RELATIVIDAD ESPECIAL DE EINSTEIN
|
|
|
- Pedro de la Cruz Revuelta
- hace 9 años
- Vistas:
Transcripción
1 RELATIVIDAD ESPECIAL DE EINSTEIN Deducción de Javier García GILAB / IFAE
2 EL PLAN.- PRINCIPIOS DE LA RELATIVIDAD 2.- TRANSFORMACIÓN DE LORENTZ 3.- DEFINICIÓN DE DISTANCIA EN EL ESPACIO ORDINARIO 4.- DEFINICIÓN DE DISTANCIA EN EL ESPACIO-TIEMPO 5.- TIEMPO PROPIO DILATACIÓN DEL TIEMPO 6.- CUADRIMOMENTO 7.- ENERGÍA
3 Suposiciones previas: a) El espacio es homogéneo e isótropo. b) El tiempo es homogéneo. PRINCIPIOS DE LA RELATIVIDAD Suposiciones de la Relatividad de Einstein: c) Todos los observadores que se desplazan a velocidad constante uno de otro (observadores inerciales) son "equivalentes" en el sentido de que experimentan las mismas leyes generales de la naturaleza. d) Todo observador mide la misma velocidad para la luz independiente de la velocidad de la fuente.
4 TRANSFORMACIÓN DE LORENTZ o Mismo evento descrito por dos observadores A y B con movimiento relativo a velocidad velocidad constante. a), b) y c) implican: p q r s psqr s r q p
5 TRANSFORMACIÓN DE LORENTZ Imposición velocidad relativa v: p s
6 TRANSFORMACIÓN DE LORENTZ Imposición de d) Substituyéndolo todo:
7 TRANSFORMACIÓN DE LORENTZ Pero c) obliga a que la transformación y su inversa tengan la misma forma excepto el cambio de signo en la velocidad relativa. Hemos de obligar a que: p p v2 La solución a esta ecuación es: p v2 Sustituimos: t B x B v2 t A x A v2 v v v v t A x A t B x B
8 TRANSFORMACIÓN DE LORENTZ Llegamos a las transformaciones de Lorentz: t B v2 t A v x A x B v2 vt A x A Normalmente se le llama y v c con lo que: v2 t B t A c x A x B ct A x A
9 PRIMERA CONCLUSIÓN Cada punto del espacio tiempo representa un EVENTO. Cada observador inercial asigna un par de números (tiempo y posición) que deben estar relacionados por las transformaciones de LORENTZ para preservar los principios de relatividad y la homogeneidad y la isotropía del espacio. Por qué no se detectó antes? Porque la velocidad de la luz es enorme c=3 0⁸m/s. Por lo que: Galileo t B t A x B vt A x A
10 DEFINICIÓN DE DISTANCIA EN EL ESPACIO ORDINARIO ) Restamos x A y A Dos puntos del espacio x x 2 y y 2 PASOS PARA CALCULAR LA DISTANCIA x 2 A y 2 A x A y A 2) Lo multiplicamos por él mismo x A y A 0 0 x A x 2 A x A y 2 A y A y A x A x 2 A 2 y A y 2 A 2 en donde la regla de multiplicación escalar es 0 0
11 DEFINICIÓN DE DISTANCIA EN EL ESPACIO ORDINARIO cos sin R sin cos Rotaremos los dos puntos y volveremos a calcular la distancia: cos sin sin cos A x A y x A cos y A sin y A cos x A sin cos sin sin cos x 2 A y 2 A x 2 A cos y 2 A sin y 2 A cos x 2 A sin Restamos: x B y B x 2 A cos x A cos y A sin y 2 A sin y 2 A cos y A cos x A sin x 2 A sin
12 DEFINICIÓN DE DISTANCIA EN EL ESPACIO ORDINARIO x B y B 0 0 Coinciden! x B y B x A x 2 A 2 y A y 2 A 2 CONCLUSIÓN Existe una cantidad númerica (distancia al cuadrado) asociada a dos puntos cualesquiera del espacio que es independiente del estado de rotación del observador, es decir, todo observador mide lo mismo.
