nivel. La sensibilidad de un densímetro depende del diámetro de su vástago; como éste no puede ser muy largo, estos instrumentos se fabrican para medir intervalos de densidad. Existen juegos de densímetros, los cuales poseen graduación creciente. En la posición de equilibrio la densidad se lee directamente en la escala graduada que se encuentra en la parte superior de éste. Para medir la densidad de un líquido, se debe seguir el siguiente procedimiento: a) Tomar una probeta de 500 ml y llene las ¾ partes con el líquido cuya densidad se desea conocer. b) Seleccione el densímetro que corresponda al rango de densidad que espera medir. Siempre se debe partir con el densímetro de menor escala. c) Introduzca el densímetro en el líquido de modo que flote sin tocar las paredes del recipiente donde se realiza la determinación. En caso de que persista el contacto con las paredes gire el densímetro muy suavemente, repita la operación hasta lograr el efecto deseado. d) La escala graduada da directamente la densidad del líquido en g/ml. e) Registre la temperatura a la cual se realizó la medida. Objetivos del trabajo: Manejar las normas de seguridad correctamente en el Laboratorio. Conocer y manipular adecuadamente el material de Laboratorio de uso más frecuente. Aplicar los criterios o normas del sistema internacional de unidades de medidas.

14 13 I. Parte Experimental: PRIMERA PARTE 1) Material de medición de masa a) Tome un vaso plástico y llénelo de pellet. b) Máselo en una balanza analítica y registre el valor obtenido con todos los dígitos en la tabla. Vaso plástico de pellet Masa c) Transforme la masa anterior a las distintas unidades de medida. Vaso plástico de pelet mg g Kg 2) Medición de temperatura (termómetro de mercurio) a) Coloque en un vaso de precipitado de 100 ml un hielo y suficiente agua destilada para que el bulbo del termómetro de mercurio quede sumergido. Mida la temperatura de la mezcla aguahielo. b) Coloque en un vaso de precipitado de 50 ml suficiente agua destilada para que el bulbo del termómetro de mercurio quede sumergido y mida su temperatura. c) Encienda el mechero y gire el anillo de entrada de aire hasta que quede completamente abierto. d) Coloque en un vaso precipitado de 50 ml suficiente agua destilada para que el bulbo del termómetro de mercurio quede sumergido y ubíquelo sobre la rejilla de asbesto que se encuentra sobre un trípode. Caliente el agua a ebullición y mida la temperatura de esta. e) Corte el paso de gas para apagar el mechero. f) Anote las temperaturas obtenidas en la tabla. Temperatura Agua-hielo Agua a temperatura ambiente Agua a ebullición g) Transforme las temperaturas de la tabla anterior a las distintas unidades de medida. agua - hielo agua a temperatura ambiente agua a ebullición Temperatura en Kelvin (K) Temperatura en grados Fahrenheit ( F)

15 14 SEGUNDA PARTE 1) Material volumétrico a) Marque, enumere y mase tres vasos precipitados de 50 ml en una balanza analítica. b) Al vaso 1 agregue 10 ml de agua destilada utilizando una pipeta graduada. c) Al vaso 2 agregue 10 ml de agua destilada utilizando una jeringa. d) Al vaso 3 agregue 10 ml de agua destilada utilizando una probeta. e) Pese nuevamente los vasos precipitados y registre los valores obtenidos en la siguiente tabla. Vaso Masa del Vaso Seco Masa del Vaso más 10 ml de agua destilada f) Determine la masa exacta de agua agregada restando la masa del vaso con agua destilada y la masa del vaso seco. g) Registre sus resultados en la siguiente tabla. Vaso Masa exacta de agua h) Considerando que la densidad del agua a la temperatura de trabajo es 1,0 g/ml y conociendo la masa exacta vertida por cada instrumento volumétrico utilizado, determine el volumen exacto vertido desde cada uno de estos materiales. Material volumétrico Volumen exacto Error en la medida (10,0 - volumen exacto) Pipeta graduada Jeringa Probeta i) Ordene el material volumétrico de mayor exactitud (menor error) a menor exactitud (mayor error) de acuerdo a los resultados obtenidos en la pregunta anterior. Discuta, brevemente, sus resultados. 1) 2) 3)

16 15 2) Material de medición de densidad: Densidad de un sólido a) Mase, en una balanza analítica, un tapón de goma proporcionado por el profesor. b) Tome una probeta de 250 ml y añada agua potable hasta aproximadamente 100 ml y registre este volumen inicial lo más exacto posible. c) Introduzca cuidadosamente el tapón dentro de la probeta de manera que se sumerja. Lea y anote el volumen final lo más exacto posible. d) Determine el volumen desplazado (volumen del tapón), restando al volumen final el volumen inicial. Masa del tapón Volumen inicial Volumen final Volumen desplazado e) Calcule la densidad aproximada del tapón de goma, dividiendo la masa del tapón por el volumen desplazado, a través de la siguiente ecuación. masa del tapón densidad = Volumen desplazado Densidad del tapón de goma = f) Transforme la densidad del tapón a las diferentes unidades de medida. Densidad del Tapón de goma g / L Kg / L mg / ml g / ml

17 16 LABORATORIO N 2 SOLUCIONES Y PRESIÓN OSMÓTICA I.- INTRODUCCIÓN A) Soluciones La materia puede presentarse en forma de mezclas o sustancias puras. Cuando una mezcla tiene una composición uniforme, en cualquier punto del volumen que ella ocupa, decimos que ésta es una mezcla homogénea, se observa una sola fase. En el lenguaje químico una mezcla homogénea es una solución. Las soluciones pueden ser sólidas, líquidas o gaseosas. Tipos de solución Ejemplos Componentes sólida bronce, oro de 18 quilates cobre y estaño oro y cobre o plata líquida infusión de té gasolina cafeína, taninos, pigmentos y agua (entre otros) mezcla de más de 200 hidrocarburos gaseosa aire gas licuado nitrógeno, oxígeno, dióxido de carbono, argón, agua, etc. propano y butano principalmente Cuando una mezcla no tiene una composición uniforme, en cualquier punto del volumen que ella ocupa, decimos que ésta es una mezcla heterogénea, se observa más de una fase. Por ejemplo, el agua con aceite. Los componentes de una solución o mezcla, normalmente, se pueden separar por destilación, como es el caso del aire, la gasolina, el pisco o el gas licuado; o por fusión zonal, en el caso de algunas soluciones sólidas. No siempre es posible separar en un sólo proceso a cada componente en forma pura, pero dependiendo de los objetivos es posible desarrollar procesos elaborados que conduzcan a la separación de uno o más componentes puros. Unidades de concentración El concepto de solución implica la participación de a lo menos dos componentes. Por convención, en una solución se denomina solvente al componente que está presente en mayor proporción. El resto de los componentes, que están en menor proporción, son los solutos. Como esta proporción es variable, para expresar en forma cuantitativa la relación entre los componentes, es necesario recurrir a las unidades de concentración. Según sean las unidades de medidas seleccionadas, se podrá obtener todo un sistema de notaciones para expresar concentraciones. Si las unidades son físicas, las unidades de concentración más comunes son: el porcentaje en peso; el porcentaje peso-volumen, el porcentaje volumenvolumen y las partes por millón. Si las unidades son químicas, las unidades más utilizadas son: la molaridad, molalidad, normalidad y la fracción molar.

18 17 1. Porcentaje en Peso (% p/p): También se le conoce como porcentaje peso-peso y determina la masa de soluto, en gramos, contenida en 100 gramos (g) de masa de solución. Se trata de una unidad de amplio uso en la venta de reactivos químicos. Ejemplo: Si se disuelven 10 g de cloruro de sodio (NaCl) en 90 g de agua. La solución es al 10% en peso masa de soluto (g) %p/p = x 100 masa de solución (g) 2. Porcentaje Peso-Volumen (% p/v): Se refiere a la masa de soluto, en gramos, disuelta por cada 100 ml de solución. Es la unidad preferida en la información de análisis de laboratorios clínicos. Ejemplo: Si se disuelven 10 g de cloruro de sodio (NaCl) en 100 ml de solución. La solución es al 10% p/v masa de soluto (g) %p/v = x 100 Volumen de solución (ml) 3. Partes por Millón (ppm): Esta expresión corresponde a la masa de soluto, en miligramos, disuelta en un kilogramo (mg/kg) o miligramos por un litro (mg/l) para soluciones acuosas, ya que la densidad del agua es 1, a temperatura ambiente, los miligramos por kilogramo sería lo mismo que decir miligramos por un litro; esto se debe a que es una cantidad muy pequeña de soluto contenida en un solvente de mayor cantidad; ejemplo: gramo de soluto por tonelada de solvente. ppm= masa de soluto (mg) masa de solución (Kg) o Volumen de solución (L) 4. Molaridad (M): Indica el número de moles de soluto contenido en cada litro (L) de solución, y se calcula por medio de la expresión: Molaridad = moles de soluto Volumen de solución (L) moles de soluto Molaridad = x 1000 Volumen de solución (ml) Ejemplo: a) Una solución que contiene 34 g de amoniaco (2,0 moles de NH 3 ) en 1,0 L de solución, es una solución 2,0 M (se lee 2,0 molar) de amoniaco. b) Otra solución de amoniaco que contenga 17 g de este soluto en 500 ml de solución, también es una solución 2,0 M de amoniaco.

