Descriptores de Forma
|
|
|
- Carla Martin Ávila
- hace 9 años
- Vistas:
Transcripción
1 Descriptores de Forma Procesamiento de Imágenes y Bioseñales I Gabriela Villavicencio Andrés Cortés Jorge Mansilla Javier Ortiz
2 Agenda Microscopia y Procesamiento en la migración celular Descriptores de forma Descriptores de topología Descripción del objeto Información general Descriptores Límite y Región Chain Codes Basic región descriptors Momentos
3 Usos de la microscopia y Procesamiento de imágenes en la migración celular Útil y poderosa herramienta Analisis de fenomenos dinamicos Migración celular
4 Flujograma Que se pretende? Segmentada la imagen y seleccionado el ROI Básicamente, dos posibilidades para representar las regiones: En términos de sus características externas (contornos) En términos de sus características internas ( región ocupada y pixeles) Describirlas utilizando Descriptores
5 Descriptores de Forma Definir la forma de un objeto puede resultar difícil. Forma = figura exterior (o geometría) de un cuerpo u objeto. Descriptores de forma más usados: Área Perímetro Diámetro Distancias: máxima y mínima al centro de masas Ejes mayor y menor, ángulo del eje mayor Envolvente (bounding box)
6 Descriptores más usados en la dinámica de la migración celular Perímetro: Número de píxeles que forman el contorno de la forma Diferente resultado si se usa 4-conectividad ó 8-conectividad (igual ocurre con otros descriptores) Área: Número de píxeles o voxel de la forma Centroide o centro de masas: Promedio de los valores de las coordenadas de los puntos de la forma También puede calcularse a partir de los puntos del contorno Envolvente (bounding box) que encierra al objeto que estamos analizando
7 Descriptores Topológicos Son ampliamente usados para caracterizar circuitos o redes tubulares en el desarrollo de diversos tejidos durante la migración celular De los cuales es importante mencionar: La conectividad Agujeros (2D) Túneles y cavidades (3D) Esqueleto - - Una imagen segmentada puede estar compuesta por regiones que tienen componentes conexas que configuran los objetos, es decir, regiones tales que dos puntos cualesquiera de ellas se pueden unir por una curva contenida en ellas. Un agujero es una región de la imagen que está completamente encerrada por una componente conexa de la imagen. Esqueleto representa la estructura de un objeto (conservando la conectividad, los agujeros y, en cierto modo, la extensión del mismo) con un número pequeño de píxeles.
8 Representación de la topología de las fibras Identificación de cada fibra realizando una reducción un conjunto de fibras en una estructura 1D (línea segmentada en 2D o 3D) Modelo Esqueleto Análisis Topológica de las fibras en astrocitos según su orientación y espesor de la fibra
9 Descripción del Objeto Los objetos son representados como un conjunto de pixeles en una imagen. Los descriptores permiten comparar y reconocer objetos haciendo coincidir los descriptores de objetos en una imagen en contra de los descriptores de objetos conocidos. Los descriptores deben poseer cuatro propiedades: Conjunto completo. Congruentes. Invarianza. Conjunto Compacto.
10 Descriptores
11 Límites y Región Región: Describe el contenido o puntos interés. Límite: Contorno de la región, perímetro. Frontera: Si el punto es parte de la región y al menos un pixel de su vecindad no es parte de la región.
12 Conectividad Proximidad espacial entre pixels de la imagen binaria. Dos formas de conectividad que permiten definir los puntos interiores de la región y los puntos de frontera son:
13 Conectividad 4-way connectivity Analizan los vecinos inmediatos para la conectividad. Es mas rapida. Se realiza menos cálculos. Dos regiones disjuntas 8-way connectivity Analizan los 8 píxeles circundantes a un pixel escogido Es más precisa. Se realiza más cálculos. No hay regiones disjuntas.
