Conservación del momento angular
|
|
|
- Vanesa Soler Espinoza
- hace 9 años
- Vistas:
Transcripción
1 Zero Order of Magnitude (ZOoM)-PD 13-8 Conservación del momento angular 1. Un patinador profesional empieza una pirueta con sus brazos abiertos en cruz, rotando a una velocidad angular de 1.5 rev/s. Estímese la velocidad de rotación cuando cierra sus brazos, pegándolos al suelo. Podemos aprovechar los resultados del problema 5 del capítulo 9, donde es estimó que el cociente entre los momentos de inercia del patinador respecto del eje vertical que pasa por el centro del cuerpo, cuando los brazos están abiertos y al cuerpo, es abiertos Por otro lado, la conservación del momento angular impone que los momentos angulares antes y después de cerrar los brazos sean los mismos, por tanto L L, abiertos abiertos abiertos de donde, despejando abiertos abiertos (6.35) (1.5 rev/s) 9.55 rev/s.. Los casquetes polares contienen aproximadamente kg de hielo. Su masa prácticamente no contribuye al momento de inercia de la ierra porque están colocados en los polos, cerca de los ejes de rotación. Estímese el cambio en la duración del día que podría esperarse si todo el hielo de los casquetes polares se fundiesen y toda el agua se distribuyese uniformemente sobre la superficie de la ierra. (El momento de inercia de una corteza esférica delgada de masa m y radio r es mr /3; el momento de inercia de una esfera respecto a un eje que pasa por su centro es mr /5; la masa de la ierra es M kg). Nos piden calcular el cambio que se produce en el período de la ierra,, cuando se produce un cierto aumento del momento de inercia. Para ello, empezamos por plantear la ecuación para el período cuando los polos no se han fundido π. El momento angular es
2 Zero Order of Magnitude (ZOoM)-PD 13-8 luego L, π. (.1) L Cuando los polos se funden y se reparten por toda la superficie de la esfera, varía el período y el momento de inercia. Sin embargo, es un proceso que transcurre conservándose el momento angular total de la ierra. Así pues, el momento angular cuando se han fundido los polos es el mismo que el inicial, L L. El período entonces viene dado por π π, L L y usando la ecuación.1 π π El cambio en el tiempo de rotación de la ierra es siendo el cambio de momento de inercia, que es justamente el ocasionado por la fusión de los polos. Usando los datos de los que disponemos en el enunciado del problema, y teniendo en cuenta que 1 día 864 s, llegamos finalmente a la solución: 19 mr 5m kg 4 (864s).55s Mr 3M kg Una partícula de masa g se mueve a una velocidad constante de 3 mm/s trazando una trayectoria circular de radio 4 mm. (a) Encuentre la magnitud el momento angular de la partícula. (b) Si el momento angular es L ll ( + 1), donde l es un número entero, calcule el valor aproximado de l. (c) Explique el motivo por el cual la cuantización del momento angular no se observa en la física macroscópica. (a) Usando la definición de momento angular L mvr ( 1 kg)(3 1 m/s)(4 1 m).4 1 kg m /s
3 Zero Order of Magnitude (ZOoM)-PD 13-8 (b) Resolvamos la ecuación cuántica del momento angular: 8 L.4 1 kg m /s 5 34 ll ( + 1) l + l J s Este valor es astronómicamente grande, lo cual significa que el número cuántico l también deberá ser muy grande, y entonces l l. Podemos aprovechar este hecho para despreciar de la ecuación anterior el sumando lineal con l, de modo que l 5. 1 l (c) La cuantización del momento angular no se observa a escala macroscópica porque no existe ningún experimento capaz de discernir entre l 1 6 y l Los púlsares son estrellas que emiten pulsos regulares, con un período que va desde os segundos hasta los milisegundos. El púlsar es el resultado de una supernova, que deja una estrella muy colapsada denominada estrella de. La masa de la estrella de es comparable a la masa de la estrella original, aunque está compactada en un radio de unos pocos kilómetros, y que gira sobre sí misma a una velocidad angular enorme, desde 1 rev/s hasta 1 rev/s. Esta elevada velocidad de rotación es debida a la conservación del momento angular durante el colapso. (a) Estime la velocidad de rotación del si