TRANSFORMADORES MONOFÁSICOS
|
|
|
- Inmaculada Aranda Quintero
- hace 9 años
- Vistas:
Transcripción
1 UESDAD DE CATABA DEATAMETO DE GEEÍA ELÉCTCA Y EEGÉTCA TASFOMADOES MOOFÁSCOS Asignatura: Electrotecnia de Caminos Miguel Angel odríguez ozueta
2 TASFOMADOES * El TASFOMADO es una máquina eléctrica estática que funciona solamente con corriente alterna y que permite transformar energía eléctrica con unos valores de tensión e intensidad en otra con otros valores de tensión e intensidad. Consta básicamente de dos devanados y de un circuito magnético sin entrehierros construido con chapas magnéticas. * DEAADOS DEL TASFOMADO: - Según el flujo de energía: La energía entra al transformador por el devanado primario (con subíndice ) y sale hacia la carga que alimenta por el devanado secundario (con subíndice ). - Según la tensión: El devanado de alta tensión (A.T.) es el de mayor tensión y el devanado de baja tensión (B.T.) es el de menor tensión. * Un transformador elevador tiene el lado de baja tensión en el primario y el de A.T. en el secundario. Un transformador reductor tiene el lado de alta tensión en el primario y el de B.T. en el secundario.
3 ALOES OMALES O ASGADOS * Las TESOES ASGADAS O OMALES (, ) son aquellas para las que se ha diseñado el transformador. * La OTECA ASGADA O OMAL (S ) es la potencia aparente del transformador que el fabricante garantiza que no produce calentamientos peligrosos durante un funcionamiento continuo. Los dos devanados del transformador tienen la misma potencia asignada. * Las COETES ASGADAS O OMALES (, ) se obtienen a partir de las tensiones nominales y de la potencia nominal. S Transformadores monofásicos: Transformadores trifásicos: S 3 L L 3 L L * La ELACÓ DE TASFOMACÓ (m) es el cociente entre las tensiones nominales del primario y del secundario: m * La ELACÓ DE TASFOMACÓ ASGADA es el cociente entre las tensiones nominales del bobinado de A.T. y del bobinado de B.T.
4 ESQUEMA DE U TASFOMADO MOOFÁSCO SEAACÓ DE LAS ESSTECAS DE LOS DEAADOS esistencia del devanado primario esistencia del devanado secundario Φ d Flujo magnético de dispersión del primario Φ d Flujo magnético de dispersión del secundario Φ Flujo magnético común * Convenio de signos para las corrientes: positivas generan Φ positivos e positivas generan Φ negativos. * Convenio de signos para las tensiones: receptor en el primario y generador en el secundario.
5 SEAACÓ DE LAS EACTACAS DE DSESÓ L d Ψ d Φ d cte L d Ψ d Φ d cte X π f ; X π f L d L d E y E son fuerzas contraelectromotrices (f.c.e.m.s): d Ψ d Φ + ; d t d t e d Ψ e + d t d Φ d t Convenio de signos de las f.c.e.m.s: E y E positivas intentan generar corrientes que den lugar a Φ negativos. E 4,44 f ΦM ; E 4,44 f ΦM Luego, se cumple que: m E E
6 MACHA E ACÍO Es la marcha industrial en la que la carga es nula: ; f f ; 0 En vacío las magnitudes, y se denominan, respectivamente, 0, 0 y 0. El factor de potencia del primario cos ϕ en vacío se denomina cos ϕ 0. Se tiene que: 0 (érdidas en el hierro) 0 << ( 0 5% 0 E ) E 0 m E E 0 (Luego: 0 ) 0 + µ La corriente de vacío 0 tiene dos componentes perpendiculares entre sí: µ que genera el flujo magnético común Φ y está en fase con él e que está en fase con la tensión primaria por lo que genera sólo potencia activa, la cuál sirve para compensar las pérdidas en el hierro.