13 DEFINICIÓN DE DISTANCIA EN EL ESPACIO-TIEMPO PREGUNTA Existe alguna cantidad numérica asociada a dos puntos del espacio tiempo en la que estén de acuerdo todos los observadores inerciales? RESPUESTA SÍ, pero no es exactamente igual a la del espacio ordinario. (se puede demostrar sustituyendo las transformaciones de Lorentz)
14 DEFINICIÓN DE DISTANCIA EN EL ESPACIO-TIEMPO Cuál es la 'regla de multiplicación' (métrica)? Es decir, qué matriz tenemos que poner entre dos 'eventos' para que al multiplicar dé la 'distancia al cuadrado? M P P Q Desarrollando: Mt 2 Qx 2 2Ptx t 2 x 2 Por lo que: M Así pues la métrica del espacio tiempo es: Q P 0
15 TIEMPO PROPIO DILATACIÓN DEL TIEMPO Dos observadores con velocidad relativa v t A 2 x A 2 t B 2 x B 2 Una mosca está en el origen de coordenadas de B todo el rato: t A 2 vt A 2 t B v 2 t A 2 t B 2 v2 t A 2 t B 2 v2 t A t B t A v2 t B
16 TIEMPO PROPIO DILATACIÓN DEL TIEMPO Ejemplo numérico EX: Si el observador B va al 99% de la velocidad de la luz, y si el reloj de la mosca marca un entonces el reloj del observador A marca: t A v2 t B s t B t A s t A t B
17 CUADRIMOMENTO t 2 x 2 IGUAL PARA TODO OBSERVADOR t IGUAL PARA TODO OBSERVADOR m IGUAL PARA TODO OBSERVADOR con u2 m 2 c2 t 2 x 2 2 IGUAL PARA TODO OBSERVADOR Resulta que da: m 2 c2 t 2 x 2 2 m 2 Desarrollando un poco: m 2 mu 2 m 2
18 CUADRIMOMENTO t 2 x 2 comparando: m 2 mu 2 m 2 Interpretación de sus componentes Velocidades pequeñas u2 Ejemplo numérico u mu mu u2 mu p mu
19 ENERGÍA y MOMENTO RELATIVISTA u2 u2 2 m m mu2 2 E m m m mu2 2 Por lo que: E m 2 c 4 p 2
20 ENERGÍA y MASA RELATIVIDAD E m 2 c 4 p 2 Si el objeto está en reposo u 0 p 0
FÍSICA MODERNA CONCEPTOS
FÍSICA MODERNA CONCEPTOS Física Clásica Sirve para resolver los diferentes problemas que nos enfrentamos día a día ( sistemas macroscópicos): Movimiento de objetos grandes en relación con los átomos y
Revisión de Relatividad Especial 1
Revisión de Relatividad Especial 1 Esta entrada está orientada para aquellos que necesitan una presentación breve de los conceptos básicos de la relatividad especial. Por lo tanto, esto es útil para los
T2. ESPACIO, TIEMPO Y ESPACIOTIEMPO: DIAGRAMAS DE MINKOWSKI
T2. ESPACIO, TIEMPO Y ESPACIOTIEMPO: DIAGRAMAS DE MINKOWSKI 1. Introducción: postulados de la relatividad especial 2. Definición de tiempo 2.1 Qué es medir el tiempo? 2.2 Sistema común de tiempos 2.3 Dilatación
FÍSICA RELATIVISTA 1. Relatividad. 2. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación.
FÍSICA RELATIVISTA 1. Relatividad.. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación. Física º bachillerato Física relativista 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos
Hoja de Problemas 1. Relatividad 1
Hoja de Problemas 1. Relatividad 1 Fundamentos de Física III. Grado en Física. Curso 2015/2016. UAM Grupo 516 27/01/2016 Problema 1 Una barra de longitud propia L se encuentra en reposo en un sistema de
FISICA RELATIVISTA FISICA 2º BACHILLERATO
FISICA RELATIVISTA FISICA º BACHILLERATO En 1905, Albert Einstein, a la edad de 6 años, publica su Teoría Especial de la Relatividad, a cerca del movimiento en sistemas inerciales. En 1916 amplió su teoría
Teoría de la Relatividad Especial
Teoría de la Relatividad Especial Albert Einstein 1.905 Página1 Postulados de la Teoría de la Relatividad Especial Un sistema de referencia es inercial si está en reposo o se mueve con movimiento rectilíneo
T7. DINÁMICA RELATIVISTA: E = mc 2 Y MOVIMIENTO ACELERADO
T7. DINÁMICA RELATIVISTA: E = mc 2 Y MOVIMIENTO ACELERADO 1. Introducción 2. La equivalencia entre masa y energía 3. Transformaciones de Lorentz para velocidades y aceleraciones 4. Sistema de referencia
Dinámica relativista: E = mc 2 y movimiento acelerado
Tema 7 Dinámica relativista: E = mc 2 y movimiento acelerado 7.1 Introducción Hemos visto que conviene considerar el espaciotiempo como un espacio cuadridimensional en el que podemos localizar sucesos
TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA
2º BACHILLERATO F Í S I C A TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA 1 2º BACHILLERATO FÍSICA TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA 6.1. Introducción. Sabemos de cursos anteriores que para hablar de movimiento
I Cinemática relativista 19
Índice Prólogo a la primera edición 15 Prólogo a la segunda edición 17 I Cinemática relativista 19 1. Transformación de Lorentz 21 1.1 Transformación de Lorentz inversa.................. 21 1.2 Matriz
2 o Bachillerato. Física Relativista. Prof. Jorge Rojo Carrascosa
FÍSICA 2 o Bachillerato Física Relativista Prof. Jorge Rojo Carrascosa Índice general 1. FÍSICA RELATIVISTA 2 1.1. EL EXPERIMENTO DE MICHELSON-MORLEY.......... 2 1.2. PRINCIPIO DE RELATIVIDAD CLÁSICO..............
