Ejercicios de Matrices y Determinantes.
|
|
|
- Eduardo Maidana Ojeda
- hace 9 años
- Vistas:
Transcripción
1 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 1/12 Ejercicios de Matrices y Determinantes. 1. Dadas las matrices: Calcular: A + B; A B; A x B; B x A; A t. 2. Demostrar que: A 2 A 2 I = 0, siendo: 3. Sea A la matriz. Hallar A n, para n.
2 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 2/12 4. Por qué matriz hay que premultiplicar (multiplicar por la izquierda) la matriz para que resulte la matriz. 5. Obtener las matrices A y B que verifiquen el sistema: Multiplicamos la segunda ecuación por 2 Sumamos miembro a miembro Si multiplicamos la primera ecuación por 3 y sumamos miembro a miembro
3 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 3/12 obtenemos: 6. Una fábrica produce dos modelos de lavadoras, A y B, en tres terminaciones: N, L y S. Produce del modelo A: 400 unidades en la terminación N, 200 unidades en la terminación L y 50 unidades en la terminación S. Produce del modelo B: 300 unidades en la terminación N, 100 unidades en la terminación L y 30 unidades en la terminación S. La terminación N lleva 25 horas de taller y 1 hora de administración. La terminación L lleva 30 horas de taller y 1.2 horas de administración. La terminación S lleva 33 horas de taller y 1.3 horas de administración. 1. Representar la información en dos matrices. 2. Hallar una matriz que exprese las horas de taller y de administración empleadas para cada uno de los modelos. Matriz de producción: Filas: Modelos A y B Columnas: Terminaciones N, L, S Matriz de coste en horas: Filas: Terminaciones N, L, S Columnas: Coste en horas: T, A Matriz que expresa las horas de taller y de administración para cada uno de los modelos: 7. Calcular el rango de la matriz siguiente: F 1 2 F 2 F 3 3 F 2 F F 1 Por tanto r(a) =2.
4 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 4/12 8. Siendo:. Calcular el valor de X en las siguientes ecuaciones: Resolver; en forma matricial, el sistema:
5 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 5/ Justificar si son posibles los siguientes productos: 1. (A t B ) C 2. (B C t ) A t (A t 3 x 2 B 2 x 2 ) C 3 x 2 = (At B ) 3 x 2 C 3 x 2 No se puede efectuar el producto porque el número de columnas de (A t B ) no coincide con el nº de filas de C. (B 2 x 2 C t 2 x 3 ) At 3 x 2 = (B C) 2 x 3 At 3 x 2 = (B Ct A t ) 2 x 2 3. Determinar la dimensión de M para que pueda efectuarse el producto A M C A 3 x 2 M m x n C 3 x 2 m = 2 4. Determina la dimensión de M para que C t M sea una matriz cuadrada. C t 2 x 3 M m x n m = 3 n = Sean las matrices: Efectuar las siguientes operaciones: (A + B) 2 ; (A B) 2 ; (B) 3 ; A B t C.
6 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 6/ Una empresa de muebles fabrica tres modelos de estanterías: A, B y C. En cada uno de los tamaños, grande y pequeño. Produce diariamente 1000 estanterías grandes y 8000 pequeñas de tipo A, 8000 grandes y 6000 pequeñas de tipo B, y 4000 grandes y 6000 pequeñas de tipo C. Cada estantería grande lleva 16 tornillos y 6 soportes, y cada estantería pequeña lleva 12 tornillos y 4 soportes, en cualquiera de los tres modelos. 1. Representar esta información en dos matrices. Matriz de los tipos de las estanterías: Filas: Modelos A, B, C Columnas: Tipos G, P Matriz de los elementos de las estanterías:
7 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 7/12 Filas: Tipos G, P Columnas: T, S 2. Hallar una matriz que represente la cantidad de tornillos y de soportes necesarios para la producción diaria de cada uno de los seis modelos tamaño de estantería. Matriz que expresa el número de tornillos y soportes para cada modelo de estantería: Dadas las matrices: Resolver la ecuación: A X = B A = 1 0, existe la matriz inversa A 1. X = A 1 B 16. Dadas las matrices: Resolver la ecuación: X A + B = C A = 1 0 X A = C B X = (C B) A 1
8 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 8/ Siendo: Calcular el valor de X en las siguientes ecuaciones: 18. Siendo: Resolver la ecuación matricial: ; ; 19. Resolver las siguientes ecuaciones sin desarrollar los determinantes.
