BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.
|
|
|
- Rubén Ruiz del Río
- hace 9 años
- Vistas:
Transcripción
1 BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a a 1n A= a a 21 a 22 a a 2n ij a m1 a m2 a m3... a mn = a Ejemplo: La matriz A= es de dimensión 2 3. Una matriz es rectangular si m n, y es cuadrada si m=n. En una matriz cuadrada definimos: Diagonal principal: la formada por los elementos a ii. Diagonal secundaria: la formada por los elementos a ij donde i j=n 1. a11 a12 a13 a 21 a 22 a 23 a 31 a 32 a 33 matriz cuadrada de orden 3. diagonal principal diagonal secundaria Tipos de matrices: Matriz fila: matriz de dimensión 1 n. Ejemplo: es de dimensión 1 3. Matriz columna: matriz de dimensión m 1. 2 Ejemplo: 0 1 es de dimensión
2 Matriz nula:todos sus elementos son nulos. Ejemplo: O= es la matriz nula de dimensión 2 3. Matriz triangular superior: Matriz cuadrada en la que todos los elementos situados por debajo de la diagonal principal son ceros. Ejemplo: es una matriz triangular superior de orden 3. Matriz triangular inferior: Matriz cuadrada en la que todos los elementos situados por encima de la diagonal principal son ceros. Ejemplo: matriz triangular inferior de orden Matriz diagonal: Matriz cuadrada en la que todos los elementos no situados en la diagonal principal son ceros. Ejemplo: matriz diagonal de orden 3. Matriz escalar: Matriz diagonal en la que todos los términos de la diagonal principal son iguales. Ejemplo: matriz escalar de orden 2. Matriz unidad o matriz identidad: Matriz escalar en la que todos los términos de la diagonal principal son 1. Ejemplo: I = matriz identidad de orden 3. 2
3 Método de Gauss: Se utiliza para resolver sistemas de ecuaciones lineales. Consiste en transformar dicho sistema en otro equivalente a él (con la misma solución). Para ello utilizaremos las siguientes transformaciones: Cambiar dos ecuaciones de orden. Multiplicar una ecuación por un número real distinto de cero. Cambiar una ecuación por una suma de ella con otra ecuación del sistema multiplicada previamente por número real distinto de cero. Ejemplos: Resuelve los siguientes sistemas de ecuaciones: a) x 2 y z= 6 y 3 z= 1 2 z= 2} b) x 2 y z= 7 2 x 5 y 3 z= 19 3 x y z= 5 } c) 3 x y x= 4 x 2 y z= 2 2 y 5 z= 5} 3
4 d) x y z=0 2 x 3 z=7 x 3 y 4 z=1 } e) x 2 y z=3 } y 3 z= 16 2 x y z= 14 f) 2 x y 3 z= 5 4 x 2 y z= 10 x 3y =1 } 4
5 g) x y t=6 } x z t= 1 y z t=6 x y z =0 Operaciones con matrices: Suma de matrices: A B= a ij b ij = a ij b ij. Ejemplo: Producto por un número real (por un escalar) : k A=k a ij = k a ij, k R. Ejemplo: Producto de matrices: Dadas las matrices A= a ij de dimensión m n y B= b ij de dimensión n p, la matriz producto por: A B es de dimensión m p y viene dada A m n B n p =C m p n donde a ij b ij = c ik con: c ik = a ij b jk. j=1 Ejemplos: a)
6 b) Ejercicio: Dadas las matrices A= 2 0 hallar B A? 1 3 y B= , calcula A B. Se puede Propiedades del producto de matrices: Asociativa: A B C = A B C. Elemento Neutro (I= matriz identidad): A I= I A=A. Distributiva respecto a la suma: A B C = A B A C. NO CONMUTATIVA: A B B A Ejemplo: A= B= A B B A 6
7 Ejercicio: Dada la matriz A= , calcula A1999. Ejercicio: Determina la matriz X que verifique la igualdad 3 X I= A B A 2, siendo: A= , B= e I la matriz unidad de orden 3. 7
8 Ejercicio: Calcula los valores a y b que satisfagan cada una de las siguientes igualdades: a) 1 a 2 b a b 3 4 = b) a b a = Ejercicio: Estudia la conmutatividad de las siguientes matrices: A= B= C=
9 Ejercicio: Dadas las matrices A= B= x 0 1 y 1 0 determinar los valores x, y, z que hacen posible la igualdad: A B= A C , z y C= Trasposición de matrices. Matriz simétrica y matriz antisimétrica: La matriz traspuesta de una matriz A de dimensión m n es una matriz de dimensión n m que se obtiene al cambiar en A las filas por columnas. La escribiremos A t. Ejemplo: A= At = Propiedades: A t t =A A B t =A t B t k A t =k A t A B t = B t A t
10 Matriz simétrica: Matriz cuadrada tal que A t = A. Matriz antisimétrica ( o hemisimétrica) : Matriz cuadrada tal que A t = A. Ejemplo: es una matriz simétrica es una matriz antisimétrica. Ejercicio: Dadas las matrices A= y B= A B t = B t A t Comprueba que A B t B t A t Ejercicio: Encuentra todas las matrices que conmutan con A=