7 ESTUDO DEL CCUTO MAGÉTCO Suponiendo que el transformador siempre funcione con una MACHA DUSTAL ( ; f f ), sus pérdidas en el hierro y su flujo máximo son constantes. Luego, para todas las marchas industriales la f.m.m. total es la misma. Trabajando con fasores y teniendo en cuenta el criterio de signos para las corrientes, en carga se verifica que: F En el caso particular de la marcha en vacío ( 0 ; 0): F 0 Luego: 0 Si la corriente secundaria reducida al primario es ' : ' / m se deduce que: + 0 '
8 EDUCCÓ DEL SECUDAO AL MAO * Se sustituye el secundario real por otro equivalente, de forma que las magnitudes del primario no cambian, se tiene el mismo flujo útil, el mismo balance de potencias y los mismos factores de potencia. El secundario equivalente se elige de forma que tenga el mismo número de espiras que el primario: ' m * Luego, como el flujo no cambia sucede que en este secundario reducido al estator la f.e.m. vale: E ' 4,44 ' f ΦM 4,44 f ΦM E E ' m E E * ara que el flujo útil sea el mismo que con el secundario real, el secundario reducido al primario debe generar la misma f.m.m. que el secundario real: ' ' ' / m * ara que el balance de potencias no cambie, se demuestra que se debe verificar que: ' ' m m X' m X Z' L m ZL
9 ECUACOES DE U TASFOMADO Utilizando el secundario reducido al primario se tiene que el transformador verifica las siguientes relaciones: + 0 ' 0 + µ + ( j ) E + X ( ' j X ) E ' + E ' + ' ' CCUTO EQUALETE DE U TASFOMADO Este circuito cumple las mismas ecuaciones que un transformador con el secundario reducido al primario: or lo tanto, este circuito es equivalente al transformador y se pueden calcular magnitudes del transformador resolviendo este circuito.
10 DAGAMA FASOAL DE U TASFOMADO CO EL SECUDAO EDUCDO AL MAO (Aquí se han exagerado las caídas de tensión. En realidad y ' están prácticamente en fase)
11 CCUTO EQUALETE AOXMADO DE U TASFOMADO Dado el pequeño valor de la corriente de vacío no se comete mucho error si se sustituye el circuito equivalente exacto por este circuito aproximado, más fácil de resolver: Donde: esistencia de cortocircuito + ' X eactancia de cortocircuito X X + X' Z mpedancia de cortocircuito Z + j X Z Z ϕ Los parámetros de este circuito equivalente aproximado se pueden obtener mediante los ensayos de vacío y de cortocircuito.
12 TESOES ELATAS DE COTOCCUTO Z S Cu 00 ( Cu érdidas en el cobre nominales ) X X 00 Los parámetros Z, y X son muy diferentes de unos transformadores a otros, mientras que los parámetros relativos, y X no varían tanto: S S > ka ka : : % 6% 6% 3% cos ϕ X sen ϕ + X
13 FALLO DE COTOCCUTO falta 00 ; falta 00 C CAÍDA DE TESÓ ' ( / m) ( cosϕ ) ± ( senϕ ) 00 X 00 (Signo + para cargas inductivas y signo para cargas capacitivas) Efecto rranti: Cuando la carga conectada al secundario de un transformador es capacitiva puede suceder que la tensión secundaria sea mayor que en vacío (caída de tensión negativa). Cuando la tensión primaria es la nominal, se define la regulación para una carga dada así: c ' 00 00
14 ÉDDAS E U TASFOMADO artiendo del circuito equivalente aproximado se obtiene que: ÉDDAS E EL HEO ÉDDAS E EL COBE Cu ' érdidas en el cobre nominales: Cu También se cumple que: ' Cu 00 S Cu Cu ' C Cu C Cu Índice de carga: S ' C S ÉDDAS FJAS Y AABLES f ( ) 0 ; v Cu
15 EDMETO DE U TASFOMADO η C S C S cosϕ + cosϕ + C Cu endimiento máximo η max f v Cu Copt Cu C opt Cu Balance de potencias
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 2 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 2 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS 1.- TRANSFORMADOR IDEAL Y TRANSFORMADOR REAL El funcionamiento de un transformador se basa en la Ley de Faraday