9 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 9/ Para qué valores de m la matriz no admite matriz inversa? Para cualquier valor real de m existe la matriz inversa A Para qué valores de x la matriz no admite matriz inversa?. Para x = 0 la matriz A no tiene inversa. 22. Calcular por el método de Gauss el rango de la matriz siguiente: F 1 2 F 2 : ; F 3 3 F 2 : ;
10 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 10/12 F F 1 :. Por tanto r(a) = Calcular por determinantes el rango de la matriz: 2 = 2 0 : r(a) 1 ; ; r(a) 2 ; ; r(a) = Demostrar, sin desarrollar, que los siguientes determinantes valen cero: Tiene dos líneas iguales. La tercera columna es igual a la suma de las otras dos. 25. Sabiendo que A = 5, calcula los otros determinantes.
11 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 11/ Resolver las siguientes ecuaciones sin desarrollar los determinantes Aplicando las propiedades de los determinantes, calcular:
12 Matemáticas 2ºBach CNyT. Ejercicios : Matrices y Determinantes. Pág 12/ Si el valor del determinante, calcular el valor de: 29.
Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se
MATRICES 1. Averiguar Si son iguales las siguientes matrices: Dada la matriz A = 131, se pide: 122. , siendo I la matriz unidad de orden 3.
MATRICES Averiguar Si son iguales las siguientes matrices: 5 4 4+ 9+ A = 6 ( )( + ) 3 ( )( ) 5 4 5 4 5 B = + Sea A la matriz de una sola fila ( 5 ) y B la de una sola columna (34 t Escribir los productos
Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5
DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno
MATRICES: CÁLCULO DE LA INVERSA MEDIANTE EL DETERMINANTE Y LA ADJUNTA:
MTRICES: TEORÍ COMPLEMEMENTRI Existe otro método para calcular la inversa y que sólo usaremos para matrices cuadradas de orden o de orden 3. Para ello es necesario conocer estos dos conceptos: CÁLCULO
Ejercicios de Rectas y planos.
Matemáticas 2ºBach CNyT. Ejercicios Rectas, planos. Pág 1/9 Ejercicios de Rectas y planos. 1. Las coordenadas de los vértices consecutivos de un paralelogramo son A(1, 0, 0) y B(0, 1, 0). Las coordenadas
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Determinantes DETERMINANTES Se trata de una herramienta matemática que sólo se puede utilizar cuando nos encontremos con matrices
EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante:
EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante: 3 7 1 2 0 1 1 3 6 a) Usando la Regla de Sarrus. b) Desarrollando por los elementos de la primera columna. 2º/ Obtén el valor del determinante
TEST DE DETERMINANTES
Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE
3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método
Ejercicios de Funciones, límites y continuidad.
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Límites, Continuidad.. Pág 1/10 Ejercicios de Funciones, límites y continuidad. 1. Observa la gráfica de esta función f(x) y calcular estos límites. 2. Calcular
y C= determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I =
EJERCICIOS: TEMA 1: MATRICES. 1º/ Dadas las matrices: A= 2 1 1 0 1 1 1 1, B= 2 0 3 1 y C= 2 1 0 1 determinar la matriz X que verifica la ecuación matricial A B X=C X+I, siendo I = 1 0 0 1. 2º/ Determinar
EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
MATRICES Y DETERMINANTES 1- Sea m un número real y considere la matriz: 1 0 0 1 2 1 1 a) Determine todos los valores de m para los que la matriz A tiene inversa. b) Determine, si existe, la inversa de
b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2
Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =
TEMA 7: MATRICES. OPERACIONES.
TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre
Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria
T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)
Ejercicios finales. Álgebra. 1. Escribir la matriz A de dimensiones 5 x 4 y elementos: Sol:
Álgebra Ejercicios finales 1. Escribir la matriz A de dimensiones 5 x 4 y elementos:. Una fábrica de embutidos comercializa tres tipos de productos: salchichón, chorizo y morcilla. Para su fabricación
ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE A 2 1 0
ÁLGEBRA (Selectividad 017) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 017 1 Andalucía, junio 17 0 x Ejercicio 3- Considera las matrices
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
Tema 2: Determinantes
Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para
1. Las cantidades compradas, en litros, de tres clases de vino, se reflejan en la matriz fila: L = ( )
CAPÍTULO 6. MATRICES Y DETERMINANTES 03 6.3. EJERCICIOS. Las cantidades compradas, en litros, de tres clases de vino, se reflejan en la matriz fila: B T R L = ( 80 50 00 ) donde B=Blanco, T=Tinto yr=rosado,
Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara
Matemáticas Física Curso de Temporada Verano 2016 Ing. Pablo Marcelo Flores Jara [email protected] UNIDAD III: INTRODUCCIÓN AL CÁLCULO MATRICIAL Ing. Pablo Marcelo Flores Jara [email protected]
Matrices, determinantes y sistemas de ecuaciones lineales
Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:
Ejercicios de Funciones: derivadas y derivabilidad
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.
Lo rojo sería la diagonal principal.
MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).
1. Página 10 La matriz consta de dos filas que corresponden a los alumnos y cuatro columnas con sus calificaciones. Así:
Matrices 1 ACTIVIDADES 1. Página 10 La matriz consta de dos filas que corresponden a los alumnos y cuatro columnas con sus calificaciones. Así: 2. Página 10 La matriz solución es. 3. Página 10 La matriz
Ejercicio 3 de la Opción A del modelo 1 de 2008.
Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1
MATEMÁTICAS PARA ECONOMISTAS I MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
MATEMÁTICAS PARA ECONOMISTAS I MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES 1.- Dadas las siguientes matrices Efectúe si es posible : a) A + B b) B A c) B 2.- Dadas las siguientes matrices Efectúe
MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES
CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno
Rango de una matriz. Antes de nada daremos algunas definiciones. Para ello supongamos que tenemos una matriz de orden m n: A M m n.
En un artículo anterior dijimos que el rango de una matriz A, ra), es el número de filas que son linealmente independientes. También se hizo uso del método de Gauss para calcular el rango de una matriz:
Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO ) D = ( 4 2
EXAMEN DE MATEMATICAS II 1ª EVALUACIÓN Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO 2015-16 Opción A 1.- Considera las matrices A = ( 1 2 2 1 ), B = ( 2 1 0) y C = ( 1 5 0 ) a) [1,5 puntos]
Tema 1: Matrices y Determinantes
Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
Tema 1: MATRICES. OPERACIONES CON MATRICES
Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos
DETERMINANTES UNIDAD 3. Página 76
UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y
PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES
PRUEBA MÚLTIPLE ELECCIÓN MATRICES Y DETERMINANTES 1. Sea una matriz A M n n (R) nilpotente de índice p. r(a) n 1 r(a) =p 1 8 4 2 2. Sea la matriz A = 2 1 1 0 5 2 1 1 r(a) =2 r(a) =3 r(a) =4 3. Sea una
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales. Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales de la forma:
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Sistemas de Ecuaciones Lineales 1) SISTEMAS DE ECUACIONES LINEALES Un sistema de ecuaciones lineales es un conjunto de ecuaciones
de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).
INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.
Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...
INTRO. MATRICES Y DETERMINANTES Prof. Gustavo Sosa Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 7 Matrices y Determinantes Cursada 2014
ÁLGER Y GEOMETRÍ NLÍTIC Trabajo Práctico Nº 7 Matrices Determinantes Cursada Desarrollo Temático de la Unidad Matrices: Definición. Igualdad de Matrices. Álgebra Matricial: adición de matrices: propiedades.
ACTIVIDADES SELECTIVIDAD MATRICES
ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden
GUÍA DE LA UNIDAD MATRICES Y DETERMINANTES
Matrices Determ. Inversa Sistemas C ontenidos Idea de matriz. Elementos de una matriz. Diferentes tipos de matrices: matriz unidad, matriz nula, matriz traspuesta, matriz inversa. Operaciones con matrices.