19 18 5. Normalidad (N): Indica el número de equivalentes de soluto contenido en cada litro de solución (eq/l) y se calcula por medio de la expresión: Normalidad = equivalentes de soluto Volumen de solución (L) o bien, equivalentes de soluto Normalidad = x 1000 Volumen de solución (ml) El número de equivalente de soluto se determina multiplicando el número de moles de soluto por número de partículas. Eq = mol # Dependiendo del tipo de soluto el número de partículas se determina de diferente manera, así por ejemplo, en un ácido corresponde al número de hidrógenos que presente; en los hidróxidos corresponde al número de hidróxido que presente y en el caso de un ion corresponde a la carga. Ejemplo: a) Si se disuelven 15 g de ácido sulfúrico (H 2 SO 4 ), cuya masa molar es 98,0 g/mol, en 100 ml de solución, la concentración de la solución es 3,06 N (1,53 M). b) Si se disuelven 15 g de hidróxido de calcio (Ca(OH) 2 ), cuya masa molar es 74 g/mol, en 100 ml de solución. La solución resultante es 4,06 N (2,03 M). c) Si están disueltos 15 g del ion sodio (Na +1 ), cuya masa molar es 23 g/mol, en 100 ml de solución, la concentración de la solución es 6,52 N (6,52 M). d) Si están disueltos 15 g del ion sulfato ((SO 4 ) -2 ), cuya masa molar es 96 g/mol, en 100 ml de solución, la concentración de la solución es 3,12 N (1,56 M). I.- Preparación de soluciones Las soluciones se pueden preparar por pesada o por dilución. Cuando se dispone de un sólido puro como soluto, la solución se prepara pesando una masa dada de soluto, para luego añadir suficiente solvente para enrasar hasta el aforo del matraz volumétrico. Sin embargo, también es posible preparar soluciones por dilución cuando se dispone de una solución concentrada, a partir de la cual se han de preparar soluciones de menor concentración. Ejemplo 1: Se desea preparar 250 ml de una solución de carbonato de sodio (Na 2 CO 3 ) 0,1 M. Indique como hacerlo, si dispone de carbonato de sodio sólido como materia prima. (Masa molar del carbonato de sodio es 106 g/mol). Solución: Paso 1: Determinar la masa necesaria 0,1 molar significa que tengo 0,1 mol de carbonato de sodio en 1,0 L (1000 ml) de solución. 0,1 mol 1000 ml x 250 ml x = 0,025 mol. Por lo tanto, para preparar 250 ml se requieren 0,025 moles de carbonato de sodio. Si la masa molar es 106 g/mol. Entonces,

20 g 1 mol x 0,025 mol x = 2,65 g. Por lo tanto, se requiere 2,65 g de carbonato de sodio Paso 2: Preparación Pesar 2,65 g de carbonato de sodio en un vaso precipitado. Disolver en un poco de agua destilada y vaciar a un matraz aforado de 250 ml. Enjuagar el vaso precipitado con dos porciones de agua destilada y vaciar al matraz aforado. Enrasar hasta el aforo, agitar para homogeneizar y trasvasijar a una botella de almacenamiento. Etiquetar señalando el nombre de la solución, la concentración, la fecha de preparación y el nombre de la persona responsable de la preparación. Ejemplo 2: Se desea preparar 250 ml de una solución de ácido nítrico (HNO 3 ) 0,5 M. Indique como hacerlo, si dispone de una solución de ácido nítrico al 43% en peso y densidad 1,27 g/ml como materia prima. (Masa molar del ácido nítrico es 63 g/mol). Solución: Paso 1: Determinar el volumen necesaria 0,5 molar significa que tengo 0,5 mol de ácido nítrico en 1,0 L (1000 ml) de solución. 0,5 mol 1000 ml x 250 ml x = 0,125 mol. Por lo tanto, para preparar 250 ml se requieren 0,125 moles de ácido nítrico. Si la masa molar es 106 g/mol, entonces 63 g 1 mol x 0,125 mol x = 7,88 g. Por lo tanto, se requiere 7,88 g de ácido nítrico Como la solución de la cual se dispone (solución madre) es al 43% en peso, entonces 43 g 100 g de solución 7,88 x x = 18,3 g de solución. Por lo tanto, se requiere 18,3 g de la solución madre Como se dispone de la densidad (1,27 g/ml), se calcula el volumen correspondiente a ésta masa 1,27 g 1 ml de solución 18,3 g x x = 14,4 ml de solución. Por lo tanto, se requiere 14,4 ml de la solución madre Paso 2: Preparación Se mide en un material de vidrio apropiado (probeta) 14,4 ml de la solución madre (ácido nítrico al 43% en peso y densidad 1,27 g/ml). Vaciar la solución en un poco de agua destilada contenida en un vaso precipitado y agitar cuidadosamente. Vaciar a un matraz aforado de 250 ml. Enjuagar el vaso precipitado con dos porciones de agua destilada y vaciar al matraz aforado. Enrasar hasta el aforo, agitar para homogeneizar y trasvasijar a una botella de almacenamiento. Etiquetar señalando el nombre de la solución, la concentración, la fecha de preparación y el nombre de la persona responsable de la preparación. Otra forma de trabajar, en la preparación de soluciones diluidas a partir de soluciones concentradas es a través del factor de dilución. Este se define de la siguiente manera:

21 20 Factor de dilución = Concentración de la solución madre Concentración de la solución diluida o bien, Factor de dilución = Volumen de la solución diluida Volumen de la solución madre Primero se debe determinar la molaridad de la solución madre, para lo cual se utiliza la siguiente ecuación Molaridad de la solución madre = %p/p densidad de la solución 10 Masa molar del soluto M madre = 43 1, = 8,67 molar Ahora se puede aplicar el factor de dilución, como M madre = 8,67 y M diluida = 0,5 entonces 8,67 Factor de dilución = = 17,3 0,5 Luego, si V diluida = 250 ml V madre = V madre = V diluida 250 ml 17,3 Factor de dilución = 14,4 ml Por lo tanto, se requiere 14,4 ml de la solución madre. B) Presión Osmótica. Si dos soluciones líquidas de un soluto cualquiera, no volátil, de diferente concentración, se ponen en contacto a través de una membrana semipermeable, estas soluciones tienden a igualar sus concentraciones mediante el paso de solvente a través de la membrana; este proceso se denomina Osmosis. En consecuencia, la osmosis es el proceso por el cual una membrana semipermeable permite el paso de solvente a través de ella con el objetivo de igualar la concentración a ambos lados de la membrana. En general, se trata de membranas que permiten el paso de moléculas de pesos moleculares pequeños, pero que no pueden ser atravesadas por moléculas de pesos moleculares elevados (por ejemplo, sobre 5000) como típicamente es el caso de proteínas, polisacáridos y polímeros naturales o sintéticos.

22 21 La presión que se debe ejercer sobre la solución para evitar la osmosis, corresponde a la presión osmótica. La presión osmótica ( ), se puede determinar por medio de la siguiente relación: = M R T En esta ecuación, M es la concentración molar de un soluto, R es la constante universal de los gases y T la temperatura absoluta. La presión osmótica es directamente proporcional a la concentración de la disolución. Si se tienen dos soluciones de igual concentración y, por ende, con la misma presión osmótica, se dice que son isotónicas o isoosmóticas. Si dos soluciones tienen presiones osmóticas diferentes, se dice que la más concentrada es hipertónica o hiperosmótica y la más diluida se describe como hipotónica o hipoosmótica. II.- OBJETIVOS Preparar una solución acuosa de concentración dada, si dispone de un soluto sólido o de una solución más concentrada del mismo u otro soluto. Verificar y predecir la dirección en que fluye un solvente a través de una membrana semipermeable. III.- PARTE EXPERIMENTAL PRIMERA PARTE: Soluciones 1. Preparación de una solución por pesada: Prepare 100 ml de solución acuosa 0,1 N de hidróxido de sodio (NaOH). a) Para este fin, calcule la masa requerida de NaOH (masa molar 40 g/mol y # = 1). b) Utilizando un vaso precipitado de 100 ml, mase la cantidad de sólido calculado en la balanza analítica y registre el valor con todos los dígitos c) Disuelva el sólido añadiendo agua destilada (aproximadamente 30 ml) en forma cuidadosa (evite salpicaduras) y con agitación constante. d) Una vez disuelto todo el sólido transfiera la solución, con ayuda de un embudo, a un matraz aforado de 100 ml, enjuague el vaso 2-3 veces con pequeñas porciones de agua añadiendo cada enjuague al matraz. e) Enrase hasta el aforo, teniendo cuidado de no pasarse, de preferencia complete el volumen final con un gotario o pipeta Pasteur. f) Agite suavemente el matraz por inversión, para homogenizar la solución. g) Transfiera la solución a un frasco de reactivo plástico. h) Etiquete el frasco de reactivo como se muestra en el recuadro. NaOH 0,1 N Fecha:... Mesón:... Sección:... Integrantes:......