PROBLEMAS RESUELTOS (TRANSFORMADORES) Problema 1. Un transformador monofásico de VA. y 50 Hz. tiene las siguientes características:
PROBLEMAS RESUELTOS (TRANSFORMADORES) Problema. Un transformador monofásico de 4.344 VA. y 50 Hz. tiene las siguientes características: N 500 espiras.,, r 3 Ω,, x 0 Ω N 50 espiras.,, r 0,03 Ω,, x 0, Ω
Transformadores (Parte 1)
UNIVERSIDAD NACIONAL DE MAR DEL PLATA Máquinas Eléctricas (34) Curso: Ingeniería Mecánica Transformadores (Parte 1) Prof. Justo José Roberts Introducción MÁQUINAS ESTÁTICAS Transformador Autotransformador
ELECTROTECNIA Y MÁQUINAS ELÉCTRICAS
niversidad acional de Cuyo MÁQIAS ELÉCTRICAS GABIETE IDSTRIAL 06 ASIGATRA: CRSO: SEMESTRE: MÁQIAS ELÉCTRICAS 3 5 OMBRE Y APELLIDO: ALMO DOCETES FOTO Prof. Tit. J.T.P. J.T.P. Aux. Docente Ayte Ad Honorem
Tema 2. Transformadores. Joaquín Vaquero López, 2014 Máquinas Eléctricas
Tema. Transformadores Joaquín aquero López, 04 0 Máquinas eléctricas estáticas 0 Transformador ideal y real Índice 03 Circuitos equivalentes 04 Corriente de vacío y de conexión 05 Transformadores trifásicos
Máquinas Eléctricas I - G862
Máquinas Eléctricas - G86 Tema. Monofásicos. roblemas resueltos Miguel Ángel Rodríguez ozueta Departamento de ngeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: rea5ve ommons BY- - A 4.0
Electrotecnia General Tema 35 TEMA 35 TRANSFORMADORES MONOFÁSICOS II TRANSFORMADOR MONOFÁSICO. CIRCUITO DE KAPP REFERIDO AL PRIMARIO.
TEMA 35 TRANSFORMADORES MONOFÁSICOS II 35.1. TRANSFORMADOR MONOFÁSICO. CIRCUITO DE KAPP REFERIDO AL PRIMARIO. Según la hipótesis de Kapp, la intensidad del transformador en vacío I v se considera despreciable,
FACULTAD REGIONAL BUENOS AIRES DTO. DE ELECTRÓNICA
UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL BUENOS AIRES DTO. DE ELECTRÓNICA Cátedra: Máquinas e Instalaciones Eléctricas GUIA DE PROBLEMAS CURSO 2007 - (Primera Parte) Coordinador: Ing. Jorge A.
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 4 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS.- CARACTERÍSTICAS DE LA MÁQUINA ASÍNCRONA O DE INDUCCIÓN Las principales características de estas máquinas son:
PRÓLOGO A LA SEGUNDA EDICIÓN... VII PRÓLOGO A LA TERCERA EDICIÓN... XI
PRÓLOGO A LA SEGUNDA EDICIÓN... VII PRÓLOGO A LA TERCERA EDICIÓN... XI I. FUNDAMENTOS DE ELECTROMAGNETISMO E INTRODUCCIÓN AL ESTUDIO DE LOS CIRCUITOS MAGNÉTICOS EN LAS MÁQUINAS ELÉCTRICAS... 1 I.1. PLANTEAMIENTO
TRANSFORMADORES - PROBLEMAS
TRANSFORMADORES - PROBLEMAS Problema 1. Considerando el transformador ideal de la figura, calcular: a) El número de espiras del bobinado secundario, N 2 b) A amplitud del Ф m Фm =? + + U 1 v= g 240 V -
EXAMEN DE SISTEMAS ELÉCTRICOS
NOMBRE: TEST DE TRANSFORMADORES Y MÁQUINAS 1ª PREGUNTA RESPUESTA A 50 Hz, un transformador tiene unas pérdidas por histéresis de 3 kw siendo las pérdidas totales en el hierro de 5 kw. Si la frecuencia
Transformador monofásico
GUIA DE TRABAJOS PRACTICOS DE LABORATORIO TPN 1 Transformador monofásico 1. Objetivos Realizar la identificación de bobinados y obtener su polaridad (homología). Determinar la curva de magnetización y
Transformadores. Juan Alvaro Fuentes Moreno Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena
Transformadores Juan Alvaro Fuentes Moreno [email protected] Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena enero 2012 JAFM (Ingeniería Eléctrica UPCT) transformadores
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico
ELO 281 Sistemas Electromecánicos Jorge Pontt O. Adolfo Paredes P.