14 Conectividad Un límite y una región se pueden definir utilizando ambos tipos de conectividad y siempre son complementarios. Si el contorno esta conectado en 4 vías, la región se conectara en 8 direcciones y viceversa.
15 Chain codes Es una de las técnicas más antiguas, usadas actualmente Existen dos maneras de realizar la conexión de los pixeles para formar la cadena Es un descriptor de contornos de un objeto o región Trabaja sobre imágenes binarias Se almacena la posición relativa de un pixel, con respecto adyacente, con lo que se obtiene una cadena o vector de números
16 Chain codes Feature Extraction and Image Processing, Nixon & Aguado (Elsevier) 2002.
17 Chain codes Dr. José Muñoz Pérez Universidad de Málaga, E.T.S. de Ingeniería Informática,
18 Chain codes
19 Chain codes
20 Chain codes Esta representación se mantiene invariante frente a traslaciones, lo que facilita la comparación de objetos A partir del resultado que este entrega, se pueden obtener datos del contorno como: Perímetro Área Descriptores de Fourier Cualquier ruido o perturbación en la imagen, puede inducir a errores La cadena obtenida puede llegar a ser demasiado larga en objetos grandes
21 Region descriptors Hasta ahora vimos los descriptores de perímetros o bordes, pero su contraparte ahora es describir la región o el área Veremos 2 principales descriptores, los cuales difieren en el enfoque Basic Regional Descriptor: propiedades geométricas Moments: se centra en la densidad de la región
22 Region descriptors Basic Regional Descriptor Área El área se mantiene fija a las operaciones de rotación, no así a los escalamientos
23 Region descriptors Basic Regional Descriptor Perímetro
24 Region descriptors Basic Regional Descriptor Perímetro Si el pixel (Xi, Yi) y el (Xi-1, Yi-1) son vecinos 4-way, entonces el valor para la suma es 1, en cualquier otro caso es 2
25 Region descriptors Basic Regional Descriptor Dispersión (irregularidad)
26 Region descriptors Basic Regional Descriptor Otras Medidas A diferencia de las anteriormente mostradas, las cuales se enfocan en la propiedades geométricas del objeto, estas se basan en la estructura Poincarré Eulen Number Se encarga del número de holes dentro de la región Calcula la diferencia entre el número de regiones conectadas y el número de hoteles dentro de ellas
27
28
29 mu 00 = (1*1*1)+(1*1*1)+(1*1*1)+(1*1*1) = 4 mu 10 = (2*1*1)+(3*1*1)+(4*1*1)+(3*1*1) = mu 01 = (1*2*1)+(1*2*1)+(1*2*1)+(1*3*1) = 9 cm x = 12/4 = cm y = 9/4 = 2, mu 20 = (4*1*1)+(9*1*1)+(16*1*1)+(9*1*1) = 38 mu 02 = (1*4*1)+(1*4*1)+(1*4*1)+(1*9*1) = 21
30 Momento centralizado
31
32
33
34
Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales
Tema 6: Descriptores topológicos, geométricos y estadísticos de las imágenes digitales de imágenes (después de realizar una segmentación) Componentes conexas Agujeros (2D) Túneles y cavidades (3D) Característica
diseño asistido por computador Modelado sólido departamento de ingeniería de sistemas y automática
diseño asistido por computador Modelado sólido departamento de ingeniería de sistemas y automática ALÁMBRICOS MODELADORES GEOMÉTRICOS SUPERFICIES SÓLIDOS poliédricas libres barridos instanciación y parametrización
Imágenes binarias. Horn, Robot Vision Haralick & Shapiro, Computer and Robot Vision Gonzalez & Woods, Digital Image Processing. imagenes binarias 1
Imágenes binarias Horn, Robot Vision Haralick & Shapiro, Computer and Robot Vision Gonzalez & Woods, Digital Image Processing imagenes binarias 1 Propiedades geométricas simples: Area: la integral de la
1. GRAFOS : CONCEPTOS BASICOS
1. GRAFOS : CONCEPTOS BASICOS Sea V un conjunto finito no vacio y sea E V x V. El par (V, E) es un grafo no dirigido, donde V es un conjunto de vértices o nodos y E es un conjunto de aristas. Denotaremos
Lección 2: Conectividad
Lección : Conectividad.Definiciones.Algoritmos de etiquetado Recursivo Secuencial.Análisis de conectividad RLE Algoritmo secuencial 8 - J. Neira Universidad de Zaragoza Conectividad Propósito: separar
Caracterización de Imágenes