23 22 i) Asumiendo que su solución de hidróxido de sodio, está correctamente preparada es decir tiene una concentración igual a 0,1 N, transforme esta concentración a Molaridad y % p/v 2) Preparación de una solución por dilución: Prepare 500 ml de una solución de Azul de Metileno 40 ppm a partir de una solución 250 ppm. a) Para este fin determine el volumen de una solución a 250 ppm que necesita para preparar los 500 ml de una solución a 40 ppm. Utilice la fórmula C 1 x V 1 = C 2 x V 2 Recuerde que para usar dicha fórmula las unidades de concentración y volumen deben ser las mismas. b) Mida el volumen determinado con una probeta de 100 ml. c) Agregue el contenido de la probeta directamente al matraz aforado de 500 ml. d) Enjuague la probeta 2 ó 3 veces con pequeñas porciones de agua añadiendo cada enjuague al matraz. e) Enrase hasta el aforo, teniendo cuidado de no pasarse, de preferencia complete el volumen final con un gotario o pipeta Pasteur. f) Agite suavemente el matraz por inversión, para homogenizar la solución. g) Transfiera la solución a un frasco de reactivo de vidrio. h) Etiquete el frasco de reactivo como se muestra en el recuadro. Azul de Metileno 40 ppm Fecha:... Mesón:... Sección:... Integrantes: i) Asumiendo que su solución de Azul de Metileno, está correctamente preparada, es decir, tiene una concentración igual a 40 ppm, transforme esta concentración a % p/v y Molaridad. (Masa Molar: 319,85 g/mol) SEGUNDA PARTE: Presión Osmótica a) Cuidadosamente saque los huevos del recipiente con vinagre para no romper la membrana, y, séquelos tocándolos suavemente con una toalla de papel absorbente. b) Al inicio del trabajo de laboratorio, un miembro del grupo masará los huevos en la balanza de precisión sobre un vidrio de reloj y los ubicará de modo que sepa a cuál de ellos corresponde cada masa.

24 23 c) El otro miembro del grupo, preparará 2 vasos de precipitado de 600 ml (A y B). El vaso A con 400 ml de una solución de azul de metileno preparada en la primera parte y el vaso B con una solución acuosa de azúcar agregando 85 g de azúcar de mesa sobre 350 ml de agua destilada. d) Ponga un huevo en cada vaso, siguiendo la pista de cada huevo con su correspondiente masa inicial. Anote la hora de inicio de su experimento. e) Después de 45 minutos, saque los huevos (de uno a la vez); séquelos suavemente con una toalla de papel absorbente y péselos nuevamente. Anote la masa de los 2 huevos y de acuerdo a sus resultados, clasifique las soluciones como hipoosmótica, isoosmótica o hiperosmótica. huevo (1) en vaso A huevo (2) en vaso B Masa del huevo al inicio Masa del huevo después de 45 minutos Clasificación de la solución f) Esquematice cada uno de los procesos de osmosis que se llevaron a cabo durante el laboratorio.

25 24 LABORATORIO N 3 ELECTROLITOS Y ÁCIDO - BASE I.- INTRODUCCIÓN Los solutos disueltos en agua pueden clasificarse como electrolitos y no electrolitos en función de su capacidad de conducir la corriente eléctrica. Con relación a esta propiedad, se denomina electrolito a una sustancia que disuelta en agua conduce la corriente eléctrica, mientras que un no electrolito es una sustancia que disuelta en agua no conduce la corriente eléctrica. Los electrolitos pueden disociarse total o parcialmente en iones, según lo cual se clasifican a su vez en electrolitos fuertes a aquellos que se disocian completamente en iones (100 %) en solución acuosa y electrolitos débiles a los que se disocian parcialmente en iones en estas condiciones. Un tipo especial de electrolitos son los ácidos y las bases. La capacidad de conducir la corriente eléctrica se mide con un instrumento llamado conductímetro, en el cual se mide la resistencia eléctrica entre dos placas metálicas de un electrodo, sometidas a una diferencia de potencial eléctrico. Otra forma de estimar la extensión de la ionización es utilizar un medidor de ph, según se explica más adelante. Según la Teoría de Arrhenius un ácido es una sustancia que libera uno o más iones hidrógeno (H + ) por cada molécula, y una base es una sustancia que libera uno o más iones hidróxilos (OH - ) por cada molécula, como uno de los productos de disociación iónica, en contacto con el agua. Estos conceptos se limitaron solamente a soluciones acuosas, porque están basadas en la liberación de iones H + y OH -. La Teoría de Brönsted-Lowry define un ácido como cualquier especie que tiene tendencia a ceder un ion hidrógeno a otra especie, y una base como una sustancia que tiende a aceptar un ion hidrógeno de otra sustancia. Estos conceptos no sólo se pueden aplicar a los ácidos y bases de Arrhenius, sino que a otras especies, como por ejemplo agua (H 2 O) y amoniaco (NH 3 ). Finalmente, la Teoría de Lewis define un ácido como una sustancia que puede aceptar un par de electrones para formar un nuevo enlace y una base como una sustancia capaz de entregar un par de electrones para formar un enlace nuevo. Fuerza relativa de los ácidos y bases En solución acuosa, algunos ácidos entregan protones más fácilmente y algunas bases los reciben con mayor facilidad que otras, esto es lo que llamamos fuerza relativa de ácidos y bases. Un ácido fuerte es aquel que en solución acuosa se disocia totalmente liberando iones hidrógeno (por tanto, es un electrolito fuerte). Ejemplo: HCl, HBr, HI, HNO 3, HClO 4, H 2 SO 4, entre otros. Un ácido débil es aquel que en solución acuosa se disocia parcialmente liberando iones hidrógeno (por lo tanto, es un electrolito débil). Ejemplo: CH 3 COOH, H 3 PO 4, HCN, H 2 S, etc. El grado en el que un ácido se ioniza en un medio acuoso se puede expresar por la constante de equilibrio para la reacción de ionización. En general, podemos representar cualquier ácido por el símbolo HX, donde el equilibrio de ionización está dado por: HX (ac) H + (ac) + X - (ac)

26 25 La expresión de la constante de equilibrio correspondiente es: [H + ] [X - ] K a =, [ ] = Concentración [HX] Molar La constante de equilibrio se indica con el símbolo K a, y se llama constante de disociación ácida. Cuanto más pequeño sea su valor más débil es el ácido, menos disociado se encuentra. Una base fuerte es aquella que en solución acuosa disocia totalmente liberando iones hidróxilos (por lo tanto, es un electrolito fuerte). Ejemplo: NaOH, KOH. Una base débil es aquella que en solución acuosa disocia parcialmente liberando iones hidróxilos (por lo tanto, es un electrolito débil). La constante de equilibrio, K b, se llama constante de disociación básica. Cuanto más pequeño sea el valor de K b más débil es la base, situación similar para el ácido. En cualquier equilibrio ácido-base, ambas reacciones, la que va hacia adelante (a la derecha) y la reacción inversa (a la izquierda) comprenden transferencia de protones. Ejemplo: NH 3 (ac) + H 2 O (l) NH 4 + (ac) + OH - (ac) Un ácido y una base como el H 2 O y OH - que sólo difieren por la presencia o ausencia de un protón se denominan par ácido-base conjugado. Todo ácido tiene asociado a él una base conjugada formada cuando el ácido cede un ion hidrógeno. En forma similar cualquier base tiene asociado a ella un ácido conjugado, que se forma cuando esta capta un ion hidrógeno. Cuanto más fuerte sea un ácido más débil será su base conjugada; cuanto más débil sea un ácido más fuerte será su base conjugada. Ionización del agua y escala de ph El agua puede aceptar o donar un protón, dependiendo de las circunstancias. La transferencia de un protón entre dos moléculas de agua es llamada Autoionización. o bien 2H 2 O (l) H 2 O (l) H 3 O + (ac) + OH - (ac) H + (ac) + OH - (ac) La constante correspondiente al equilibrio de Autoionización, K w, constante de autoionización del agua, tiene la forma: K w = [H + ] [OH - ] = 1, (a 25 C) Este valor es importante ya que establece que en agua pura, la concentración de ion H + y ion OH - son muy pequeñas (1, molar) y no varía en forma independiente, sino que están reguladas por la constante K w. Si una de estas concentraciones aumenta, la otra necesariamente deberá disminuir para que el producto de las concentraciones de estos iones mantenga el valor de dicha constante.