EJERCICIOS DE MATRICES
EJERCICIOS DE MATRICES a) º) Escribir los siguientes sistemas en forma matricial: x+ y= x + y = 0 x+ y z = x+ y+ z = 0 ; b) x y= 3 ; c) y + z = ; d) 6x + y = 4 x + z = 3 x = 3 y = 4 z = 5 ; e) x+y+z+t=3
Matrices y Sistemas de Ecuaciones lineales
Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,
MATRICES Y DETERMINANTES II.
MATRICES Y DETERMINANTES II. Matriz adjunta es la matriz cuadrada que se obtiene al sustituir cada elemento por su adjunto correspondiente. Calcula la matriz adjunta: 2 2 2 A =( 2 1 0 ) 3 2 2 Primero calculamos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Reserva, Ejercicio 3, Opción A Reserva, Ejercicio 4, Opción A Reserva 3, Ejercicio 3, Opción A Reserva
Tema 5. Matrices y Determinantes
Tema 5. Matrices y Determinantes 1. Definiciones 2. Operaciones Propiedades 3. Determinantes Orden 2 Orden 3: Regla de Sarrus Orden mayor de 3 Propiedades 4. Matriz inversa Ecuaciones matriciales 5. Rango
Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.
Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2
Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales
Grado en Ingeniería agrícola y del medio rural Tema 2 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2017 Licencia Creative Commons 4.0 Internacional J.
MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS
Índice Presentación... 3 Operaciones con matrices... 4 Potencias de una matriz... 5 Productos notables de matrices... 6 Determinantes de una matriz... 7 Rango de matriz... 8 Inversa de una matriz... 10
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden 2 y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 24 24 = 0 Aplica la teoría.
Índice. Funciones de Maple
INTRODUCCIÓN Con los avances de la tecnología, los cursos de matemáticas en nuestras universidades necesitan el apoyo computacional para la realización de cálculos en diferentes procedimientos, de tal
Ejercicio 1 (Curso 2016/2017) Considérense las matrices: k A C C
EJERCICIOS DE MRICES Y DEERMINNES (Selectividad Madrid) Ejercicio (Curso 06/07) Considérense las matrices: 3 0 = B = C = 3 40 ( punto) Determínese la matriz C. ( punto) la matriz X que verifica: X + 3B
A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.
A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas
Regla de Cramer. Semana 2 2. Empecemos! Qué sabes de...? la regla de Cramer,
Semana 2 2 Empecemos! Como recodarás en el 7mo semestre estudiamos los sistemas de ecuaciones lineales (SEL) con tres incógnitas, los cuales se resolvieron empleando los métodos analíticos: sustitución,
BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.
BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21
MATRICES Y DETERMINANTES MATRIZ INVERSA
Índice Presentación... 3 Determinante de una matriz... 4 Determinante de matrices de orden 2 y 3... 5 Determinante de una matriz... 6 Ejemplo... 7 Propiedades del cálculo de determinantes... 8 Matriz inversa...
UNIVERSIDAD NACIONAL ABIERTA Matemática II ( ) VICERRECTORADO ACADEMICO Fecha: 07/11/2009 ÁREA DE MATEMÁTICA MODELO DE RESPUESTA
LAPSO 009-78-79 OBJ 6 PTA UNIVERSIDAD NACIONAL ABIERTA Matemática II (78-79) VICERRECTORADO ACADEMICO Fecha: 07//009 ÁREA DE MATEMÁTICA MODELO DE Una empresa de muebles abrica tres modelos de estanterías:
EJERCICIOS RESUELTOS DE DETERMINANTES
EJERCICIOS RESUELTOS DE DETERMINANTES 1. Calcular los siguientes determinantes: a) - 13 b) 4-3 8 1 0 3-1 -1 1 3-4 a) - 13 = (-)(-3) 4.13 = 1 2 = -37 4-3 b) 8 1 0 3-1 -1 1 3-4 = 8(-1)(-4) + 1(-1)1 + 0 0
CAPÍTULO VIII MATRICES
MTRICES Y DETERMINNTES 23 CPÍTULO VIII MTRICES 8. INTRODUCCIÓN Se da por entendido el concepto de transformación lineal entre dos espacios vectoriales sobre un mismo cuerpo, y se determina la matriz asociada
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales.