Capítulo 2: EL TRANSFORMADOR Universidad Técnica Federico Santa María ELO 281 Sistemas Electromecánicos Jorge Pontt O. Adolfo Paredes P. 1 2.1 Teoría del Transformador Monofásico Los transformadores son
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Proto%po de Examen Final. Teoría y Problemas Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons
Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 8 - Circuitos Magnéticos y Transformadores. Curso 2018
Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 8 - Circuitos Magnéticos y Transformadores Curso 2018 Contenido de la presentación Bibliografía de referencia Transformador ideal
SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES
SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES TR_1 Del circuito equivalente de un transformador se conocen todos los parámetros que lo forman. Determínense todas las magnitudes eléctricas que aparecen
GENERALIDADES. El autotransformador puede ser considerado como un caso particular del transformador.
AUTOTRANSFORMADOR GENERALIDADES El autotransformador puede ser considerado como un caso particular del transformador. A diferencia del transformador, tiene un sólo bobinado sobre el núcleo, con una parte
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. / L.O.C.E
PRUEBS DE CCESO UNIVERSIDD.O.G.S.E. /.O.C.E CURSO 2003-2004 - CONVOCTORI: JUNIO EECTROTECNI E UMNO EEGIRÁ UNO DE OS DOS MODEOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje
EXAMEN DE SISTEMAS ELÉCTRICOS
NOMBRE: TEST DE TRANSFORMADORES Y MÁQUINAS 1ª PREGUNTA RESPUESTA 10.0 7.5 λ Un transformador monofásico tiene unas pérdidas en el hierro de 6000 W a 50 Hz con chapas de 2 mm de espesor. Siendo su ciclo
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUES DE ESO UNVERSDD.O.G.S.E. URSO 006-007 - ONVOTOR: SEPTEMRE EETROTEN E UMNO EEGRÁ UNO DE OS DOS MODEOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
OPCIÓN A En la asociación de condensadores de la figura, calcular: a) Capacidad equivalente del circuito. b) Carga que adquiere cada condensador al aplicar una tensión de 13 V entre los puntos entre los
Energía y Telecomunicaciones
Energía y Telecomunicaciones Tema 3.2. Circuitos magné4cos y máquinas eléctricas. Material complementario Alberto Arroyo Gu4érrez Mario Mañana Canteli Raquel MarCnez Torre Jesús Mirapeix Serrano Cándido
TRANSFORMADORES TRIFÁSICOS
UERSDD DE TR DERTMETO DE GEERÍ ELÉTR Y EERGÉT TRSFORMDORES TRFÁSOS Miguel ngel Rodríguez ozueta En un sistema trifásico se puede realizar la transformación de tensiones mediante un banco de tres transformadores
Transformadores (Parte 1)
UNIVERSIDAD NACIONAL DE MAR DEL PLATA Máquinas Eléctricas (34) Curso: Ingeniería Mecánica Transformadores (Parte 1) Prof. Justo José Roberts Introducción MÁQUINAS ESTÁTICAS Transformador Autotransformador
Transformador en vacío alimentado a tensión y frecuencia nominal.