27 26 Por cuanto la concentración de H + en una solución acuosa suele ser muy pequeña y varía en varios órdenes de magnitud, se expresa en términos de un parámetro denominado ph. El ph se define como el logaritmo negativo en base diez de la concentración molar de iones hidrógeno, es decir: ph = - log [H + ] Debido al signo negativo, el ph disminuye a medida que aumenta la concentración de iones hidrógeno de modo tal que: Soluciones ácidas ph 7,0 [H + ] > [OH - ] Soluciones neutras ph = 7,0 [H + ] = [OH - ] Soluciones básicas ph 7,0 [H + ] < [OH - ] El logaritmo negativo también es una forma de expresar las magnitudes de otras cantidades pequeñas. Por ejemplo, se puede expresar la concentración de ion hidróxilo como poh y definirlo según: poh = - log [OH - ] Usando esta notación pude demostrarse que en una solución acuosa, a 25 C, siempre debe cumplirse que: ph + poh = 14,0 Volumetría ácido-base No existe otra forma de una reacción tan importante como las reacciones de Neutralización. Las reacciones de neutralización corresponden a la reacción química entre un ácido y una base, dando como únicos productos sal y agua. Una de sus aplicaciones es realizar análisis volumétrico ácido-base que constituye uno de los numerosos tipos de análisis químicos realizados en laboratorios e industrias químicas. La forma experimental de realizar este tipo de análisis se conoce como valoración o titulación ácido-base y corresponde al proceso en el cual se determina la concentración o masa de una base en una solución, por medición del volumen gastado de una solución de ácido de concentración conocida (también puede usarse una solución de concentración conocida de base para determinar la concentración o masa de un ácido). Este análisis da origen a cuatro situaciones posibles: a) Combinación de un ácido fuerte con una base fuerte. b) Combinación de un ácido fuerte con una base débil. c) Combinación de ácido débil con una base fuerte. d) Combinación de un ácido débil con una base débil. Si la titulación se realiza dé modo que la solución de concentración conocida es la base, la cual se agrega en forma controlada desde una bureta sobre un matraz erlenmeyer que contiene la solución ácida cuya concentración se va a determinar, a medida que se agrega la base, la concentración de ion H + (ac) en el matraz comienza a disminuir (y el ph a aumentar), hasta que se alcanza el punto final de una titulación o punto de equivalencia, el cual se define como el volumen al cual el número de moles de OH - (ac) agregado neutralizan a todos los moles de ácido presentes, es decir, son iguales.

LABORATORIO N 3 SOLUCIONES ACIDO-BASE Y BUFFER

LABORATORIO N 3 SOLUCIONES ACIDO-BASE Y BUFFER LABORATORIO N 3 SOLUCIONES ACIDO-BASE Y BUFFER 1.- INTRODUCCIÓN Soluciones Ácido-Base Los solutos disueltos en agua pueden clasificarse como electrolitos y no electrolitos en función de su capacidad de

Más detalles

LABORATORIO N 2 PREPARACIÓN DE SOLUCIONES

LABORATORIO N 2 PREPARACIÓN DE SOLUCIONES LABORATORIO N 2 PREPARACIÓN DE SOLUCIONES I.- INTRODUCCIÓN A) Soluciones La materia puede presentarse en forma de mezclas o sustancias puras. Cuando una mezcla tiene una composición uniforme, en cualquier

Más detalles

UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS

UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS FACULTAD DE CIENCIAS SILVOAGROPECUARIAS Carrera de LABORATORIO DE QUÍMICA BIOLÓGICA I 1 er Semestre / 2010 Profesoras: Alejandra Moreno O. Maribel Arnes S.. Gabriela Cornejo B. Mayama Francia A. Ricardo

Más detalles

Material de uso frecuente en el laboratorio de química. Figura Nombre Uso / Características. Crisol. Espátula de porcelana. Capsula de porcelana

Material de uso frecuente en el laboratorio de química. Figura Nombre Uso / Características. Crisol. Espátula de porcelana. Capsula de porcelana Material de uso frecuente en el laboratorio de química. En un Laboratorio de Química se utiliza una amplia variedad de instrumentos o herramientas que, en su conjunto, se denominan material de laboratorio.

Más detalles

PRÁCTICA Nº 3 PREPARACIÓN DE SOLUCIONES ACUOSAS

PRÁCTICA Nº 3 PREPARACIÓN DE SOLUCIONES ACUOSAS PRÁCTICA Nº 3 PREPARACIÓN DE SOLUCIONES ACUOSAS OBJETIVOS Preparar soluciones acuosas a partir de la medición directa de reactivos sólidos y líquidos. Preparar soluciones acuosas por dilución. I. ASPECTOS

Más detalles

LABORATORIO DE QUÍMICA Y BIOQUÍMICA

LABORATORIO DE QUÍMICA Y BIOQUÍMICA UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE KINESIOLOGÍA QUÍMICA Y BIOQUÍMICA LABORATORIO DE QUÍMICA Y BIOQUÍMICA 2013 Profesores de Laboratorio: Alejandra Moreno O. Mayama Francia A. INSTRUCCIONES

Más detalles

PREPARACIÓN DE DISOLUCIONES

PREPARACIÓN DE DISOLUCIONES PREPARACIÓN DE DISOLUCIONES Objetivo El alumno debe ser capaz de preparar una disolución de concentración determinada a partir de sus componentes, soluto y disolvente. Aquí se van a preparar las disoluciones

Más detalles

MAYOR FACULTAD DE MEDICINA ESCUELA DE ENFERMERÍA QUÍMICA

MAYOR FACULTAD DE MEDICINA ESCUELA DE ENFERMERÍA QUÍMICA UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE ENFERMERÍA QUÍMICA LABORATORIO DE QUÍMICA 1 er SEMESTRE 2012 Profesores de Laboratorio: Mayama Francia A. Alexis Muñoz R. LABORATORIO N 1 MATERIALES Y

Más detalles

UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL

UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL LABORATORIO DE QUÍMICA GENERAL 1 er Semestre / 2013 Profesoras de Laboratorio: Alejandra Moreno O. Jacqueline Henríquez

Más detalles

PREPARACIÓN DE SOLUCIONES

PREPARACIÓN DE SOLUCIONES PRÁCTICA 4 PREPARACIÓN DE SOLUCIONES OBJETIVOS: Determinar las concentraciones físicas y químicas de las soluciones Preparar soluciones a partir de reactivos sólidos y líquidos I. FUNDAMENTO TEÓRICO. Las

Más detalles

Práctica # 2: Reconocimiento de Material de Laboratorio Y Técnicas Experimentales

Práctica # 2: Reconocimiento de Material de Laboratorio Y Técnicas Experimentales República Bolivariana de Venezuela Ministerio del poder popular para la Educación Unidad Educativa Colegio Aplicación Palo Gordo-Edo. Táchira Lcda. Katherine Gómez Práctica # 2: Reconocimiento de Material

Más detalles

UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL

UNIVERSIDAD MAYOR FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL LABORATORIO DE QUÍMICA GENERAL 1 er Semestre / 2012 Profesoras de Laboratorio: Alejandra Moreno O. Gabriela Cornejo B.

Más detalles

PRÁCTICA # 5 PREPARACIÓN DE DISOLUCIONES. 1. Preparar soluciones de diversas sustancias poniendo en práctica las

PRÁCTICA # 5 PREPARACIÓN DE DISOLUCIONES. 1. Preparar soluciones de diversas sustancias poniendo en práctica las PRÁCTICA # 5 PREPARACIÓN DE DISOLUCIONES OBJETIVOS 1. Preparar soluciones de diversas sustancias poniendo en práctica las técnicas más comunes. 2. Practicar cálculos que involucren cantidades de soluto,

Más detalles

PRÁCTICA # 01 PREPARACIÓN DE DISOLUCIONES

PRÁCTICA # 01 PREPARACIÓN DE DISOLUCIONES REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA AVIACIÓN MILITAR VENEZOLANA U.E.A.M LIBERTADOR ASIGNATURA: QUÍMICA PROF(A): ANGÉLICA RODRÍGUEZ MARBELIS MELENDEZ CURSO: 4to

Más detalles

CARTILLA DE ARTICULACIÓN LABORATORIOS QUIMICA GRADO 11 DOCENTE FACULTAD DE CIENCIAS BÁSICAS PROGRAMA DE QUÍMICA ARMENIA, QUINDIO

CARTILLA DE ARTICULACIÓN LABORATORIOS QUIMICA GRADO 11 DOCENTE FACULTAD DE CIENCIAS BÁSICAS PROGRAMA DE QUÍMICA ARMENIA, QUINDIO CARTILLA DE ARTICULACIÓN UNIVERSIDAD DEL QUINDÍO Y COLEGIOS CASD, RUFINO, INEM LABORATORIOS QUIMICA GRADO 11 DOCENTE FACULTAD DE CIENCIAS BÁSICAS PROGRAMA DE QUÍMICA ARMENIA, QUINDIO 2017 NOTA: TRAER LOS

Más detalles

SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA

SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA PRÁCTICA Nº 3 SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA OBJETIVOS: Establecer los fundamentos teóricos de los proceso de separación. Separar los componentes de diversas muestras problema. I. FUNDAMENTOS

Más detalles

CORPORACION MUNICIPAL DE DESARROLLO SOCIAL LICEO INDUSTRIAL EULOGIO GORDO MONEO ANTOFAGASTA FONO FAX:

CORPORACION MUNICIPAL DE DESARROLLO SOCIAL LICEO INDUSTRIAL EULOGIO GORDO MONEO ANTOFAGASTA FONO FAX: CORPORACION MUNICIPAL DE DESARROLLO SOCIAL LICEO INDUSTRIAL EULOGIO GORDO MONEO ANTOFAGASTA FONO FAX:55-2231189 WWW.LICEOINDUSTRIALEGM.CL GUÍA DE APRENDIZAJE Profesor Asignatura Objetivo de Aprendizaje

Más detalles

LABORATORIO DE QUÍMICA GENERAL

LABORATORIO DE QUÍMICA GENERAL FACULTAD DE CIENCIAS SILVOAGROPECUARIAS CARRERAS DE AGRONOMÍA E INGENIERÍA FORESTAL LABORATORIO DE QUÍMICA GENERAL 2011 Profesores de Laboratorio: Alejandra Moreno O. Gabriela Cornejo B. Jacqueline Henríquez