de Imágenes Visión Artificial Andrea Rueda Pontificia Universidad Javeriana Departamento de Ingeniería de Sistemas Caracterizar: "determinar los atributos peculiares de alguien o de algo, de modo que claramente
TEMARIOS EXAMEN DE ADMISIÓN 2017 EDUCACIÓN BÁSICA Y MEDIA: MATEMÁTICA. Contenido
TEMARIOS EXAMEN DE ADMISIÓN 2017 1 Básico 1.- Reconocimiento izquierda derecha 2.- Figuras geométricas 3.- Cuerpos geométricos 4.- Establecer patrones 5.- Secuencias temporales 6.- ordinales 7.- Reconocimiento
Porqué analizar imágenes?
Porqué analizar imágenes? Medidas que requieren estudiar un número demasiado elevado de imágenes. Análisis cuantitativo: La visión humana no cuantifica por si sola. El análisis automático es más repetitivo
NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt
1 Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt Introducción: Una transformación de una figura geométrica indica que, de alguna manera, ella es alterada o sometida a algún cambio. En
CONTENIDOS MÍNIMOS BLOQUE 2. NÚMEROS
CONTENIDOS Y CRITERIOS DE EVALUACIÓN DE MATEMÁTICAS 1º DE ESO. Bloque 1: Contenidos Comunes Este bloque de contenidos será desarrollado junto con los otros bloques a lo largo de todas y cada una de las
GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones
Visión artificial y Robótica Modelos de movimiento y mapas. Depto. de Ciencia de la Computación e Inteligencia Artificial
Visión artificial y Robótica Modelos de movimiento y mapas Depto. de Ciencia de la Computación e Inteligencia Artificial Contenidos Sistemas de coordenadas Localización de objetos en el espacio Modelos
open green road Guía Matemática VECTORES tutora: Jacky Moreno .co
Guía Matemática VECTORES tutora: Jacky Moreno.co open green 1. Cantidades vectoriales y escalares En general, dentro de las matem aticas, estamos acostumbrados a trabajar con magnitudes que quedan conocidas
Proyecto Guao CONGRUENCIA DE TRIÁNGULOS
CONGRUENCIA DE TRIÁNGULOS Y si te dieran dos triángulos con todas las medidas de los ángulos y todas las longitudes de los lados marcados? Cómo sabrías si los dos triángulos son congruentes? Después de
Procesamiento de imágenes
Procesamiento de imágenes Técnicas de realce de imágenes Técnicas de realce de imágenes Las imágenes digitalizadas no presentan siempre una calidad adecuada para su utilización, ello puede ser debido a
Mosaicos regulares del plano
Mosaicos regulares del plano Máster Universitario de formación de Profesorado Especialidad Matemáticas Begoña Hernández Gómez 1 Begoña Soler de Dios 2 Beatriz Carbonell Pascual 3 1 [email protected]
CAPITULO 6. Análisis Dimensional y Semejanza Dinámica
CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos
Operaciones Morfológicas en Imágenes Binarias
Operaciones Morfológicas en Imágenes Binarias Introducción La morfología matemática es una herramienta muy utilizada en el procesamiento de i- mágenes. Las operaciones morfológicas pueden simplificar los
Mecánica de Fluidos. Análisis Diferencial
Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de
Reconstrucción Tridimensional a Partir de Varias Imágenes
Reconstrucción Tridimensional a Partir de Varias Imágenes Dr. Luis Gerardo de la Fraga E-mail: [email protected] Sección de Computación Departamento de Ingeniería Eléctrica CINVESTAV 22 de noviembre,
Colegio Saint Benedict / Departamento de Matemática
Prueba Escrita de matemática / Nivel: Sétimo año 1. Geometría Punto Puntos colineales y no colineales Recta Segmento Semirrecta Rayo Rectas concurrentes Rectas paralelas en el plano Rectas perpendiculares
Nombre: Curso: Fecha: -
1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 4: Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza
1 Representación por superficies de polígonos
1 La representación de frontera que más se utiliza para un objeto gráfico tridimensional es un conjunto de polígonos de superficie que encierran el interior del objeto. Muchos sistemas gráficos almacenan
Análisis Topológico de Máquinas y Mecanismos. MAQUINAS Y MECANISMOS. Análisis Topológico.