INDICE Capítulo 1. Mediciones Capítulo 2. Movimiento Unidimensional Capítulo 3. Vectores Capítulo 4. Movimiento Bidimensional y Tridimensional
INDICE Capítulo 1. Mediciones 1 1.1. Las cantidades físicas, patrones y unidades 1 1.2. El sistema internacional de unidades 2 1.3. Patrón de tiempo 3 1.4. Patrón de masa 7 1.6. Precisión y cifras significativas
Tensores de Lorentz. Abstract
Tensores de Lorentz Torsten Fließ bach Abstract Se presentan las principales fórmulas relacionadas con las transformaciones de Lorentz, se definen los tensores de Lorentz y su diferenciación. Se asumen
Introducción a la Relatividad Especial. Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga
Introducción a la Relatividad Especial. Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga Marzo 2010 2 La Relatividad Especial es una teoría que se ocupa principalmente
Del campo eléctrico al campo magnético a través de la relatividad especial
Del campo eléctrico al campo magnético a través de la relatividad especial A. Zozaya S. 1 de noviembre de 007 Resumen En este artículo abordaremos la teoría de la relatividad especial con la finalidad
Introducción. La masa intrínseca ( m ) y el factor frecuencia ( f ) de una partícula masiva están dados por: . = m o
UNA FORMULACIÓN INVARIANTE DE LA RELATIVIDAD ESPECIAL A. Blato Licencia Creative Commons Atribución 3.0 (207) Buenos Aires Argentina Este artículo presenta una formulación invariante de la relatividad
Geometria. Juan Pablo Pinasco. Departamento de Matematicas FCEyN - UBA
Departamento de Matematicas FCEyN - UBA 2007 Parte I y de la matemática Distintos espaciotiempos (en base a una idea de Roger Penrose) Aristóteles A G Newton N Minkowski M Einstein E??? (Kaluza-Klein,
FÍSICA RELATIVISTA. Relatividad especial. José Luis Rodríguez Blanco
FÍSICA RELATIVISTA Relatividad especial José Luis Rodríguez Blanco RELATIVIDAD EN LA FÍSICA CLÁSICA Principio de relatividad de Galileo. [Diálogo sobre los dos máximos sistemas del mundo ptolemaico y copernicano
Nueva ley de Lorentz
Nueva ley de Lorentz Manuel Hernández Rosales 26 de septiembre de 2013 Abstract En este artículo se propone una modicación a la expresión de la fuerza de Lorentz adecuada para explicar el experimento de
Cátedra VI: Notación covariante y 4-velocidad
Cátedra VI: Notación covariante y 4-velocidad Ya estamos en condiciones de comenzar a estudiar la estructura del espacio-tiempo en forma más profunda. En esta clase introduciremos el concepto de 4-vector
El mundo de Newton y su caída
FCEN, UNCuyo, Conicet, Argentina Observatorio Astronómico de Quito Por qué comenzar con la mecánica newtoniana? Por qué comenzar con la mecánica newtoniana? Pregunta: Por qué si arrojo una piedra termina
T10. RELATIVIDAD GENERAL (II): GRAVEDAD Y ESPACIOTIEMPO
T10. RELATIVIDAD GENERAL (II): GRAVEDAD Y ESPACIOTIEMPO 1. Relatividad de las medidas del tiempo 2. Relatividad de las medidas espaciales 3. Métrica, curvatura y geodésicas 3.1 Concepto de métrica 3.2
I. Hechos históricos. 1.1 Ley de Gravitación de Newton
I. Hechos históricos 1.1 Ley de Gravitación de Newton Uno de los aspectos importantes de las leyes de Newton, es que se basa en sistemas de referencia inerciales, los cuales se mueven con velocidad constante
Ejercicios de Matrices y Determinantes.
Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 1/12 Ejercicios de Matrices y Determinantes. 1. Dadas las matrices: Calcular: A + B; A B; A x B; B x A; A t. 2. Demostrar que: A 2 A
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
Momento Lineal, Momento Angular & Momento Radial
Momento Lineal, Momento Angular & Momento Radial Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta el momento lineal, el momento angular y
Una Ecuación Escalar de Movimiento
Una Ecuación Escalar de Movimiento Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta una ecuación escalar de movimiento que es invariante bajo
Introducción a la Relatividad General. Patricio Mella Castillo Universidad del BíoBío Escuela de verano 2013
Introducción a la Relatividad General Patricio Mella Castillo Universidad del BíoBío Escuela de verano 2013 Conceptos básicos Evento: Algo que ocurre instantáneamente en un punto específico del espacio
Los diagramas espacio-tiempo de Minkowski
24/05/2013 DIAGRAMAS DE MINKOWSKI 1 Hermann Minkowski (22 de junio de 1864-12 de enero de 1909) fue un matemáticoalemán de origen judío que desarrolló la teoría geométrica de los números. Sus trabajos
Origen del tiempo: relatividad y emergencia. Gil Jannes
Origen del tiempo: relatividad y emergencia Gil Jannes El tiempo Newtoniano diagrama espacio-temporal referencial (observador) Newton (Galileo) 1a ley de Newton (ley de inercia): Corpus omne perseverare
Soluciones Hoja 4: Relatividad (IV)
Soluciones Hoja 4: Relatividad (IV) 1) Un estado excitado X de un átomo en reposo cae a su estado fundamental X emitiendo un fotón En física atómica es habitual suponer que la energía E γ del fotón es
Una Nueva Formulación de la Mecánica Clásica
Una Nueva Formulación de la Mecánica Clásica Alejandro A. Torassa Buenos Aires, Argentina, E-mail: [email protected] Licencia Creative Commons Atribución 3.0 (Copyright 2009) Resumen. Este trabajo expone
RELATIVIDAD ESPECIAL
RELATIVIDAD ESPECIAL Se recomienda leer primero los capítulos sobre la historia de la gravitación clásica (Copérnico, Brahe/Kepler, Galileo, Newton) del libro de Longair 1 NECESIDAD DE RECURRIR A ESTA
Unidad 1 Cinemática de traslación de una partícula Estudio del movimiento de una partícula basado en su posición, velocidad y aceleración
Unidad 1 Cinemática de traslación de una partícula Estudio del movimiento de una partícula basado en su posición, velocidad y aceleración 2014. Dr. Juan Carlos Ortiz Royero Este material solo debe usarse
Breve repaso de la relatividad especial
Universidad de Granada 4 o curso de física Julio 005 Breve repaso de la relatividad especial Dr. Bert Janssen Departamento de Física Teórica y del Cosmos, Edificio Mecenas, Campus Fuente Nueva s/n, Universidad
Momento Lineal, Momento Angular & Momento Radial
Momento Lineal, Momento Angular & Momento Radial Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta el momento lineal, el momento angular y
Principios de Mecánica
Principios de Mecánica Salamanca, 2006-2007 Índice 1. Unidades y dimensiones 1 1. Unidades................................. 1 1..1 Sistema Internacional...................... 1 2. Ecuación de dimensiones........................