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Ejercicios 1.- Determinar el rango de la siguiente matriz: 0 1 3 4 1 3 5. Solución. 0 1 3 4 1 3 5 AT 1( 1) AT 1 ( 1)T 14 ( 1 )
MATEMÁTICAS 2º BACH CIENCIAS MATRICES. Profesor: Fernando Ureña Portero
La palabra Álgebra proviene del libro Al-jabr wa l muqabalah, del matemático árabe Al-Jowarizmi (siglo IX). Con dicho nombre se designó en occidente en posteriores siglos a la ciencia que aprendieron del
Matriz sobre K = R o C de dimensión m n
2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes
Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO ) D = ( 4 2
EXAMEN DE MATEMATICAS II 1ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO 2016-17 Opción A 1.- Considera las matrices A = ( 1 2 1 0 0 2 1 ), B = ( 2 1 0) y C = ( 1 0 0 1 5 0 ) 3 2 1 a)
Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43
Determinante de una matriz cuadrada Toda matriz cuadrada A lleva asociado un número, llamado determinante de A, y que denotaremos mediante el símbolo. Este número, entre otras cosas, permite saber cuándo
SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA
MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria
DETERMINANTES Profesor: Fernando Ureña Portero
: CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=a ij, de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden
1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones)
TEMA 2.- SISTEMAS DE ECUACIONES 1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS La ecuación 2x 3 5 tiene un término en x (el término 2x), otro en y (el término -3y) y un término independiente (el 5) Este
1. Utilizar el método de Gauss para clasificar y resolver cuando sea posible los siguientes sistemas: x 3y + 7z = 10 5x y + z = 8 x + 4y 10z = 11
Teorema de Rouché Frobenius: Si A es la matriz de coeficientes de un sistema de ecuaciones lineales y AM la matriz ampliada de un sistema de ecuaciones lineales. Si r(a = r(am = número de incógnitas =
Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:
Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22
Introducción al Cálculo con Matrices
Introducción al Cálculo con Matrices 2016Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Concepto de Matriz o Tabla... 4 1.1 Listas Numéricas... 4 1.2 Tablas Numéricas... 4 1.3 Matrices...
TEMA 1: MATRICES Y DETERMINANTES
TEMA 1: MATRICES Y DETERMINANTES 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales de la forma a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Las líneas horizontales (verticales)
ALGEBRA y ALGEBRA LINEAL
520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean
MATRICES Y DETERMINANTES.
MATRICES Y DETERMINANTES. Estas a punto de entrar en el maravilloso mundo de las matrices y un carajo! Intenta seguirme. Una matriz es una tabla de números ordenados de la manera siguiente. Las matrices
Matemáticas. D e t e r m i n a n t e s
Matemáticas D e t e r m i n a n t e s El determinante de una matriz cuadrada es un número que se obtiene a partir de los elementos de la matriz. Su estudio se justifica en cuanto que simplifica la resolución
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...
EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES 1- a) Los tres profesores de matemáticas de un instituto, María, Ana y Carlos, tienen edades cuya suma es 1 años. La suma de las edades de María y Ana es
Matrices 2º curso de Bachillerato Ciencias y tecnología
MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se
DETERMINANTES. 2. Resuelve el siguiente determinante aplicando la regla de Sarrus:
DETERMINNTES. Calcula el determinante de la siguiente matriz: 3 4 3 0..(3.0 2.0).0 0 0 3 4 0 0 3 Hemos sumado a la segunda fila la primera cambiada de signo. continuación hemos sumado a la tercera fila
Teoría Tema 8 Determinante de una matriz cuadrada de orden 1, 2 y 3
página 1/5 Teoría Tema 8 Determinante de una matriz cuadrada de orden 1, 2 y 3 Índice de contenido Qué es un determinante de una matriz cuadrada y que aplicación tendrá?...2 Determinante de una matriz
MATEMÁTICAS 2º BACH CIENCIAS DETERMINANTES DETERMINANTES
1. CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=(aij),de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden
SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:
TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a
Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5.
Unidad. Matrices.. Conceptos básicos.. Operaciones con matrices.. Matriz Inversa.. El método de Gauss-Jordan.. Aplicaciones Objetivos particulares de la unidad Al culminar el aprendizaje de la unidad,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva 2, Ejercicio 4, Opción A Reserva
Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).
Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante
MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES
Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,