Análisis Topológico de Máquinas y Mecanismos 1 Índice Teoría a de Máquinas M y Mecanismos. Definiciones. Pares cinemáticos ticos. Clasificación n de miembros. Esquemas y modelos de mecanismos. Mecanismos
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 5º ED. PRIMARIA El cálculo y los problemas se irán trabajando y evaluando a lo largo de todo el año. 1ª EVALUACIÓN CONTENIDOS. o Los números de siete y
UNIDAD 7. SISTEMA MÉTRICO DECIMAL
UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,
A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes.
M150: Creciendo A) Presentación del problema LOS JOVENES CRECEN MAS ALTO A continuación se presenta la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. B) Preguntas del problema
Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado
Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN
TEMARIOS EXAMEN DE ADMISIÓN 2016 EDUCACIÓN BÁSICA Y MEDIA: MATEMÁTICA
TEMARIOS EXAMEN DE ADMISIÓN 2016 1 Básico y operaciones Ámbito 0 al 10 Emplear los números para identificar, contar, clasificar, sumar, restar, informarse y ordenar elementos de la realidad. Representar
Unidad III: Curvas en R2 y ecuaciones paramétricas
Unidad III: Curvas en R2 y ecuaciones paramétricas 2.1 Ecuación paramétrica de la línea recta. La recta constituye una parte fundamental de las matemáticas. Existen numerosas formas de representar una
OBTENCIÓN Y MANEJO DE DATOS CON SOFTWARES DE SIG ERASMO AGUILAR SIG FARQ UNI
OBTENCIÓN Y MANEJO DE DATOS CON SOFTWARES DE SIG ERASMO AGUILAR SIG FARQ UNI - 2013 Mapa: Es una representación gráfica simplificada de objetos, fenómenos, características, etc. Del mundo real, dentro
Geometría Analítica Agosto 2016
Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman
5 CINEMATICA DEL CUERPO RIGIDO EN MOVIMIENTO PLANO. Dr A A C. y(o ) x(o ) 5.1 INTRODUCCION
5 CINEMTIC DEL CUERPO RIGIDO EN MOVIMIENTO PLNO 5.1 INTRODUCCION Cuerpo Rígido Sistema dinámico que no presenta deformaciones entre sus partes ante la acción de fuerzas. Matemáticamente, se define como
UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA
UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran
1. Los números reales. 2. Representación. 3. Densidad de los números racionales. 4. Propiedades de los números reales
EJES ARTICULADORES Y PRODUCTIVOS DEL AREA SISTEMA DE CONOCIMIENTOS GRADO: 10 11 1. Los números reales 1. Desigualdades. 2. Representación 2. Propiedades. 3. Densidad de los números racionales 4. Propiedades
MatemáticaDiscreta&Lógica 1
MatemáticaDiscreta&Lógica 1 Sistemas de numeración Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html SISTEMAS DE NUMERACIÓN.::. Introducción. Podemos
Analizar familias de figuras geométricas para apreciar regularidades y simetrías y establecer criterios de clasificación.