Más detalles

UNIVERSIDAD DE CÓRDOBA FACULTAD DE EDUCACIÓN Y CIENCIAS HUMANAS LICENCIATURA EN CIENCIAS NATURALES Y EDUCACION AMBIENTAL V SEMESTRE

UNIVERSIDAD DE CÓRDOBA FACULTAD DE EDUCACIÓN Y CIENCIAS HUMANAS LICENCIATURA EN CIENCIAS NATURALES Y EDUCACION AMBIENTAL V SEMESTRE Química Analítica UNIVERSIDAD DE CÓRDOBA FACULTAD DE EDUCACIÓN Y CIENCIAS HUMANAS LICENCIATURA EN CIENCIAS NATURALES Y EDUCACION AMBIENTAL V SEMESTRE 2015 Una solución es una mezcla homogénea de dos o

Más detalles

PRÁCTICAS DE QUÍMICA P-11: Preparación de una disolución 0,1M de Hidróxido de sodio (sosa)

PRÁCTICAS DE QUÍMICA P-11: Preparación de una disolución 0,1M de Hidróxido de sodio (sosa) NOTA: PRÁCTICAS DE QUÍMICA P-11: Preparación de una disolución 0,1M de Hidróxido de sodio (sosa) Alumno: Fecha: Curso: 1. OBJETIVOS - Manejo del material básico de laboratorio. - Aprender a preparar disoluciones

Más detalles

Sólido (NaCl) Líquido (H 2 O) Disolución

Sólido (NaCl) Líquido (H 2 O) Disolución Cuando un sólido se disuelve en un líquido las partículas que lo forman quedan libres y se reparten entre las moléculas del líquido que se sitúan a su alrededor. Sólido (NaCl) Líquido (H 2 O) Disolución

Más detalles

Disoluciones. Mezclas: Asociación de dos o más sustancias distintas.

Disoluciones. Mezclas: Asociación de dos o más sustancias distintas. Mezclas: Asociación de dos o más sustancias distintas. Mezclas heterogéneas: en las que sus componentes no están uniformemente distribuidos y conservan sus propiedades individuales. Se clasifican como

Más detalles

Colegio San Esteban Diácono Departamento de Ciencias Química II Medio Primer Semestre Preparación de disoluciones

Colegio San Esteban Diácono Departamento de Ciencias Química II Medio Primer Semestre Preparación de disoluciones Colegio San Esteban Diácono Departamento de Ciencias Química II Medio Primer Semestre 2017 Preparación de disoluciones Objetivos Conocer los distintos instrumentos de laboratorio para preparar disoluciones.

Más detalles

Práctica 1. Preparación de disoluciones y determinación de la concentración de una disolución por medio de una valoración.

Práctica 1. Preparación de disoluciones y determinación de la concentración de una disolución por medio de una valoración. 1 Nombres Grupo Equipo Primera parte Práctica 1. Preparación de disoluciones y determinación de la concentración de una disolución por medio de una valoración. Problemas: - Preparar disoluciones aproximadamente

Más detalles

SEMANA 8 PREPARACIÓN DE SOLUCIONES Elaborado por: Licda. Evelyn Rodas Pernillo de Soto

SEMANA 8 PREPARACIÓN DE SOLUCIONES Elaborado por: Licda. Evelyn Rodas Pernillo de Soto UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS, CUM UNIDAD DIDÁCTICA QUÍMICA, PRIMER AÑO I. INTRODUCCIÓN PRACTICA DE LABORATORIO 2014 SEMANA 8 PREPARACIÓN DE SOLUCIONES Elaborado por:

Más detalles

Acuerdo 286. Química. Disoluciones. Recopiló: M.C. Macaria Hernández Chávez

Acuerdo 286. Química. Disoluciones. Recopiló: M.C. Macaria Hernández Chávez Acuerdo 286 Química Disoluciones Recopiló: M.C. Macaria Hernández Chávez Disolución: Es una mezcla homogénea de dos o más sustancias. La sustancia que se encuentra en mayor proporción se llama disolvente

Más detalles

TRABAJO PRÁCTICO N 3 SOLUCIONES. Concepto de solución: Una solución es un sistema material homogéneo formado por dos o más componentes.

TRABAJO PRÁCTICO N 3 SOLUCIONES. Concepto de solución: Una solución es un sistema material homogéneo formado por dos o más componentes. TRABAJO PRÁCTICO N 3 SOLUCIONES Introducción Concepto de solución: Una solución es un sistema material homogéneo formado por dos o más componentes. Concentración de soluciones: En su forma más amplia de

Más detalles

Soluciones y unidades de concentración

Soluciones y unidades de concentración MATERIA Soluciones y unidades de concentración MEZCLAS SISTEMAS HETEROGÉNEOS Leche Arena Sal y azúcar SISTEMAS HOMOGÉNEOS Sal en agua Aire Acero COMPUESTOS Agua Etanol Benceno SUSTANCIAS PURAS ELEMENTOS

Más detalles

Soluciones y unidades de concentración

Soluciones y unidades de concentración Soluciones y unidades de concentración Dra. Dra. Patricia Patricia Satti, Satti, UNRN UNRN MATERIA MEZCLAS SUSTANCIAS PURAS SISTEMAS HETEROGÉNEOS Leche Arena Sal y azúcar SISTEMAS HOMOGÉNEOS Sal en agua

Más detalles

PRACTICA No. 9 PREPARACION DE DISOLUCIONES

PRACTICA No. 9 PREPARACION DE DISOLUCIONES ESCUELA DE QUÍMICA DEPARTAMENTO DE QUÍMICA GENERAL QUÍMICA GENERAL II 1. INTRODUCCION: PRACTICA No. 9 PREPARACION DE DISOLUCIONES Las mezclas homogéneas se originan cuando un disolvente rompe la unión

Más detalles

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES OBJETIVOS ESPECÍFICOS 1) Identificar y manejar el material básico de laboratorio. 2) Preparar

Más detalles

12) Qué cantidad de agua (en gramos) hay que añadir a 100 g de una solución de HCl al 20% para obtener una solución de HCl al 15%? R: g.

12) Qué cantidad de agua (en gramos) hay que añadir a 100 g de una solución de HCl al 20% para obtener una solución de HCl al 15%? R: g. 1) Se prepara una solución con 45 g de benceno (C 6 H 6 ) y 80.0 g de tolueno (C 7 H 8 ). Calcular: a) El porcentaje en peso de cada componente. b) La fracción molar de cada componente. c) La molalidad

Más detalles

QUÍMICA. Tema 7. Reacciones Ácido-Base

QUÍMICA. Tema 7. Reacciones Ácido-Base Tema 7. Reacciones Ácido-Base Índice - Teorías sobre ácidos y bases - Fuerza relativa de ácidos y bases - Ionización del agua - Relación entre K a, K b y K w - Concepto de ph Objetivos específicos - Que

Más detalles

SOL 1 Química Básica e Industrial

SOL 1 Química Básica e Industrial SOL 1 Química Básica e Industrial - 2016 Materiales de laboratorio de vidrio y porcelana.- Embudo Embudo Buchner Embudo de decantación Desecadores Vaso de bohemia Matraz Erlenmeyer Probetas Buretas Pipetas

Más detalles

TÉCNICAS DE LABORATORIO QA CLASE # 17 PRÁCTICA # 6 DECANTACIÓN - FILTRACIÓN

TÉCNICAS DE LABORATORIO QA CLASE # 17 PRÁCTICA # 6 DECANTACIÓN - FILTRACIÓN OBJETIVOS: PRÁCTICA # 6 DECANTACIÓN - FILTRACIÓN 1. Identificar las condiciones generales para separar mezclas de sustancias de uso industrial a través de técnicas como: decantación y filtración. 2. Aplicar

Más detalles

El aire de la atmósfera (78% N 2 ; 21% O 2 ; 1% Ar, He, CO 2 y vapor de agua) y el agua del mar son ejemplos de soluciones.