Transformadores. 1. Ensayo de Vacío. Este ensayo se realiza en las siguientes condiciones: Transformador en vacío alimentado a tensión y frecuencia nominal. A partir del mismo se determinan las pérdidas
UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA
ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.1.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 00-003 - CONVOCATORIA: JUNIO ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 4. Máquinas Síncronas. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
OPCIÓN En el circuito de la figura, se sabe que con k abierto, el amperímetro indica una lectura de 5 amperios. Hallar: a) Tensión U B b) Potencia disipada en la resistencia R. C + 20V = = 1Ω 10V + K 6Ω
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUES DE ESO UNIVERSIDD.O.G.S.E. URSO 2005-2006 ONVOTORI JUNIO EETROTENI E UMNO EEGIRÁ UNO DE OS DOS MODEOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 3. Máquinas Asíncronas o de Inducción. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia:
Tema III. Transformadores
Titulación. Ingeniero Organización Industrial Asignatura. Tecnología Eléctrica Rev. 1.0 (Enero-01) Tema III. Transformadores 3.1. PRINCIPIO DE FUNCIONAMIENTO DEL TRANSFORMADOR 3.. FINALIDAD Y UTILIZACIÓN
Máquinas Eléctricas I - G862
Máquinas Eléctricas I - G862 Tema 4. Máquinas Síncronas. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 3 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 3 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS 1.- CARACTERÍSTICAS DE LA MÁQUINA SÍNCRONA Las máquinas síncronas son máquinas eléctricas cuya velocidad de rotación
UNIVERSIDAD SIMON BOLIVAR
UNIVRSIDAD SIMON BOLIVAR Deartamento de Conversión y Transorte de nergía Sección de Máquinas léctricas Prof.. Daron B. CT 3 PROBLMAS SOBR LAS MAQUINAS D Hoja No. CAMPO ROTANT PROBLMA CR.- l estator de
Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1
Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1 Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 2 a) La tensión en vacío coincide con la fem de la pila. Al conectarle una carga
I 1 H 1 " SJBLIOT~ Acerca del autor... Prólogo... Agradecimientos...
Contenido u :..:1. F CU1 SJBLIOT~ I 1 H 1 " Acerca del autor.......................................................... Prólogo................................ Agradecimientos..........................................................
Curso de Capacitación: Electricistas Categoría III. para la Ley de Seguridad Eléctrica de la Provincia de Córdoba
Curso de Capacitación: Electricistas Categoría III para la Ley de Seguridad Eléctrica de la Provincia de Córdoba MÓDULO III TEMA III.3 Máquinas Eléctricas Manual del Instalador Electricista Cat.III Pag.228
Transformador con carga Fundamento
Transformador con carga Fundamento En la siguiente figura se encuentra el esquema de un transformador con carga. Designamos los componentes con la siguiente nomenclatura: G es un generador de corriente
Efectos de un bajo factor de potencia y de su compensación
LEYDEN Boletín Técnico Pag. 1/8 Efectos de un bajo factor de potencia y de su compensación 1. CORRIENTE ABSORBIDA: Tal como hemos visto, cuanta mas energía reactiva consume una instalación, peor es el
Z = 35 + j 18,31 (39,5 27,6 Ω) Y = 0, j 0,0117 S I = 2,53 2,38 A U AB = 50,6 2,38 V U BC = 25,17-87,6 V U CD = 37,95 2,38 V U DE = 71,5 92,4 V
CIRCUITOS CON EXCITACIÓN SENOIDAL Ejercicio 101: Para el circuito de la figura con U AE = 100 30,, Calcule: La impedancia de cada elemento y la total. La corriente y las tensiones parciales. Dibujar el
Máquinas Eléctricas II
Máquinas Eléctricas Tema 1. Transformadores Miguel Ángel Rodríguez ozueta Departamento de ngeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons BY- NC- SA 4.0 Este documento
OPERACIÓN DE MAQUINAS ELECTRICAS Y TRANSFORMADORES
TECSUP Transformadores Laboratorio de Máquinas Eléctricas y OPERACIÓN DE MAQUINAS ELECTRICAS Y TRANSFORMADORES Laboratorio EFICIENCIA Y REGULACION DE UN TRANSFORMADOR 0 Laboratorio de Máquinas Eléctricas
Contenido. Acerca del autor... Prólogo... Agradecimientos...