Matemáticas 8 Básico Eje temático: Geometría Introducción La prueba del subsector de Educación Matemática evalúa el logro de los OF- CMO establecidos en el marco curricular del segundo ciclo de Educación
MÓDULO DE MATEMÁTICAS I Contenidos
Bloque 1. Contenidos comunes MÓDULO DE MATEMÁTICAS I Contenidos Utilización de estrategias y técnicas en la resolución de problemas tales como análisis del enunciado y comprobación de la solución obtenida.
bloque i ejes aprendizajes esperados sentido numérico y PensaMiento algebraico forma, espacio y Medida Manejo de la información Patrones y ecuaciones
TERCER GRADO bloque i Explica la diferencia entre eventos complementarios, mutuamente excluyentes e independientes. Resolución de problemas que impliquen el uso de ecuaciones cuadráticas sencillas, utilizando
CENTRO UNIVERSITARIO MONTEJO A. C. Temario de Matemáticas 3. Bloque I
Bloque I Explica la diferencia entre eventos complementarios, mutuamente excluyentes e independientes. Resolución de problemas que impliquen el uso de ecuaciones cuadráticas sencillas, utilizando procedimientos
PRÁCTICA DEMOSTRATIVA N
PRÁCTICA DEMOSTRATIVA N 1 (VECTORES) Ing. Francisco Franco Web: http://mgfranciscofranco.blogspot.com/ Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson H. Imbachi M. Ingeniería
Cuaderno de matemáticas 1. Numeración: Concepto y grafía del número 5.
Cuaderno de matemáticas 1 Numeración: Concepto y grafía del número 1. Conceptos matemáticos: Formas geométricas. Nociones espacio-temporales: Dentro, fuera, en el borde. Ampliación y refuerzo: Atención
Guía de Matemática Tercero Medio
Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y
Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.
Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016
Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.
Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía
CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE
UNIERSIDD NION DE O FUTD DE INGENIERÍ EÉTRI Y EETRÓNI ESUE PROFESION DE INGENIERÍ EÉTRI ENTRO DE GREDD, ENTRO DE MS Y ENTROIDE ING. JORGE MONTÑO PISFI O, 2010 ENTRO DE GREDD, ENTRO DE MSYY ENTROIDE ENTRO
Polígonos regulares, el triángulo de Sierpinski y teselados
Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES
3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO
3º ESO - UNIDAD 12.- TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO OBJETIVOS MÍNIMOS DE LA UNIDAD 12 1.- Reconocer los diferentes tipos de movimientos 2.- En cuanto a las traslaciones, saber construir la
CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio,
CENTRO DE GRAVEDAD Y CENTROIDE Centro de gravedad y centro de masa para un sistema de partículas Centro de gravedad Considerando el sistema de n partículas fijo dentro de una región del espacio, Los pesos
son dos elementos de Rⁿ, definimos su suma, denotada por
1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores
Análisis y síntesis de sistemas digitales combinacionales
Análisis Algoritmo de análisis, para un circuito lógico combinacional Síntesis. Conceptos Circuitos combinacionales bien construidos Circuitos combinacionales mal construidos Criterios de optimización
Tema 5: Morfología. Segunda parte
Tema 5: Morfología Segunda parte 1. Imágenes binarias Morfología Operaciones morfológicas:» Dilatación, erosión, Transformada Hit-or-Miss, apertura y cierre. Aplicaciones:» Extracción de fronteras y componentes
Curso SIG. Curso SIG Conceptos Básicos y Funciones. Conceptos Básicos y Funciones. Representaciones del mundo. Curso SIG - Pablo Rebufello 1
Conceptos Básicos y Funciones 1 Conceptos Básicos y Funciones Representaciones del mundo Modelos de representación de datos basados en: Datos vectoriales Datos raster 2 - Pablo Rebufello 1 Datos Vectoriales:
Fundamentos de POV-Ray. Computación Geométrica 2010/2011 Jorge Calvo Zaragoza
Fundamentos de POV-Ray Computación Geométrica 2010/2011 Jorge Calvo Zaragoza Índice 1. Introducción 2. Fundamentos del trazado de rayos 3. Construcción de escenas con POV-Ray 4. Geometría sólida constructiva
INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96
INDICE Geometría Analítica Plana Capitulo Primero Sistema de Coordenadas Articulo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
M.D.T. y TOPOCAL. Técnicas de Representación Gráfica. Curso DIGTEG 2010
M.D.T. y TOPOCAL Técnicas de Representación Gráfica Curso 2010-2011 Superficies Topográficas Superficies Topográficas No es geométrica La superficie terrestre No se puede representar con exactitud matemática
Cinemática del Robot. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides
M.Sc. Kryscia Ramírez Benavides Sistema Robótico Cinemática Dinámica Planeamiento de Tareas Software Hardware Diseño Mecánico Actuadores Sistema de Control Sensores 2 Introducción Con el fin de controlar
Anexo 1 ( Momentos de segundo orden )
.1 neo 1 ( Momentos de segundo orden ) 1. Momento de inercia En muchas de las fórmulas empleadas en ingeniería aparecen epresiones analíticas de la forma ρ d, siendo ρ la distancia de un elemento diferencial
PROGRAMACION ÁREA DE MATEMÁTICAS QUINTO DE PRIMARIA TEMA 1: LOS NÚMEROS NATURALES CRITERIOS DE EVALUACIÓN: MÍNIMO EXIGIBLE: EVALUACIÓN:
PROGRAMACION ÁREA DE MATEMÁTICAS QUINTO DE PRIMARIA TEMA 1: LOS NÚMEROS NATURALES 1.1. Identifica situaciones en las cuales se emplean los números. 1.2. Interpreta la función que cumplen los números en
UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso NIVEL: 3º DE PRIMARIA TEMAS: 5-10
UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso 2013-14 NIVEL: 3º DE PRIMARIA TEMAS: 5-10 OBJETIVOS DIDÁCTICOS CONTENIDOS Reconocer líneas rectas, líneas curvas abiertas y cerradas,
Tema 6: Morfología. Primera parte
Tema 6: Morfología Primera parte Morfología La morfología matemática se basa en operaciones de teoría de conjuntos. En el caso de imágenes binarias, los conjuntos tratados son subconjuntos de Z 2 y en
GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS)
U N E X P O INTRODUCCIÓN: UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA GUÍA DE EJERCICIOS GEOMETRÍA
FACULTAD DE INGENIERIA. ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática
FACULTAD DE INGENIERIA ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática 1 Mecánica: Rama de la física que se ocupa del estado de reposo o movimiento de cuerpos sometidos a la
ANGULOS DESIGUALES. ESPESOR Mm
Per les normalizados ángulos de lados iguales Perímetro mínimo 150 2 ANGULOS DESIGUALES ESR Mm 6492 18.5 X 12 2 0.5 0.154 0.060 6474 20 X 12 2 0.3 0.162 0.063 6495 22 X 18 2 0.5 0.216 0.083 6581 35 X 10
REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO
REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. ACTIVIDAD Nº 1 1. Recorta 6 triángulos equiláteros de 6 cm de lado. 2. Combina 2 triángulos, para encontrar nuevas formas geométricas, de acuerdo a la siguiente
P(x,y) F Foco PF PA. e =
MATEMÁTICAS BÁSICAS CÓNICAS DEFINICIÓN DE CÓNICA Dada una recta fija L un fijo F no contenido en esa recta, se llama cónica al lugar geométrico de un que se mueve en el plano, de tal manera que la razón
6.1 Una primera aplicación de los cuaternios: rotación de un cuerpo rígido
Capítulo 6 Aplicaciones 6.1 Una primera aplicación de los cuaternios: rotación de un cuerpo rígido Como hemos visto en secciones anteriores, una característica muy importante de los cuaternios es que con
Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido.