colapsase formando una estrella de con un radio de 1 km. Ya que el no es una esfera uniforme de gas, su momento de inercia viene dado por la fórmula.59mr. Supóngase que la estrella de es esférica y posee una distribución uniforme de masa. (b) Qué es mayor, la energía cinética de rotación del, o de la estrella de? De donde procede la diferencia de energía? Datos: masa del 1 3 kg; radio del m; velocidad angular de rotación del 1rev/5días.4rev/día. (a) eniendo en cuenta la conservación del momento angular antes y después del colapso L L. Para el, usamos la fórmula aproximada del enunciado, y para la estrella de, la fórmula para el momento de inercia de una esfera que gira alrededor de un eje que pasa por su centro, luego
4 Zero Order of Magnitude (ZOoM)-PD MR 5.59 R 5 MR R m 7 4.4rev/día.89 1 rev/día 1 m que pasado a radianes por segundo es 7 rev 1día π rad/s. día 864s 1rev Esta frecuencia angular corresponde a un período π π.3s, s y por tanto es del orden de los milisegundos. (b) Calculemos las energías cinéticas de rotación del y de la estrella de. Despreciando el hecho de que el no es un objeto rígido, tenemos que K 1 5 MR R K.59MR R rev/día m.4 rev/día En conclusión, la energía cinética del se incrementa en un factor del orden de 1 9!! Esta energía no surge espontáneamente de la nada, ya que la energía total debe conservarse. En realidad, prácticamente todo el porcentaje de esta energía viene de la disminución de energía potencial gravitatoria de la estrella cuando colapsa El momento de inercia de la ierra respecto a su eje de rotación es aproximadamente igual a kg m. (a) Puesto que la ierra es casi esférica, supondremos que su momento de inercia puede escribirse como CMR, donde C es una constante adimensional, M kg es la masa de la ierra, y R 637 km. Determine el valor de la constante C. (b) Si la masa de la ierra estuviese distribuida uniformemente, C sería igual a /5. Comparando con el valor de C calculado en el apartado (a), induzca si la densidad de la ierra es mayor cerca del núcleo o cerca de la corteza. (a) Despejando de la fórmula
5 Zero Order of Magnitude (ZOoM)-PD kg m C.331. MR 4 6 ( kg)( m) (b) Comparando, C < /5.4, por lo que el momento de inercia de la ierra es menor que el que le correspondería si fuese una esfera perfectamente homogénea. De este resultado, podemos inferir que la ierra es más densa en el núcleo.
La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.
En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.
1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m
Física º Bachillerato Ejercicios resueltos 1. ASRONOMÍA 1.1. Introducción 1.. Astronomía pre-newtoniana 1. Suponiendo que los planetas Venus y la ierra describen órbitas circulares alrededor del Sol, calcula:
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
a) Defina las superficies equipotenciales en un campo de fuerzas conservativo.
PAU MADRID SEPTIEMBRE 2003 Cuestión 1.- a) Defina las superficies equipotenciales en un campo de fuerzas conservativo. b) Cómo son las superficies equipotenciales del campo eléctrico creado por una carga
CAMPO GRAVITATORIO SELECTIVIDAD
CAMPO GRAVITATORIO SELECTIVIDAD EJERCICIO 1 (Sept 2000) a) Con qué frecuencia angular debe girar un satélite de comunicaciones, situado en una órbita ecuatorial, para que se encuentre siempre sobre el
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado
PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler:
Leyes de Kepler: 1. (79-SE10) Sabiendo que la distancia media Sol Júpiter es 5,2 veces mayor que la distancia media Sol Tierra, y suponiendo órbitas circulares: a) Calcule el periodo de Júpiter considerando
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad
Física. Choque de un meteorito sobre la tierra
Física Choque de un meteorito sobre la tierra Hace 65 millones de años la Tierra cambió de forma repentina, muchas especies desaparecieron, plantas, animales terrestres y marinos y sobre todo, los grandes
FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA
FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID
Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.
Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector
Mm R 2 v= mv 2 R 24 5,98 10
POBLEMAS CAMPO GAVIAOIO. FÍSICA ºBO 1. Un satélite artificial describe una órbita circular alrededor de la ierra. En esta órbita la energía mecánica del satélite es 4,5 x 10 9 J y su velocidad es 7610
momento de inercia para sistema de particulas n I = F= Δ P Δ t τ= Δ L L=I ω L=r p sen θ τ=r F sen θ m i r i
FORMULARIO P=mv L=I ω L=r p sen θ τ=r F sen θ F= Δ P Δ t τ= Δ L Δ t momento de inercia para sistema de particulas n I = i=1 m i r i 2 Momento de inercia para cuerpos rígidos con respecrtoa diferentes ejes
Dinámica en dos o tres dimensiones
7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el
Problemas adicionales de Física Cuántica (2010/2011)
Problemas adicionales de Física Cuántica (2010/2011) Mª del Rocío Calero Fernández-Cortés María Jesús Jiménez Donaire Ejercicio 3.- La potencia (en forma de ondas gravitacionales) emitida por un sistema
Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.
æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la
Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016
Universidad de Sonora Departamento de Física Mecánica II Dr. Roberto Pedro Duarte Zamorano 2016 Temario 1. Cinemática rotacional. 2. Dinámica rotacional. 3. Las leyes de Newton en sistemas de referencia
Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.
Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen
Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita
Junio 2012. Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita 4 circular a una altura de 2 10 km sobre su superficie. a) Calcule la velocidad orbital del satélite
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL
PRIMER TALLER DE REPASO PROBLEMAS DE CAMPO GRAVITACIONAL 1. La distancia entre los centros de dos esferas es 3 m. La fuerza entre ellas es.75 x10-1 N. Cuál es la masa de cada esfera, si la masa de una
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
Física: Movimiento circular uniforme y velocidad relativa
Física: Movimiento circular uniforme y velocidad relativa Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El
FUERZAS CENTRALES. Física 2º Bachillerato
FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión
Profesor: Angel Arrieta Jiménez
TALLER DE CENTROIDES, FUERZAS INTERNAS Y DINÁMICA DE CUERPOS RÍGIDOS 1. Hallar las coordenadas del centroide de la superficie sombreada en cada figura. 2. Hallar, por integración directa, la coordenada
1. El movimiento circular uniforme (MCU)
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR
CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación
CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema
Mecánica del Cuerpo Rígido
Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.
1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de
1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro
1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A
GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO
Desarrollar una de las dos opciones propuestas. Cada problema puntúa 3 (1,5 cada apartado) y cada cuestión teórica o práctica 1. OPCIÓN 1 Un cilindro macizo y homogéneo de 3 kg de masa y 0,1 m de radio
5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.
Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)
I. Objetivos. II. Introducción.
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento
7. PÉNDULO DE TORSIÓN
7. PÉNDULO DE TORSÓN OBJETVO El objetivo de la práctica es comprobar la dependencia del momento de inercia de un objeto respecto a la distancia al centro de rotación y realizar la medición del momento
ECUACIONES DIMENSIONALES
ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?
Campo eléctrico. Fig. 1. Problema número 1.
Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica
Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r
IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4
Movimiento y Dinámica circular
SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las
Esta guía es para todos los cursos de Tercero Medio del Liceo Unidad de Recapitulación Profesor: Héctor Palma A.