Relatividad: la misma historia según distintos protagonistas
Tema 3 Relatividad: la misma historia según distintos protagonistas 3. La historia Un tren que mide 00 m circula a la increíble velocidad de 3/2 veces la velocidad de la luz. El tren pasa por una estación
La longitud de la barra 2 vista desde el sistema de referencia de la barra 1 será: 1 v 2 c v2
RELATIVIDAD ESPECIAL Dos barras de igual longitud propia l 0 se acercan moviéndose en dirección longitudinal paralelamente a un eje común con una misma velocidad v respecto al sistema de referencia del
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN
1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN BANCO DE PREGUNTAS CURSO: ALGEBRA LINEAL LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Mendoza Otoño
Movimiento Relativo. Movimiento relativo de Traslación general. Relatividad del movimiento velocidad relativa aceleración relativa
Movimiento Relativo Relatividad del movimiento velocidad relativa aceleración relativa Movimiento relativo de Traslación general Movimiento relativo de Rotación pura O X Y Z S.R., respecto del cual el
RELATIVIDAD PARA TODOS
RELATIVIDAD PARA TODOS Oviedo, 7 Septiembre 2005 Desarrollo Histórico Documento Audiovisual Introducción conceptual. Como ha cambiado nuestro entendimiento sobre el espacion tiempo La Geometría como herramienta
Ejemplo: Los polinomios son de gran ayuda para calcular los gastos de una compra a realizar como por ejemplo:
Operaciones con Polinomios MARCO TEORICO Un polinomio es una expresión que se construye por una o más variables, usando solamente las operaciones de adición, sustracción, multiplicación y exponentes numéricos
2 Transformaciones en 3D
2 Transformaciones en 3D La manera más fácil de conseguir las transformaciones básicas (traslación, rotación, escalación, en general las transformaciones afines) es utilizando matrices de transformación.
TETRAVECTORES Y TENSORES
TETRVECTORES Y TENSORES El desarrollo matemático de la Teoría Especial de la Relatividad plantea la necesidad de utilizar un espacio compuesto de cuatro coordenadas, es decir, todo suceso del referido
Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y
CINEMÁTICA CINEMÁTICA (MRU) CONCEPTO DE CINEMÁTICA Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y de
Teoría de la relatividad especial y la física nuclear
Parte II Teoría de la relatividad especial y la física nuclear 1 Teoría de la relatividad especial Todos hemos escuchado del gran Einstein y sus grandes contribuciones a la Física (y al mundo, en general).
EL CONCEPTO DE SIMETRÍA Y LOS PRINCIPIOS DE CONSERVACIÓN DE LA MECÁNICA. Abstract
EL CONCEPTO DE SIMETRÍ Y LOS PRINCIPIOS DE CONSERVCIÓN DE L MECÁNIC Julián Urrea B. * bstract deeper comprehension of the formal relation among symmetries of laws of nature and rules of conservation of
Albert Einstein. El personaje del Siglo XX [Times]
Albert Einstein El personaje del Siglo XX [Times] 1870 nace en Ulm-Alemania, hijo de Hermann y Pauline Einstein, una típica familia judía de clase media. Albert con su hermana Su padre trabajaba con electricidad,
PROCEDIMIENTO TEÓRICO
1 CONSTANTE DE GRAVITACIÓN UNIVERSAL, SU VALOR EXACTO. EN EL SISTEMA INTERNACIONAL DE UNIDADES, VALE: G = 6,6718190396304099151153489 x 10 11 N m kg G = 6,6718190396304099151153489 x 10 11 m 3 kg 1 s CONSTANTE
Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.
Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES
Física para Ciencias: Vectores y Sistemas de Referencia
Física para Ciencias: Vectores y Sistemas de Referencia Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Magnitudes Físicas Escalares: definidos por un número Ej.: masa, tiempo, presión, temperatura,
Mecánica y Ondas. Planteamiento y resolución de problemas tipo
Mecánica y Ondas. Planteamiento y resolución de problemas tipo Alvaro Perea Covarrubias Doctor en Ciencias Físicas Universidad Nacional de Educación a Distancia Madrid, Enero 2005 Capítulo 1. Leyes de
Einstein Cien Años de la Teoría de la Relatividad
VIII Premios Jorge Juan Einstein Cien Años de la Teoría de la Relatividad Michael M. Tung Dpto. de Matemática Aplicada Instituto de Matemática Multidisciplinar Universidad Politécnica de Valencia 1 de
TEMA 7: MATRICES. OPERACIONES.
TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre
Fusión Nuclear. Por qué se pierde masa durante el proceso?
Fusión Nuclear Por qué se pierde masa durante el proceso? Definición de Fusión Nuclear La fusión nuclear es el proceso mediante el cual dos núcleos atómicos se unen para formar uno de mayor peso atómico.