El aire de la atmósfera (78% N 2 ; 21% O 2 ; 1% Ar, He, CO 2 y vapor de agua) y el agua del mar son ejemplos de soluciones. SOLUCIONES la materia se presenta, con mayor frecuencia, en forma de mezcla de sustancias puras. dentro de éstas mezclas hay que distinguir las: I) mezclas propiamente dichas II) y las soluciones. El aire

Más detalles

GUÍA PARA EL EXAMEN DE REGULARIZACIÓN DE QUÍMICA 2

GUÍA PARA EL EXAMEN DE REGULARIZACIÓN DE QUÍMICA 2 GUÍA PARA EL EXAMEN DE REGULARIZACIÓN DE QUÍMICA 2 Etapa 1. Reacciones químicas en la vida y en el entorno 1.- Es un cambio químico en donde ocurre la trasformación de ciertas sustancias en otras con características

Más detalles

SEMANA 8 PREPARACIÓN DE SOLUCIONES Elaborado por: Licda. Bárbara Jannine Toledo Chaves

SEMANA 8 PREPARACIÓN DE SOLUCIONES Elaborado por: Licda. Bárbara Jannine Toledo Chaves UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS, CUM UNIDAD DIDÁCTICA QUÍMICA, PRIMER AÑO I. INTRODUCCIÓN PRACTICA DE LABORATORIO 2015 SEMANA 8 PREPARACIÓN DE SOLUCIONES Elaborado por:

Más detalles

QUÍMICA. Tema 4. Estados de Agregación de la Materia

QUÍMICA. Tema 4. Estados de Agregación de la Materia Tema 4. Estados de Agregación de la Materia Índice - Características de sólidos, líquidos y gases - Volumen molar de los gases - Ecuación de estado de los gases - Disoluciones Objetivos específicos - Que

Más detalles

DETERMINACIÓN DE LA MASA MOLECULAR POR ELEVACIÓN DEL PUNTO DE EBULLICIÓN DE UNA DISOLUCIÓN

DETERMINACIÓN DE LA MASA MOLECULAR POR ELEVACIÓN DEL PUNTO DE EBULLICIÓN DE UNA DISOLUCIÓN DETERMINACIÓN DE LA MASA MOLECULAR POR ELEVACIÓN DEL PUNTO DE EBULLICIÓN DE UNA DISOLUCIÓN OBJETIVO El alumno determinará la masa molecular de un compuesto puro, por elevación del punto de ebullición de

Más detalles

EJERCICIOS DE SELECTIVIDAD. Reacciones de transferencia de protones: Reacciones ácido-base

EJERCICIOS DE SELECTIVIDAD. Reacciones de transferencia de protones: Reacciones ácido-base EJERCICIOS DE SELECTIVIDAD Reacciones de transferencia de protones: Reacciones ácido-base CUESTIONES 1.- Razone la veracidad o falsedad de las siguientes afirmaciones: a) A igual molaridad, cuanto más

Más detalles

PREPARACIÓN DE SOLUCIONES

PREPARACIÓN DE SOLUCIONES 1. INTRODUCCION Las soluciones se definen como mezclas homogéneas de dos o más especies moleculares o iónicas. Las soluciones gaseosas son por lo general mezclas moleculares. Sin embargo las soluciones

Más detalles

UNIVERSIDAD MAYOR FACULTAD DE MEDICINA Carrera de Tecnología Médica. LABORATORIO DE Química General

UNIVERSIDAD MAYOR FACULTAD DE MEDICINA Carrera de Tecnología Médica. LABORATORIO DE Química General FACULTAD DE MEDICINA Carrera de Tecnología Médica LABORATORIO DE Química General 2011 Profesoras: Gabriela Cornejo B. Mayama Francia A. Laboratorio Nº1 EQUIPOS Y MATERIALES DE LABORATIRIO I. INTRODUCCIÓN

Más detalles

CONOCIMIENTO DEL EQUIPO DE LABORATORIO Y USO DEL MECHERO ESTUDIO DE LA LLAMA. OBJETIVOS.

CONOCIMIENTO DEL EQUIPO DE LABORATORIO Y USO DEL MECHERO ESTUDIO DE LA LLAMA. OBJETIVOS. EXPERIMENTO I CONOCIMIENTO DEL EQUIPO DE LABORATORIO Y USO DEL MECHERO ESTUDIO DE LA LLAMA. OBJETIVOS. a) Identificar los diferentes equipos y materiales utilizados en el laboratorio de química. b) Utilizar

Más detalles

Reacciones de transferencia de protones

Reacciones de transferencia de protones Reacciones de transferencia de protones 4. Aplicar la teoría de Brönsted para reconocer las sustancias que pueden actuar como ácidos o bases, saber determinar el ph de sus disoluciones, explicar las reacciones

Más detalles

Ácido + Base -----> Sal + Agua

Ácido + Base -----> Sal + Agua - REACCIÓN DE NEUTRALIZACIÓN - Objetivos: A).- Realización de cálculos en la reacción de neutralización (o valoración) entre una base, la sosa cáustica NaOH, y un ácido, el ácido clorhídrico HCl. La ecuación

Más detalles

GUÍA DE EJERCICIOS ADICIONALES N 2 Acido-base, neutralización y buffer

GUÍA DE EJERCICIOS ADICIONALES N 2 Acido-base, neutralización y buffer 1 GUÍA DE EJERCICIOS ADICIONALES N 2 Acido-base, neutralización y buffer 1.- Un ácido según la teoría de Arrhenius es aquella sustancia que: a) Libera uno o más iones hidroxilos (OH - ) por cada molécula

Más detalles

Práctica nº 1. Reconocimiento del material. Objetivo: conocer todo el material que puede haber en un laboratorio.

Práctica nº 1. Reconocimiento del material. Objetivo: conocer todo el material que puede haber en un laboratorio. Práctica nº 1. Reconocimiento del material. Objetivo: conocer todo el material que puede haber en un laboratorio. Matraz aforado: tiene forma de pera con fondo plano o curvo (finalidad calentar el contenido),

Más detalles

Tarea previa. Responde las siguientes preguntas usando únicamente el espacio asignado para ello, en caso de excederlo, tu respuesta será inválida.

Tarea previa. Responde las siguientes preguntas usando únicamente el espacio asignado para ello, en caso de excederlo, tu respuesta será inválida. 1 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA LABORATORIO DE QUÍMICA GENERAL II Nombre: Nombre: Nombre: Nombre: Nombre: Grupo: Equipo: Práctica 1. Preparación de disoluciones y determinación

Más detalles

TRABAJO PRÁCTICO N 8 EQUILIBRIO IÓNICO

TRABAJO PRÁCTICO N 8 EQUILIBRIO IÓNICO TRABAJO PRÁCTICO N 8 EQUILIBRIO IÓNICO ÁCIDOS Y BASES 1. Electrolitos: son sustancias que disueltas en agua o fundidas son capaces de conducir la corriente eléctrica. En solución se disocian en iones.

Más detalles

1. Preparación de disoluciones y determinación de la concentración de una disolución por medio de una valoración.

1. Preparación de disoluciones y determinación de la concentración de una disolución por medio de una valoración. 1. Preparación de disoluciones y determinación de la concentración de una disolución por medio de una valoración. Primera parte Preparar una disolución de NaH 0.1M Preparar disoluciones 0.1M de ácido clorhídrico,

Más detalles

EQUILIBRIO IÓNICO EN SOLUCIONES ACUOSAS

EQUILIBRIO IÓNICO EN SOLUCIONES ACUOSAS EQUILIBRIO IÓNICO EN SOLUCIONES ACUOSAS Equilibrio entre una sal sólida poco soluble y sus iones en solución Producto de solubilidad (Kps) Muchos compuestos (sales, hidróxidos) son levemente solubles en

Más detalles

PRÁCTICA 6 CINÉTICA QUÍMICA DETERMINACIÓN DE LA CONSTANTE DE VELOCIDAD DE REACCIÓN EN LA HIDRÓLISIS DEL CLORURO DE TERBUTILO

PRÁCTICA 6 CINÉTICA QUÍMICA DETERMINACIÓN DE LA CONSTANTE DE VELOCIDAD DE REACCIÓN EN LA HIDRÓLISIS DEL CLORURO DE TERBUTILO PRÁCTICA 6 CINÉTICA QUÍMICA DETERMINACIÓN DE LA CONSTANTE DE VELOCIDAD DE REACCIÓN EN LA HIDRÓLISIS DEL CLORURO DE TERBUTILO OBJETIVO. El alumno aprenderá a comprobar experimentalmente el mecanismo de

Más detalles

INTRODUCCIÓN DISOLUCIONES

INTRODUCCIÓN DISOLUCIONES QUIMICA COMUN INTRODUCCIÓN DISOLUCIONES EBULLICIÓN V/S EVAPORACIÓN Ambos conceptos tienen relación con la presión de vapor. La presión de vapor es la fuerza que tienen las moléculas de un líquido para

Más detalles

SUSTANCIA QUÍMICA mercurio oxígeno

SUSTANCIA QUÍMICA mercurio oxígeno ELEMENTO O SUSTANCIA ELEMENTAL: Sustancia formada por un mismo tipo de átomos, por ejemplo: Hg, H 2, Cu, O 2 SUSTANCIA QUÍMICA mercurio oxígeno COMPUESTO O SUSTANCIA COMPUESTA: Sustancia formada por dos

Más detalles

ÁCIDO-BASE. 3.- Calcule: a) El ph de una disolución 0 1 M de ácido acético, CH 3. COOH, cuyo grado de disociación es 1 33%. b) La constante K a

ÁCIDO-BASE. 3.- Calcule: a) El ph de una disolución 0 1 M de ácido acético, CH 3. COOH, cuyo grado de disociación es 1 33%. b) La constante K a ÁCIDO-BASE. 2001 1.- La constante K b del NH 3, es igual a 1 8 10 5 a 25 ºC. Calcule: a) La concentración de las especies iónicas en una disolución 0 2 M de amoniaco. b) El ph de la disolución y el grado

Más detalles

PREPARACIÓN DE SOLUCIONES

PREPARACIÓN DE SOLUCIONES UNIVERSIDAD DE CARABOBO FACULTAD DE CIENCIAS DE LA SALUD ESCUELA DE BIOANÁLISIS DEPARTAMENTO DE CIENCIAS BÁSICAS PROGRAMA: QUÍMICA ANALÍTICA y ORGÁNICA PRÁCTICA N 3 PREPARACIÓN DE SOLUCIONES Revisada y

Más detalles

UNIDADES QUIMICAS. ING Roxsana M Romero A. Valencia, Febrero 2012

UNIDADES QUIMICAS. ING Roxsana M Romero A. Valencia, Febrero 2012 UNIDADES QUIMICAS ING Roxsana M Romero A Valencia, Febrero 2012 1 UNIDADES QUIMICAS Otra forma de expresar las concentraciones es por métodos químicos, estos se diferencian de los métodos FÍSICOS porque

Más detalles

2A Reacciones de Sustitución Nucleofílica Alifática. Obtención de Cloruro de ter-butilo.