UNIDAD 2 EQUILIBRIO DE CUERPOS RÍGIDOS. CENTROS DE GRAVEDAD GENERALIDADES.- El centro de gravedad es aquel que localiza el peso resultante de un sistema de partículas y el centro de masas de un sistema
ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3)
ATOMO DE HIDROGENO I. Atomo de hidrógeno A. Descripción del sistema: Dos partículas que interaccionan por atracción de carga eléctrica y culómbica. 1. Ley de coulomb: a. En el sistema cgs en unidades de
Métodos Avanzados para Análisis y Representación de Imágenes
Morfología Matemática p. 1/44 Métodos Avanzados para Análisis y Representación de Imágenes Morfología Matemática Departamento de Informática - FICH Universidad Nacional del Litoral Agosto de 2012 Morfología
Dra. Patricia Eugenia Jiménez Gallegos Página 1
ÁREA ACADÉMICA UNIVERSIDAD AUTÓNOMA DE ZACATECAS PLAN ANALÍTICO Ciencias Básicas UNIDAD ACADÉMICA PROGRAMA ACADÉMICO Matemáticas Licenciatura en Matemáticas CICLO ESCOLAR ENERO-JUNIO UNIDAD DIDÁCTICA GEOMETRIA
PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -
Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones
Transformaciones Isométricas
Capítulo 11 Transformaciones Isométricas E l estudio de los movimientos en el plano y el espacio han sido muy importantes en nuestra historia, ya que gracias a ellos hemos aprendido a comprender como se
TEMA 4. Geometría, cinemática y dinámica
TEMA 4. Geometría, cinemática y dinámica 76 Índice: Geometría, cinemática y dinámica Geometría oordenadas propias y del mundo Representación de la posición. Tipos de coordenadas Matrices de rotación Representación
PROGRAMA PRE-PAES 2015 Asignatura: Matemática Contenido Virtual
Programa PREPAES, Universidad Francisco Gavidia015 PROGRAMA PRE-PAES 015 Asignatura: Matemática Contenido Virtual TEMA: APLIQUEMOS ELEMENTOS DE GEOMETRIA ANALITICA Profesor: Luis Roberto Padilla R. e-mail:
Gobierno de La Rioja MATEMÁTICAS CONTENIDOS
CONTENIDOS MATEMÁTICAS 1.- Números reales Distintas ampliaciones de los conjuntos numéricos: números enteros, números racionales y números reales. Representaciones de los números racionales. Forma fraccionaria.
Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica
Mecánica Racional Ejercicio de Mecánica Vectorial y Analítica Profesor Dr. Ercoli Liberto Alumno Breno Alejandro Año 2012 1 Cinemática y cinética del cuerpo rígido: Universidad Tecnológica Nacional Ejercicio
MATEMÁTICAS 6 GRADO. Código de Contenido El alumno empleará la lectura, escritura y comparación de diferentes cantidades de cifras numéricas.
MATEMÁTICAS 6 GRADO Código Materia: Matemáticas (Español) = MSP Eje 1= Sentido numérico y pensamiento algebraico. Eje 2= Forma, espacio y medida. Eje 3= Manejo de la información. Código: Materia. Grado.
Geometría del plano y el espacio
Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer
Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago
Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo
Mapa Curricular: Funciones y Modelos
A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,
CONCEPTOS BASICOS EN EL ESTUDIO DE MECANISMOS. Máquinas y mecanismos.