11 Matriz inversa: La matriz inversa de una matriz cuadrada A de orden n es la matriz A 1 de orden n que verifica: A A 1 =A 1 A=I Las matrices que tienen inversa se denominan matrices regulares o no singulares, y las que no la tienen se llaman matrices singulares. Cálculo de la matriz inversa: Mediante la definición: Ejemplo: A= Mediante el método de Gauss-Jordan: Hacemos la transformación: A I I A 1 mediante operaciones elementales por filas 11
12 Ejemplos: Calcula la inversa de las matrices: a) A= b) B= c) C=
13 d) D= Ejercicio: Resuelve la ecuación matricial A X =B siendo A= y B=
14 Ejercicio: Resuelve la ecuación matricial: X A B= X, siendo: A= , B= Ejercicio: Resuelve la ecuación matricial: BX 3C =C B 3 I, siendo: B= , C= 0 1 0, e I la matriz identidad de orden
15 Rango de una matriz: Ejemplo: En la matriz A= las filas verifican que F 3 =F 1 F 2, y se dice que F 3 es linealmente dependiente de las filas F 1 y F 2. En una matriz una fila F i no nula depende linealmente de las filas F j, F k,, F t se se verifica: F i =xf j yf k... zf t donde x, y,..., z R. Ejemplo: En la matriz A= se verifica que F 3 =2 F 1 3 F 2, luego podemos decir que F 3 es linealmente dependiente de F 1 y F 2. En una matriz una fila F i no nula es linealmente independiente de las filas F j, F k,, F t si no se puede escribir en la forma anterior (no es posible escribirla como combinación lineal de las demás). Rango o característica de una matriz es el número de filas o columnas no nulas y linealmente independientes que tiene la matriz. Para calcular el rango aplicamos el método de Gauss hasta llegar a una matriz triangular superior, y dicho rango será el número de filas no nulas. Nota: Todo lo explicado para filas sería exactamente igual para columnas. Ejemplos: Calcula el rango de las matrices: a) A=
16 b) B= c) C= d) D=
17 Ejercicio: Calcula el rango, según los valores de k de la matriz: A= k 17
Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la
Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.
Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n
TEMA 7: MATRICES. OPERACIONES.
TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre
MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES
CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno
MATRICES. Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas. o simplemente A = (a.
MATRICES Se denomina matriz de dimensión m n a todo conjunto cuyos elementos están dispuestos en m filas y n columnas A= 2 1 5 0 3 8 A es de dimensión 2 3. a a a En general una matriz de dimensión 2 3
Matrices, determinantes, sistemas de ecuaciones lineales.
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m
Matrices. Álgebra de matrices.
Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,
Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.
TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
Tema 1: MATRICES. OPERACIONES CON MATRICES
Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Tema 1. Álgebra lineal. Matrices
1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos
Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz.
Concepto de matriz. Igualdad de matrices MATRICES 2º Bachillerato Concepto de matriz. Igualdad de matrices Concepto de matriz. Igualdad de matrices Se llama matriz a una disposición rectangular de números
Matrices, determinantes y sistemas de ecuaciones lineales
Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente
Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara
Matemáticas Física Curso de Temporada Verano 2016 Ing. Pablo Marcelo Flores Jara [email protected] UNIDAD III: INTRODUCCIÓN AL CÁLCULO MATRICIAL Ing. Pablo Marcelo Flores Jara [email protected]
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
Matrices y Determinantes.
Matrices y Determinantes. Definición [Matriz] Sea E un conjunto cualquiera, m, n N. Matrices. Generalidades Matriz de orden m n sobre E: a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn a ij
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria
T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes
MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...
TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2
Ejemplo 1. Ejemplo introductorio
. -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones
Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.
1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
MATRICES. Matriz de los coeficientes. Matriz de las incógnitas. Matriz de los términos independientes. Matriz ampliada. Información general
MTRICES Sistema de ecuaciones lineales 2x+ 3y z= 5 5x 2y+ 2z= 10 x y+ 3z= 8 Expresión matricial 2 3 1 x 5 5 2 2 y = 10 1 1 3 z 8 2 3 1 5 2 2 1 1 3 Matriz de los coeficientes 3 filas 3 columnas matriz 3
Tema 1: Matrices. October 13, 2016
Tema 1: Matrices October 13, 2016 1 Matrices Las matrices se usan en muchos ámbitos de las ciencias: sociología, economía, hojas de cálculo, matemáticas, física,... Se inició su estudio en el siglo XIX
Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:
Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...
MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES
CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes
Matrices. Primeras definiciones
Primeras definiciones Una matriz es un conjunto de elementos números ordenado en filas y columnas. En general una matriz se nombra con una letra mayúscula y a sus elementos con letras minúsculas indicando
BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss:
*** OBLIGATORIOS *** 1. Efectúa todos los posibles productos: 2. Calcula la matriz inversa, si existe, usando el método de Gauss: 3. Sean y. Encuentra X para que cumpla: 3 X 2 A = 5 B 4. Encuentra dos
2 - Matrices y Determinantes
Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1
MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS
Definición: se llama matriz de m filas y n columnas sobre un cuerpo K (R ó C), a una ordenación rectangular de la forma Notación: a11 a...... a1n a21 a...... a2n A = M M M donde cada elemento a ij Є K
Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse.
Definición de matriz Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Una matriz es un cuadrado o tabla de números ordenados. Se llama matriz
Matrices. Una matriz es una forma de representar un conjunto de números que guardan una relación entre sí, dando un orden mediante filas y columnas.
Matrices. Una matriz es una forma de representar un conjunto de números que guardan una relación entre sí, dando un orden mediante filas y columnas. Ejemplo: Consideremos la siguiente selección de gustos
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J
Tema 1: Matrices y Determinantes
Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Matrices Definición: Una matriz es un conjunto de números ordenados en filas y columnas. Para definirla se utilizan letras
Teoría Tema 7 Operar con matrices
página 1/12 Teoría Tema 7 Operar con matrices Índice de contenido Concepto de matriz...2 Matriz traspuesta, simétrica y diagonal...3 Suma de matrices y producto de escalar por matriz...6 Producto de matrices...8
DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES
ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas
MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS
Índice Presentación... 3 Matrices... 4 Tipos de matrices I... 5 Tipos de matrices II... 6 Suma de matrices... 7 Multiplicación por un escalar... 8 Producto de matrices... 9 Trasposición de matrices...
Matriz sobre K = R o C de dimensión m n
2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0
Conjuntos y matrices. Sistemas de ecuaciones lineales
1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución
Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a
Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa
Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación
Sistemas de Ecuaciones Lineales y Matrices
Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES
Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...
Matrices y Sistemas de Ecuaciones lineales
Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,
MATRICES OPERACIONES BÁSICAS CON MATRICES
MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.
Álgebra Lineal, Ejercicios
Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES
5 de Abril de 2 MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase ) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Puntos a tratar. Definición
ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.
ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares
Matrices 2º curso de Bachillerato Ciencias y tecnología
MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------
Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =
Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente
MATEMÁTICAS 2º BACH CIENCIAS MATRICES. Profesor: Fernando Ureña Portero
La palabra Álgebra proviene del libro Al-jabr wa l muqabalah, del matemático árabe Al-Jowarizmi (siglo IX). Con dicho nombre se designó en occidente en posteriores siglos a la ciencia que aprendieron del
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )
MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.
Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)
1. Utilizar el método de Gauss para clasificar y resolver cuando sea posible los siguientes sistemas: x 3y + 7z = 10 5x y + z = 8 x + 4y 10z = 11
Teorema de Rouché Frobenius: Si A es la matriz de coeficientes de un sistema de ecuaciones lineales y AM la matriz ampliada de un sistema de ecuaciones lineales. Si r(a = r(am = número de incógnitas =
Matrices 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales
MATRICES Índice:. Introducción-------------------------------------------------------------------------------------- 2. Definición de matriz-----------------------------------------------------------------------------
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se
1 ÁLGEBRA DE MATRICES
1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa
Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales
Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley
Matrices y sistemas de ecuaciones
Matrices y sistemas de ecuaciones María Muñoz Guillermo [email protected] U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Matrices y sistemas de ecuaciones Matemáticas I 1 / 59 Definición de Matriz Matrices
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula
MATRICES. M(n) ó M nxn A =
MTRICES Definición de matriz. Una matriz de orden m n es un conjunto de m n elementos pertenecientes a un conjunto, que para nosotros tendrá estructura de cuerpo conmutativo y lo denotaremos por K, dispuestos
SISTEMAS DE ECUACIONES LINEALES
1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables
MATRICES Y DETERMINANTES II.
MATRICES Y DETERMINANTES II. Matriz adjunta es la matriz cuadrada que se obtiene al sustituir cada elemento por su adjunto correspondiente. Calcula la matriz adjunta: 2 2 2 A =( 2 1 0 ) 3 2 2 Primero calculamos
Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.
Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn
3. Matrices. 1 Definiciones básicas. 2 Operaciones con matrices. 2.2 Producto de una matriz por un escalar. 2.1 Suma de matrices.
Tema I Capítulo 3 Matrices Álgebra Departamento de Métodos Matemáticos y de Representación UDC 3 Matrices 1 Definiciones básicas Definición 11 Una matriz A de dimensión m n es un conjunto de escalares
MATRICES Y DETERMINANTES
Capítulo 6 MATRICES Y DETERMINANTES 6.. Introducción Las matrices y los determinantes son herramientas del álgebra que facilitan el ordenamiento de datos, así como su manejo. Los conceptos de matriz y
Francisco José Vera López
Álgebra y Matemática Discreta Matrices. Sistemas de ecuaciones. Francisco José Vera López Dpto. de Matemática Aplicada Facultad de Informática 2015 1 Matrices 2 Sistemas de Ecuaciones Matrices Una matriz
Ing. Ramón Morales Higuera
MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales
Tema 5. Matrices y Determinantes
Tema 5. Matrices y Determinantes 1. Definiciones 2. Operaciones Propiedades 3. Determinantes Orden 2 Orden 3: Regla de Sarrus Orden mayor de 3 Propiedades 4. Matriz inversa Ecuaciones matriciales 5. Rango
Matrices y determinantes
Matrices y determinantes 1 Matrices Una matriz de orden m n es un conjunto de m n números ordenados en m filas y n columnas Por ejemplo, 1 1 2 0 2 0 2 1 1 1 2 1 3 0 2 es una matriz de orden 3 5 Una matriz
Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas.
MATRICES Las matrices tienen una importancia fundamental en el análisis económico sobre todo en el estudio de sistemas de ecuaciones lineales, como en el modelo insumo-producto. Cuando trabajamos con modelos
MATEMÁTICAS II: MATRICES Y DETERMINANTES
MATRICES Llamaremos matriz de números reales de orden (o dimensión) m n a un conjunto ordenado de m n números reales, dispuestos en m filas y n columnas: A a 11 a 12 a 13 a 1j a 1n a 21 a 22 a 23 a 2j
Tema 2. Sistemas de ecuaciones lineales
Tema 2 Sistemas de ecuaciones lineales Ecuaciones lineales ( x,, x n ) Una ecuación lineal tiene variables 1 término independiente (b) y coeficientes (reales o complejos) a a x a x a x b 1 1 2 2 n n,,
Resumen 3: Matrices, determinantes y sistemas de ecuaciones
Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo
Matrices y determinantes
Matrices y determinantes A = ( aij)=a mxn m = nº filas y n = nº columnas Orden o dimensión = mxn Matriz cuadrada m=n Matriz rectangular m n Matriz fila A 1xn Definiciones de Matrices a 11 a 12...a 1n a
Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5
DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno
Algebra lineal Matrices
Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en
Matrices. Definiciones básicas de matrices. José de Jesús Angel Angel.
Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2009 Contenido 1 Matrices 3 11 Matrices cuadradas 5 12 Matriz transpuesta 5 13 Elementos de
TEMA 7. Matrices y determinantes.
TEMA 7 Matrices y determinantes. 1. Matrices. Generalidades Definición 1 Sea E un conjunto cualquiera, m, n IN. Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12... a 1n a 21