2A Reacciones de Sustitución Nucleofílica Alifática. Obtención de Cloruro de ter-butilo. PRÁCTICA 2A Reacciones de Sustitución Nucleofílica Alifática. Obtención de Cloruro de ter-butilo. I. OBJETIVOS. a) Conocer la preparación de un haluro de alquilo terciario a partir del alcohol correspondiente,

Más detalles

TEMA 5: LABORATORIO PIPETA GRADUADA ÉMBOLO PARA PIPETAS PERILLA DE GOMA PIPETA AFORADA MATRAZ DE FONDO PLANO MATRAZ DE FONDO REDONDO MATRAZ AFORADO

TEMA 5: LABORATORIO PIPETA GRADUADA ÉMBOLO PARA PIPETAS PERILLA DE GOMA PIPETA AFORADA MATRAZ DE FONDO PLANO MATRAZ DE FONDO REDONDO MATRAZ AFORADO TEMA 5: LABORATORIO PIPETA GRADUADA PIPETA AFORADA ÉMBOLO PARA PIPETAS PERILLA DE GOMA BURETA DE FONDO REDONDO DE FONDO PLANO AFORADO DE DESTILACIÓN ERLENMEYER PROBETA FRASCO TRANSPARENTE FRASCOS TOPACIO

Más detalles

PRÁCTICA Nº 2 OPERACIONES COMUNES EN UN LABORATORIO

PRÁCTICA Nº 2 OPERACIONES COMUNES EN UN LABORATORIO PRÁCTICA Nº 2 OPERACIONES COMUNES EN UN LABORATORIO OBJETIVO Utilizar el material de laboratorio en las operaciones más comunes realizadas en un laboratorio de química. I. ASPECTOS TEÓRICOS Una vez conocido

Más detalles

REACCIONES DE TRANSFERENCIA DE PROTONES

REACCIONES DE TRANSFERENCIA DE PROTONES REACCIONES DE TRANSFERENCIA DE PROTONES Conceptos básicos. 1.- a) Aplicando la teoría de Brönsted-Lowry, explique razonadamente, utilizando las ecuaciones químicas necesarias, si las siguientes especies

Más detalles

Disoluciones II: Unidades químicas de concentración y dilución

Disoluciones II: Unidades químicas de concentración y dilución Disoluciones II: Unidades químicas de concentración y dilución Resumen de la clase anterior Sustancias puras Elementos Compuestos MATERIA Heterogéneas Homogéneas Mezclas Suspensión Coloide Disolución Ø

Más detalles

TEMA 5: REACCIONES DE TRANSFERENCIA DE PROTONES EJERCICIOS DE SELECTIVIDAD 96/97

TEMA 5: REACCIONES DE TRANSFERENCIA DE PROTONES EJERCICIOS DE SELECTIVIDAD 96/97 TEMA 5: REACCIONES DE TRANSFERENCIA DE PROTONES EJERCICIOS DE SELECTIVIDAD 96/97 1. a) Cuántos gramos de hidróxido de potasio se necesitan para preparar 250 ml de una disolución acuosa de ph = 13? b) Calcule

Más detalles

PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA - (TIPO I)

PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA - (TIPO I) PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA - (TIPO I) Las preguntas de este tipo constan de un enunciado y de cuatro posibilidades de respuesta, entre las cuales debe escoger la que considere

Más detalles

1. FUNDAMENTOS TEÓRICOS

1. FUNDAMENTOS TEÓRICOS DETERMINACIÓN DE LA MASA DE UNA SUSTANCIA 1. FUNDAMENTOS TEÓRICOS CLASIFICACIÓN DE LAS SUSTANCIAS Reactivos: La pureza de los reactivos es de fundamental importancia para la exactitud de los resultados

Más detalles

CÁTEDRA: QUÍMICA GUÍA DE LABORATORIO Nº 3

CÁTEDRA: QUÍMICA GUÍA DE LABORATORIO Nº 3 CÁTEDRA: QUÍMICA GUÍA DE LABORATORIO Nº 3 TEMA: PREPARACIÓN DE SOLUCIONES OBJETIVOS 1. Preparar soluciones de diversas sustancias y acondicionarlas para su posterior uso, poniendo en práctica las técnicas

Más detalles

- 1 - GUIA DE ESTUDIOS QUIMICA 2

- 1 - GUIA DE ESTUDIOS QUIMICA 2 - 1 - GUIA DE ESTUDIOS QUIMICA 2 I. SUBRAYA LA RESPUESTA CORRECTA 1. Es la que contiene mayor cantidad de soluto que la solucion saturada. a) sol. Concentrada b) sol. Saturada c) sol. Diluida d) sol. Sobresaturada

Más detalles

TRONCO COMUN DIVISIONAL DE CIENCIAS BIOLOGICAS Y DE LA SALUD. MODULO: ENERGIA Y CONSUMO DE SUSTANCIAS FUNDAMENTALES. PRACTICA No.

TRONCO COMUN DIVISIONAL DE CIENCIAS BIOLOGICAS Y DE LA SALUD. MODULO: ENERGIA Y CONSUMO DE SUSTANCIAS FUNDAMENTALES. PRACTICA No. TRONCO COMUN DIVISIONAL DE CIENCIAS BIOLOGICAS Y DE LA SALUD. MODULO: ENERGIA Y CONSUMO DE SUSTANCIAS FUNDAMENTALES. PRACTICA No. 1 TITULACIÓN DE SOLUCIONES OBJETIVO: Conocer la técnica de Titulación de

Más detalles

REACCIONES DE TRANSFERENCIA DE PROTONES ELECTROLITOS

REACCIONES DE TRANSFERENCIA DE PROTONES ELECTROLITOS REACCIONES DE TRANSFERENCIA DE PROTONES CURSO: 2º DE BACHILLERATO ASIGNATURA: QUÍMICA ELECTROLITOS Un electrolito es una sustancia que al disolverse en agua experimenta una disociación (o ionización) total

Más detalles

6,5408 ml i. básica, neutro, ácido, básico i. Kb=0, , ph=12,176 i M ii. ph=11,377 i. NaOH i ii. 4,597 %

6,5408 ml i. básica, neutro, ácido, básico i. Kb=0, , ph=12,176 i M ii. ph=11,377 i. NaOH i ii. 4,597 % ÁCIDO BASE 1. Se toman 20 ml de una disolución de 4,0 M de Ca(OH)2 y se les añade agua hasta obtener 100 ml de disolución. Calcule los ml de ácido clorhídrico del 25% en peso y de 1,12 g/ml de densidad

Más detalles

Química. Equilibrio ácido-base Nombre:

Química. Equilibrio ácido-base Nombre: Química DEPARTAMENTO DE FÍSICA E QUÍMICA Equilibrio ácido-base 25-02-08 Nombre: Cuestiones y problemas 1. a) Qué concentración tiene una disolución de amoníaco de ph =10,35? [1½ PUNTO] b) Qué es una disolución

Más detalles

Sustituir fotografía. Sustituir texto

Sustituir fotografía. Sustituir texto Soluciones Sustituir fotografía Sustituir texto Tipos de soluciones. Hidrólisis. Solubilidad y el efecto de la temperatura. Unidades de concentración: Expresiones físicas de concentración (%m/m, %m/v,

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA LA PUEBLA DE CAZALLA

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA LA PUEBLA DE CAZALLA EQUILIBRIO ÁCIDO-BASE : ACTIVIDADES DE SELECTIVIDAD. 1. La constante Kb del NH3. es igual a 1'8 10-5 a 25 ºC. Calcule: a) La concentración de las especies iónicas en una disolución 0'2 M de amoniaco. b)

Más detalles

SEMANA 8 PREPARACIÓN DE SOLUCIONES Elaborado por: Licda. Corina Marroquín Orellana

SEMANA 8 PREPARACIÓN DE SOLUCIONES Elaborado por: Licda. Corina Marroquín Orellana UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS MÉDICAS, CUM UNIDAD DIDÁCTICA QUÍMICA, PRIMER AÑO I. INTRODUCCIÓN PRACTICA DE LABORATORIO 2016 SEMANA 8 PREPARACIÓN DE SOLUCIONES Elaborado por:

Más detalles

Determinación de Calor de Neutralización

Determinación de Calor de Neutralización LABORATORIO DE FISICOQUÍMICA QMC-313 Determinación de Calor de Neutralización Procedimiento Operativo Estándar Lic. Luis Fernando Cáceres Choque 03/10/2014 Determinación de ácido-base Página 2 de 5 Determinación

Más detalles

DISOLUCIONES Y CÀLCULO DE CONCENTRACIONES. MSc. Marilú Cerda Lira

DISOLUCIONES Y CÀLCULO DE CONCENTRACIONES. MSc. Marilú Cerda Lira DISOLUCIONES Y CÀLCULO DE CONCENTRACIONES MSc. Marilú Cerda Lira DISOLUCIONES Y CÀLCULO DE CONCENTRACIONES Introducción Definición Métodos de separación de las soluciones Principales clases de soluciones

Más detalles

a) Conocer la preparación de un haluro de alquilo terciario a partir del alcohol correspondiente, mediante una reacción de sustitución nucleofílica.

a) Conocer la preparación de un haluro de alquilo terciario a partir del alcohol correspondiente, mediante una reacción de sustitución nucleofílica. PRÁCTICA 6A Derivados halogenados Obtención de cloruro de ter-butilo I. OBJETIVOS a) Conocer la preparación de un haluro de alquilo terciario a partir del alcohol correspondiente, mediante una reacción

Más detalles

Tema 2: Disoluciones. Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas.

Tema 2: Disoluciones. Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas. Tema 2: Disoluciones Tipos de disoluciones. Composición de las disoluciones: formas de expresión. Diluciones. Propiedades coligativas. Presión de vapor. Presión osmótica. Aumento ebulloscópico y descenso

Más detalles

INSTRUMENTOS BÁSICOS DE UN LABORATORIO

INSTRUMENTOS BÁSICOS DE UN LABORATORIO INSTRUMENTOS BÁSICOS DE UN LABORATORIO Trasfondo y Contenido En un laboratorio se utiliza una amplia variedad de instrumentos o herramientas que, en su conjunto, se denominan material de laboratorio. Pueden

Más detalles

Práctica No. 6 Material volumétrico

Práctica No. 6 Material volumétrico Práctica No. 6 Material volumétrico Competencia. Adquirir las habilidades y destrezas en el manejo del material usado en el análisis volumétrico Introducción Las valoraciones o titulaciones se basan en

Más detalles

QUIMICA GENERAL GUIA DE EJERCICIOS Nº4 Soluciones Ácido-base. 1.- Defina los ácidos y bases según las teorías ácido base que usted conoce.

QUIMICA GENERAL GUIA DE EJERCICIOS Nº4 Soluciones Ácido-base. 1.- Defina los ácidos y bases según las teorías ácido base que usted conoce. 1 QUIMICA GENERAL GUIA DE EJERCICIOS Nº4 Soluciones Ácido-base PRIMERA PARTE: Ejercicios de desarrollo. 1.- Defina los ácidos y bases según las teorías ácido base que usted conoce. 2.- Defina el ph y poh.

Más detalles

LABORATORIO DE QUÍMICA Y BIOQUÍMICA

LABORATORIO DE QUÍMICA Y BIOQUÍMICA 1 UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE KINESIOLOGÍA QUÍMICA Y BIOQUÍMICA LABORATORIO DE QUÍMICA Y BIOQUÍMICA 2011 Profesores de Laboratorio: Gabriela Cornejo B. Mayama Francia A. 2 LABORATORIO

Más detalles

OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución.

OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución. OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución. FUNDAMENTO TEÓRICO Una disolución es una mezcla homogénea

Más detalles

Problemas disoluciones

Problemas disoluciones Problemas disoluciones Determinar la concentración de una disolución expresada de diferentes formas: g/l, % en masa y en volumen, Molaridad y fracción molar Preparar disoluciones a partir de solutos sólidos

Más detalles

IES RIBERA DE CASTILLA UNIDAD 4 EQUILIBRIOS ÁCIDO BASE OBJETIVOS

IES RIBERA DE CASTILLA UNIDAD 4 EQUILIBRIOS ÁCIDO BASE OBJETIVOS UNIDAD 4 EQUILIBRIOS ÁCIDOBASE OBJETIVOS Disoluciones de compuestos iónicos. Ionización. Electrólitos Ácidos y bases. Propiedades generales. Teoría de Arrhenius. El ión hidronio. Neutralización. Teoría

Más detalles

Práctica No 11. Determinación del calor de neutralización del acido clorhídrico con hidróxido de sodio.

Práctica No 11. Determinación del calor de neutralización del acido clorhídrico con hidróxido de sodio. Práctica No 11 Determinación del calor de neutralización del acido clorhídrico con hidróxido de sodio. 1. Objetivo general: Determinar la variación de entalpía cuando un ácido fuerte, es neutralizado por

Más detalles

PROBLEMAS TIPO DE ÁCIDOS Y BASES

PROBLEMAS TIPO DE ÁCIDOS Y BASES PROBLEMAS TIPO DE ÁCIDOS Y BASES Cálculo de ph 1) Calcula el ph de: a) Una disolución 0'2 M de amoniaco. Kb = 1'8 10 5. b) Una disolución 0'01 M de HCl. c) Una disolución 0'01 M de KOH. d) Una disolución

Más detalles

QUÍMICA 2º BACHILLERATO

QUÍMICA 2º BACHILLERATO DISOLUCIONES: CONCENTRACIÓN DE LAS MISMAS 1.-/ Se disuelven 7 g de cloruro de sodio en 43 g de agua. Determine la concentración centesimal de la disolución, así como la fracción molar de cada componente

Más detalles

SOLUCIONES SOLIDA LIQUIDA GASEOSA. mezclas homogéneas de dos sustancias: SEGÚN EL ESTADO FISICO DEL SOLVENTE

SOLUCIONES SOLIDA LIQUIDA GASEOSA. mezclas homogéneas de dos sustancias: SEGÚN EL ESTADO FISICO DEL SOLVENTE Soluciones SOLUCIONES mezclas homogéneas de dos sustancias: SOLUTO SOLVENTE SEGÚN EL ESTADO FISICO DEL SOLVENTE SOLIDA LIQUIDA GASEOSA Cuando un sólido se disuelve en un líquido las partículas que lo

Más detalles

ALCALINIDAD TOTAL- REACCIONES ACIDO-BASE Página 1

ALCALINIDAD TOTAL- REACCIONES ACIDO-BASE Página 1 Práctica No. 3 REACCIONES ACIDO BASE ALCALINIDAD TOTAL AL CARBONATO, BICARBONATO E HIDROXIDO FENOFTALEINA 1. OBJETIVO Determinar mediante una relación estequiometrica los carbonatos, hidróxidos y bicarbonatos

Más detalles

Práctica 1. Preparación de disoluciones y determinación de la concentración de una disolución por medio de una valoración (titulación)

Práctica 1. Preparación de disoluciones y determinación de la concentración de una disolución por medio de una valoración (titulación) Práctica 1. Preparación de disoluciones y determinación de la concentración de una disolución por medio de una valoración (titulación) Revisaron: M. en C. Martha Magdalena Flores Leonar Dr. Víctor Manuel

Más detalles

ÁCIDOS Y BASES GENERALIDADES DE LAS SALES CONCEPTOS DE ÁCIDOS CONCEPTOS DE BASES. EL ph DE UNA SOLUCIÓN. LA ESCALA DE ph EL PROCESO DE NEUTRALIZACIÓN

ÁCIDOS Y BASES GENERALIDADES DE LAS SALES CONCEPTOS DE ÁCIDOS CONCEPTOS DE BASES. EL ph DE UNA SOLUCIÓN. LA ESCALA DE ph EL PROCESO DE NEUTRALIZACIÓN GENERALIDADES DE LAS SALES CONCEPTOS DE ÁCIDOS CONCEPTOS DE BASES EL ph DE UNA SOLUCIÓN LA ESCALA DE ph EL PROCESO DE NEUTRALIZACIÓN LAS SALES Generalidades Las sales se reconocen por estar formadas generalmente

Más detalles

Disoluciones y cálculos de concentraciones

Disoluciones y cálculos de concentraciones Disoluciones y cálculos de concentraciones Disoluciones Una disolución es una mezcla homogénea (los componentes no se pueden distinguir a simple vista) de dos o más sustancias en proporciones variables.

Más detalles

MATERIALES DE LABORATORIO

MATERIALES DE LABORATORIO MATERIALES DE LABORATORIO Instrumentos para realizar diversas medidas Balanza de laboratorio Se utiliza para medir la masa de un cuerpo. Su sensibilidad no llega más allá del centígramo. Instrumentos para

Más detalles

Ácidos, Bases y Electrolitos

Ácidos, Bases y Electrolitos Ácidos, Bases y Electrolitos Semana 12 Licda. Lilian Judith Guzmán Melgar ACIDOS Y BASES ACIDOS Del latín Acidus= agrio Ejemplos Vinagre, jugo de limón. Tiene un sabor a agrio y pueden producir sensación

Más detalles

1atm OPCIÓN A. Solución:

1atm OPCIÓN A. Solución: OPCIÓN A CUESTIÓN.- Si se preparan disoluciones 0,5 M de NH 3, NaCl, NaOH y NH Cl: a) Justifica de forma cualitativa cuál de ellas tendrá el ph más bajo. b) Elige de forma razonada una pareja que forme

Más detalles

QUÍMICA 2º BACHILLERATO

QUÍMICA 2º BACHILLERATO DISOLUCIONES: CONCENTRACIÓN DE LAS MISMAS 1.-/ Se disuelven 7 g de cloruro de sodio en 43 g de agua. Determine la concentración centesimal de la disolución, así como la fracción molar de cada componente

Más detalles