Contenido Acerca del autor... Prólogo... Agradecimientos... xiii xv xix Capítulo 1: CIRCUITOS MAGNÉTICOS Y CONVERSIÓN DE ENERGÍA...... 1 1.1. Introducción.................................... 1 1.2. Materiales
Universidad de Navarra Nafarroako Unibertsitatea. Escuela Superior de Ingenieros Ingeniarien Goi Mailako Estola ASIGNATURA GAIA: SISTEMAS ELÉCTRICOS
Ingeniarien Goi Mailako Estola ASIGNATURA GAIA: SISTEMAS ELÉCTRICOS CURSO KURTSOA: 3º FECHA DATA: 10-09-2005 PRIMERA PARTE DEL EXAMEN TEST Y TEORÍA Tiempo: 90 minutos AULA Fila Columna NOMBRE IZENA: 1ª
SECCIÓN 3: ACCIONAMIENTO DE BOMBAS
SECCÓN 3: ACCONAMENTO DE BOMBAS NTRODUCCÓN as bombas centrífugas pueden accionarse mediante motores eléctricos, turbinas o motores de combustión interna. Salvo en el caso de dificultades en el suministro
UNIVERSIDAD DE COSTA RICA
UNIVERSIDAD DE COSTA RICA IE-035 LABORATORIO DE MÁQUINAS ELÉCTRICAS I EXPERIMENTO 5 - GRUPO 0 PROFESOR: JUAN RAMON RODRÍGUEZ Transformador Monofásico. Relación de transformación y Circuito Equivalente.
Practicas de Fundamentos de Electrotecnia ITI. Curso 2005/2006
Practicas de Fundamentos de Electrotecnia ITI. Curso 005/006 Práctica 4 : Modelo equivalente de un transformador real. Medidas de potencia en vacío y cortocircuito. OBJETIVO En primer lugar, el alumno
REGÍMENES TRANSITORIOS DE LOS TRANSFORMADORES
UNERSDAD DE CANTABRA DEPARTAMENTO DE NGENERÍA ELÉCTRCA Y ENERGÉTCA REGÍMENES TRANSTOROS DE LOS TRANSFORMADORES Miguel Angel Rodríguez Pozueta 1.- CORTOCRCUTOS EN TRANSFORMADORES 1.1.- Corriente permanente
65.48 LABORATORIO DE LAS INSTALACIONES ELECTRCAS
65.48 LBOOIO DE L INLIONE ELE GUI DE EJEIIO DEPMENO DE ELEOENI 1) Hallar el valor medio y eficaz de la siguiente onda I () 5 1 2 3 t ( useg) 2) Hallar el valor medio y eficaz de la siguiente onda U (v)
MÁQUINAS ELÉCTRICAS MÁQUINAS DE INDUCCIÓN
MÁQUINAS DE INDUCCIÓN 4..- INTRODUCCIÓN. Las máquinas de corriente alterna se clasifican en dos grandes grupos: máquinas síncronas y máquinas de inducción (también llamadas asíncronas). 4..- CAMPO MAGNÉTICO
UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA
ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.3.
TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.
TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.
UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA
ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.2.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro
Máquinas Eléctricas I - G862
Máquinas Eléctricas - G86 Tema. Transformadores Miguel Ángel Rodríguez Pozueta Departamento de ngeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons BY- NC- SA 4.0 05, Miguel
es e valor máximo de la fem
U Tópicos apítulo de : Electricidad orriente Alterna y Magnetismo J. Pozo, J. Pozo, A. A. eón eón y.m. y.m. horbadjian. APÍTUO OENTE ATENA (A.. ntroducción Para generar corriente alterna, se puede considerar
Sistemas Lineales 1 - Práctico 5
Sistemas Lineales 1 - Práctico 5 Régimen sinusoidal 1 er semestre 2018 Las principales ideas a tener en cuenta en este práctico son: La impedancia de un elemento se define por la relación V (jω 0 ) = Z(jω
MÁQUINAS ELÉCTRICAS (Or. Mecánica)
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ÁREA MÁQUINAS ELÉCTRICAS MÁQUINAS ELÉCTRICAS (Or. Mecánica) T.P. N 8: ENSAYO INDIRECTO DE UN MOTOR ASINCRÓNICO TRIFÁSICO Este ensayo permite, mediante mediciones sencillas,
Bloque II: 5- Motores de corriente alterna (Motores trifásicos)
Bloque II: 5- Motores de corriente alterna (Motores trifásicos) 1.- Introducción: Corriente alterna y red trifásica Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y dirección
Los siguientes datos de ensayo son de un transformador de dos bobinados de 30 kva, 3000/300 Volts, 10/100 A.
Ejercicio Nº 1 Circuito equivalente Los siguientes datos de ensayo son de un transformador de dos bobinados de 30 kva, 3000/300 Volts, 10/100 A. Ensayo voltaje aplicado corriente potencia Vacío 3000 V
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 6 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS
TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 6 CONCEPTOS BÁSICOS A RETENER Y PROBLEMAS RESUELTOS 1.- CONCEPTOS GENERALES DE CORTOCIRCUITOS Las causas más frecuentes de cortocircuitos en instalaciones de BT son:
SISTEMAS ELECTROMECÁNICOS
Universidad Técnica Federico Santa María Departamento de Electrónica Valparaíso-Chile SISTEMAS ELECTROMECÁNICOS José Rodríguez Agosto de 1999 Introducción. Introducción. Este apunte contiene las figuras
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO.
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA ALICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO Andrés González OBJETIVOS Comprobar experimentalmente la influencia de
MOTORES DE CORRIENTE ALTERNA. Los motores de corriente alterna se clasifican de la siguiente forma:
MOTORES DE CORRIENTE ALTERNA Los motores de corriente alterna se clasifican de la siguiente forma: Trifásicos: formados por tres bobinas iguales; son los más habituales Bifásicos: formados por dos bobinas
MÁQUINAS ELÉCTRICAS PROBLEMAS CURSO Norberto Redondo Melchor. Profesor Asociado Ingeniero Industrial Doctor por la Universidad de Salamanca
UNIVERSIDAD DE SALAMANCA ESCUELA POLITÉCNICA SUPERIOR Avda. Cardenal Cisneros 34 49002 ZAMORA Fax 980 54 50 01 Telf. 980 54 50 00 ÁREA DE INGENIERÍA ELÉCTRICA MÁQUINAS ELÉCTRICAS PROBLEMAS CURSO 2016-2017
APUNTE: EL TRANSFORMADOR
APUNTE: EL TRANSFORMADOR Área de EET Página 1 de 6 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 2002. Página 2 de 6 INDICE
PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD
PUEBS DE CCESO UNVESDD FSE GENE: MTES DE MODDD CUSO 010-011 CONVOCTO SEPTEMBE MTE: EECTOTECN E UMNO EEGÁ UNO DE OS DOS MODEOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA BOLETÍN DE PROBLEMAS MÁQUINA ASÍNCRONA 2009/2010
DATAMNTO D NGNÍA LÉCTCA BOLTÍN D OBLMAS MÁQUNA ASÍNCONA 9/ MÁQUNA ASÍNCONA roblemas propuestos. Un motor asíncrono trifásico con un rotor en jaula de ardilla, tiene los siguientes datos en su placa de
APELLIDOS: NOMBRE: TEORÍA (Responder Razonadamente)