CONCEPTOS BASICOS EN EL ESTUDIO DE MECANISMOS Máquinas y mecanismos. Reulaux define máquina como una "combinación de cuerpos resistentes de manera que, por medio de ellos, las fuerzas mecánicas de la naturaleza
Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Escuela de Biología Departamento de Física
Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales Escuela de Biología Departamento de Física Carrera: Ciencias Biológicas Plan: 1990 Código de la Carrera: 261 Código de
SISTEMAS DE INFORMACIÓN GEOGRÁFICA
SISTEMAS DE INFORMACIÓN GEOGRÁFICA I. DATOS GENERALES Unidad Académica: Departamento de Suelos Programa Educativo: Ingeniería en Recursos Naturales Renovables Nivel educativo: Licenciatura Eje curricular:
Fractales Mediante Funciones Recursivas
Fractales Mediante Funciones Recursivas Emiliano Causa 2011, [email protected] Resumen En este trabajo se abordan las estructuras fractales y algoritmos para producirlas mediante el uso de funciones
DISTRIBUCIÓN DE CONOCIMIENTOS PARA LOS COLEGIOS TECNICOS PROFESIONALES ASIGNATURA MATEMÁTICA PARA EL AÑO 2016 UNICAMENTE
MINISTERIO DE EDUCACIÓN PÚBLICA DESPACHO DEL VICEMINISTERIO ACADÉMICO DIRECCIÓN DE DESARROLLO CURRICULAR DEPARTAMENTO DE TERCER CICLO Y EDUCACIÓN DIVERSIFICADA TELÉFONO 22231810 APARTADO 10 087-1 000 SAN
DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O.
DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Matemáticas. 1º de E.S.O. CRITERIOS DE EVALUACIÓN Los siguientes criterios de evaluación
CM2 ENRICH CREUS CARNICERO Nivel 2
CM ENRICH CREUS CARNICERO Nivel Unidad Anexo Superficies en 3D 01 Anexo de la Unidad : Superficies en 3D Anexo 1: valor absoluto o módulo El valor absoluto o módulo de un número a, que se anota a, es la
Introducción a las imágenes digitales
Introducción a las imágenes digitales Segunda parte Topología Digital El proceso de digitalización Una imagen natural capturada con una cámara, un telescopio, un microscopio o cualquier otro tipo de instrumento
Unidad didáctica 3: Semejanzas
Unidad didáctica 3: Semejanzas Ascensión Moratalla de la Hoz 1 y Mª Agripina Sanz García 2 1: Departamento de Matemática aplicada a la Edificación, al Medio Ambiente y al Urbanismo. E.T.S. Arquitectura
ROBÓTICA I. Cinemática Directa
Cinemática Directa M. C. Jorge Luis Barahona Avalos 11 de abril de 2011 Universidad Tecnológica de la Mixteca Instituto de Electrónica y Mecatrónica 1 / 34 Índice General 1 Cinemática Directa 2 Cadena
Tema 3. Magnitudes escalares y vectoriales
1 de 13 09/07/2012 12:51 Tema 3. Magnitudes escalares y vectoriales Algunos derechos reservados por manelzaera Como sabes, una magnitud es todo aquello que se puede medir. Por ejemplo, la fuerza, el tiempo,
CENTRO UNIVERSITARIO MONTEJO A.C. SECUNDARIA Temario Matemáticas 1
BLOQUE 1 Convierte números fraccionarios a decimales y viceversa. Conoce y utiliza las convenciones para representar números fraccionarios y decimales en la recta numérica. Representa sucesiones de números
CUADRO SINÓPTICO PLANIFICACIÓN ANUAL Matemática 1 Básico
UNIDAD 1 UNIDAD 2 UNIDAD 3 UNIDAD 4 NÚMEROS HASTA 10 *Contar, reconocer, leer y escribir los números de 0 a 10. *Comparar dos conjuntos de objetos e identificar el conjunto que tiene más, menos o la misma
DIBUJO MECÁNICO PROYECCIONES Y NORMATIVA
Universidad Simón Bolívar División de Física y Matemáticas Departamento de Mecánica DIBUJO MECÁNICO PROYECCIONES Y NORMATIVA Introducción El dibujo mecánico como medio de expresión La representación gráfica