2.6*108 = 4.5*1020 J SEPTIEMBRE
RELATIVIDAD JUNIO 1997: 1.- Dos sucesos que ocurren en el mismo lugar y al mismo tiempo para un observador, serán también simultáneos para un segundo observador que se mueve respecto al primero? No SEPTIEMBRE
5, calcula el valor de los siguientes determinantes:
Determinantes 1. Sabiendo que 5, calcula el valor de los siguientes determinantes: a), b) a b c junio 00 Utilicemos las propiedades de los determinantes para transformar el determinante en otro que dependa
Sistemas de ecuaciones lineales
Tema 1 Sistemas de ecuaciones lineales 11 Definiciones Sea K un cuerpo Una ECUACIÓN LINEAL CON COEFICIENTES EN K es una expresión del tipo a 1 x 1 + + a n x n = b, en la que n es un número natural y a
ESTUDIO DEL MOVIMIENTO.
1. INTRODUCCIÓN. ESTUDIO DEL MOVIMIENTO. Un cuerpo está en movimiento cuando cambia de posición a lo largo del tiempo con respecto a un punto de referencia que consideramos fijo. Es un concepto relativo,
Cinemática: Conceptos Básicos del Movimiento, Movimiento Rectilíneo Uniforme y Movimiento Rectilíneo Uniforme Acelerado.
Temática Estudiante Cinemática: Conceptos Básicos del Movimiento, Movimiento Rectilíneo Uniforme y Movimiento Rectilíneo Uniforme Acelerado. Fecha Conceptos Básicos de Movimiento Mecánica: Rama de la Física
Relatividad. 1 Dinámica en la métrica de Schwarzschild
Relatividad Tarea 8 A entregar: Viernes 2 de diciembre de 2011 1 Dinámica en la métrica de Schwarzschild Una estrella de masa M deforma el espacio-tiempo en su vecindad. Tal deformación está expresada
IES Francisco Giner de los Ríos 2016/2017 Física y Química 1º Bachillerato nocturno (FQ NB1B-Noct) UD 8. El movimiento
UD 8. El movimiento 1- Sistemas de referencia. 2- Magnitudes vectoriales. 3- Interpretaciones gráficas de los movimientos. 4- Componentes intrínsecas de la aceleración. 1- Sistemas de referencia: 1.1.
Tema 10. RELATIVIDAD GENERAL (II): Gravedad y espaciotiempo Relatividad de las medidas del tiempo. , foton
Tema 10 RELATIVIDAD GENERAL (II): Gravedad y espaciotiempo 10.1 Relatividad de las medidas del tiempo Por la relatividad especial sabemos que cuando un reloj se mueve rápidamente respecto a un observador,
Problemas. Cuestiones. Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [2 PUNTOS /UNO]
Física 2º Bach. Física moderna 20/05/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [2 PUNTOS /UNO] 1. Al iluminar una célula fotoeléctrica con radiación electromagnética de longitud de onda 185
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
Índice. Programación de las unidades. Unidad 1 Matrices 6. Unidad 2 Determinantes 8. Unidad 3 Sistemas de ecuaciones lineales 10
Índice Programación de las unidades Unidad 1 Matrices 6 Unidad 2 Determinantes 8 Unidad 3 Sistemas de ecuaciones lineales 10 Unidad 4 Geometría en el espacio 12 Unidad 5 Producto escalar 14 Unidad 6 Productos
Una igualdad significa que dos cantidades o expresiones algebraicas tienen el mismo valor. a = b + c 3x 2 = 4x + 15
ECUACIONES ENTERAS DE PRIMER GRADO CON UNA INCÓGNITA El planteamiento de problemas de la vida real requiere para su solución, la representación de números reales mediante símbolos lo cual hace posible
Cátedra III: Transformaciones de Lorentz
Cátedra III: Transformaciones de Lorentz En esta clase deduciremos y estudiaremos las celebres transformaciones de Lorentz, relacionando sistemas de referencia inerciales para observadores en movimiento
N(t) =N o e αt, (1) 2 = N oe αt 1/2
FUNDAMENT FÍIC DE LA INGENIERÍA. CUR 2002/2003. PRIMER INGENIER DE TELECMUNICACIÓN. TERCERA PRUEBA DE BRENTA: RELATIVIDAD LUCIÓN DETALLADA 1. Dos tipos distintos de partículas elementales, A B, se lanzan
Fuerzas ejercidas por campos magnéticos
Fuerzas ejercidas por campos magnéticos Ejemplo resuelto nº 1 Se introduce un electrón en un campo magnético de inducción magnética 25 T a una velocidad de 5. 10 5 m. s -1 perpendicular al campo magnético.