CURSO 12-13. 2º PARCIAL, 22 de Enero de 2.013. Curso de Adaptación al Grado en Tecnologías Industriales. Asignatura: MAQUINAS Y ACCIONAMIENTOS ELECTRICOS TEORÍA (Responder Razonadamente) 1.- La máquina
9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3
1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta
MÁQUINAS ELÉCTRICAS ELECTROMAGNETISMO-MOTORES Y GENERADORES
MÁQUINAS ELÉCTRICAS ELECTROMAGNETISMO-MOTORES Y GENERADORES FUNDAMENTO DE LAS MÁQUINAS ELÉCTRICAS (MOTORES) En una espira cuando pasa a través de ella una corriente eléctrica, se crea en cada una de sus
Máquinas Eléctricas II
Máquinas Eléctricas II Tema 1. Transformadores. Problemas propuestos Miguel Ángel Rodríguez Pozueta Departamento de Ingeniería Eléctrica y Energé5ca Este tema se publica bajo Licencia: Crea5ve Commons
PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. SEGUNDA PARTE
PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. SEGUNDA PARTE GRADO EN INGENIERÍA ELÉCTRICA GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA GRADO EN INGENIERÍA MECÁNICA GRADO EN INGENIERÍA QUÍMICA
LEY DE OHM EN CORRIENTE CONTINUA
LEY DE OHM EN CORRIENTE CONTINA "La intensidad de corriente que circula por un circuito de C. C. es directamente proporcional a la tensión aplicada, e inversamente proporcional a la Resistencia R del circuito."
PRUEBA DE VACIO Y CORTO CIRCUITO
I. OBJETIVOS: PRUEBA DE VACIO Y CORTO CIRCUITO Determinar los parámetros del circuito equivalente para la experiencia en vacio de un transformador monofásico. Determinar si el valor de las perdidas en
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
OPCIÓN A EJECICIO 1. (2,5 puntos) En el circuito de la figura; calcular: a) El valor de E 2 en el circuito sabiendo que la potencia disipada en 2 es de 8 W. b) Las intensidades de corriente indicadas en
CORRIENTE ALTERNA ÍNDICE
CORRIENTE ALTERNA ÍNDICE 1. Introducción 2. Generadores de corriente alterna 3. Circuito de CA con una resistencia 4. Circuito de CA con un inductor 5. Circuito de CA con un condensador 6. Valores eficaces
C.A. : Circuito con Resistencia R
Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I
UNIVERSIDAD DE CANTABRIA. Departamento de Ingeniería Eléctrica y Energética
ENSAYOS DE UN MOTOR ASINCRONO TRIFASICO Datos del motor a ensayar: Referencia del motor a ensayar: Tipo de motor según NEMA: Potencia nominal: kw Velocidad nominal: r.p.m. Tensión nominal: / V Frecuencia
Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL (ELECTRICIDAD) Curso: 2
ASIGNATURA: MÁQUINAS ELÉCTRICAS Código: 127212004 Titulación: INGENIERO TÉCNICO INDUSTRIAL (ELECTRICIDAD) Curso: 2 Profesor(es) responsable(s): Dr. FRANCISCO DE ASÍS RUZ VILA JUAN JOSÉ ORTUÑO LÓPEZ Departamento:
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
OPCIÓN A Dos pilas iguales de fuerza electromotriz 1,5 V y resistencia interna 0,1 Ω. a) Si se asocian en serie y se conectan a una resistencia exterior, la intensidad que circula es de 3 A, cuál es el
Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica
1 Tema 3. Máquinas Eléctricas 2 Máquinas eléctricas. Definición, tipos. Índice El transformador El motor El generador 3 Máquina Eléctrica: Máquinas que realizan la conversión de energía de una forma u
UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA. Cátedra: Máquinas Eléctricas II
NIVERSIDAD TECNOLOGICA NACIONAL FACLTAD REGIONAL AVELLANEDA DTO. DE ELÉCTRICA Cátedra: Máquinas Eléctricas II TRABAJO PRÁCTICO N 2 Características Internas y Externas de Máquinas Sincrónicas - Triángulo
Convocatòria Electrotecnia. Proves d accés a la universitat. Serie 1. Primera parte
Proves d accés a la universitat Electrotecnia Serie 1 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B). Resuelva los ejercicios
PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE ELÉCTRICA PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A