Unidad de Recapitulación Profesor: Héctor Palma A. Movimiento Circunferencial OPICO GENERAIVO: Estudio del Movimiento Circunferencial Uniforme APRENDIZAJES ESPERADOS: Reconocen y utilizan los conceptos
Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A
1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital
Solución de Examen Final Física I
Solución de Examen Final Física I Temario A Departamento de Física Escuela de Ciencias Facultad de Ingeniería Universidad de San Carlos de Guatemala 28 de mayo de 2013 Un disco estacionario se encuentra
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1
RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 Para recuperar la asignatura Física y Química 1º de bachillerato debes: Realizar en un cuaderno las actividades de refuerzo
EXPRESION MATEMATICA
TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales
de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.
1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de
2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?
PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía
GUIA Nº5: Cuerpo Rígido
GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia
TEMA II: CINEMÁTICA I
1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de
Física: Rotación de un Cuerpo Rígido
Física: Rotación de un Cuerpo Rígido Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Objetivo En esta sección dejaremos de considerar a los objetos como partículas puntuales. En vez, hablaremos
Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)
Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la
6299, 2m s ; b) E= -3, J
1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor
LABORATORIO DE MECANICA INERCIA ROTACIONAL
No 10 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Investigar la inercia rotacional de algunas distribuciones de masas conocidas.
Objetos en equilibrio - Ejemplo
Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo
10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si
Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten
Módulo 1: Mecánica Sólido rígido. Rotación (II)
Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 17 DE 2014 SOLUCIÓN Pregunta 1 (8 puntos) P y R señalan
j, E c = 5, J, E P = J)
CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos
Física 3 - Turno : Mañana Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos 1. Estudie la trayectoria de una partícula de carga q y masa m que
Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR
Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este
EJERCICIOS DE CINEMÁTICA 4º E.S.O.
EJERCICIOS DE CINEMÁTICA 4º E.S.O. Tema 1 del libro: Conceptos:. Sistema de referencia..trayectoria, desplazamiento, velocidad, aceleración. Movimiento rectilíneo uniforme.. Movimiento rectilíneo uniformemente
E 3.2. MOVIMIENTO DE PARTÍCULAS EN UN CAMPO MAGNÉTICO
E 3.2. MOVIMIENTO DE PARTÍCULAS EN UN CAMPO MAGNÉTICO E 3.2.03. Una partícula de masa m [kg] y carga q [C] ingresa con energía cinética K 0 [J] a una región donde existe un campo magnético uniforme de
MOVIMIENTO CIRCULAR UNIFORME.
Física y Química 4 ESO MOVIMIENTO CIRCULAR Pág. 1 TEMA 4: MOVIMIENTO CIRCULAR UNIFORME. Un móvil posee un movimiento circular uniforme cuando su trayectoria es una circunferencia y recorre espacios iguales
Docente: Angel Arrieta Jiménez
CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.
1.6. MOVIMIENTO CIRCULAR
1.6. MOVIMIENTO CIRCULAR 1.6.1. Si un móvil animado de movimiento circular uniforme 0 describe un arco de 60 siendo el radio de 2 m, habrá recorrido una longitud de: 2π 3π a) m b) m c) 12 m 3 2 12 d) m
OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO
OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del
Campo gravitatorio. 1. A partir de los siguientes datos del Sistema Solar: Periodo orbital (años)
Campo gravitatorio 1 Campo gravitatorio Planeta 1. A partir de los siguientes datos del Sistema Solar: Distancia al Sol (U.A.) Periodo orbital (años) R Planeta /R T M Planeta /M T Venus 0,723 0,6152 0,949
UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL
UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL ESCUELA DE FORMACION PROFESIONAL DE INGENIERIA CIVIL DO TRABAJO SEMESTRAL SOLUCION DE EJERCICIOS PROPUESTOS
Cinemática: parte de la Física que estudia el movimiento de los cuerpos.
CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio
2DA PRÁCTICA CALIFICADA
2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA
Departamento de Física y Química. PAU Física, modelo 2012/2013 OPCIÓN A
1 PAU Física, modelo 2012/2013 OPCIÓN A Pregunta 1.- Un cierto planeta esférico tiene una masa M = 1,25 10 23 kg y un radio R = 1,5 10 6 m. Desde su superficie se lanza verticalmente hacia arriba un objeto,
Guía realizada por: Pimentel Yender.
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR
I. Objetivo. II. Introducción.
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #1: Cinemática Rotacional: MCU y MCUA I. Objetivo. Estudiar el movimiento rotacional
Decimos que un objeto se mueve con un movimiento circular si su trayectoria es una circunferencia.
Movimiento circular La trayectoria de un móvil sabemos que puede tener formas muy diversas. Hasta ahora hemos estudiado el caso más simple de trayectoria, la rectilínea. Ahora vamos a dar un paso más y
MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL UNIFORME
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. PROF. JONATHAN CASTRO F. UNIDAD 1: MOVIMIENTO CIRCUNFERENCIAL
GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN PRUEBA COEFICIENTE DOS Nombre: Curso: Fecha:
I.MUNICIPALIDAD DE PROVIDENCIA CORPORACIÓN DE DESARROLLO SOCIAL LICEO POLIVALENTE ARTURO ALESSANDRI PALMA DEPARTAMENTO DE FÍSICA PROF.: Nelly Troncoso Rojas. GUIA DE ESTUDIO FÍSICA 3 COMÚN PREPARACIÓN
UNIDAD 6 F U E R Z A Y M O V I M I E N T O
UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las
La Hoja de Cálculo en la resolución de problemas de Física.
a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de [email protected]
INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión
INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos
Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A
Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco
CAMPO MAGNÉTICO. SOL: a) F=1,28*10-19 N; b) F=1,28*10-19 N; c) F=0N.
CAMPO MAGNÉTICO 1. Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 10 5 m/s, se encuentra a 50 cm del conductor. Calcule
FÍSICA 2ºBach CURSO 2014/2015
PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una
Seminario de Física. 2º Bachillerato LOGSE. Unidad 1: Campo Gravitatorio
A) Interacción Gravitatoria 1.- La distancia media de Marte al Sol es 1,468 veces la de la Tierra al Sol. Encontrar el número de años terrestres que dura un año marciano. Sol: T M = 1,78 T T 2.- El periodo
Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.
Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones
Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo
Elementos que Influyen en el Dimensionamiento: Inercia, Carga, Par y Velocidad. Herramientas y Aplicación Ejemplo Panasonic Electric Works España Motion Control Agenda Definición de inercia y ejemplos
Modelo Atómico. Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga (-)
Modelo Atómico 1 Thompson (1898): Esfera uniforme de materia con carga (+) en la cual se encuentran embebidos los electrones con carga () Electrón Conceptos:» Neutralidad eléctrica» Carga elemental del
I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Preliminares y Tema 1 Departamento de Física
I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos 2009-10-reliminares y Tema 1 Departamento de Física 1) Dado el campo escalar V ( r) = 2zx y 2, a) determine el vector
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES
EXAMEN DE RECUPERACIÓN. FÍSICA Septiembre 18 del 2014 (08h30-10h30)
EXAMEN DE RECUPERACIÓN DE FÍSICA Septiembre 18 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE:
EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO
GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO Objetivos de aprendizaje: Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Entender los fenómenos de
RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO
RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes
PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)
FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre
CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS
CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.
Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla
Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese
Districte universitari de Catalunya
SERIE 3 PAU. Curso 2003-2004 FÍSICA Districte universitari de Catalunya Resuelva el problema P1 y responda a las cuestiones C1 y C2. Escoja una de las opciones (A o B) y resuelva el problema P2 y responda
Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.
Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos
