Lógica y Programación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lógica y Programación"

Transcripción

1 Lógica y Programación Cálculo de Secuentes Antonia M. Chávez, Agustín Riscos, Carmen Graciani Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

2 Definiciones Objetivo: Resolver problemas de satisfacibilidad para Lógica Proposicional Descomposición de objetivo incial en subobjetivos más simples Definición: Un secuente es un par formado por dos conjuntos de fórmulas: F 1,...,F n G 1,...,G m {F 1,...,F n } se denomina antecedente del secuente {G 1,...,G n } se denomina consecuente del secuente

3 Definiciones Objetivo: Resolver problemas de satisfacibilidad para Lógica Proposicional Descomposición de objetivo incial en subobjetivos más simples Definición: Un secuente es un par formado por dos conjuntos de fórmulas: F 1,...,F n G 1,...,G m Idea: Si todas las fórmulas del antecedente son ciertas, entonces alguna del consecuente lo es también Equivale a: F 1 F 2 F n G 1 G 2 G m

4 Reglas de cálculo Objetivo: Establecer qué secuentes (subobjetivos) tienen que ser ciertos para que un determinado secuente (objetivo) también lo sea Representación de reglas: Subobjetivos Objetivo

5 Reglas de cálculo Definición: Un axioma es un secuente en el que aparece una misma fórmula en el antecedente y en el consecuente Regla del Axioma: Γ 1,F,Γ 2 1,F, 2 Ax donde Γ 1,Γ 2, 1 y 2 son secuencias finitas de fórmulas La Regla del axioma se lee: Cualquier secuente en el que una misma fórmula F aparezca tanto en el antecedente como en el consecuente es cierto y no genera ningún subobjetivo

6 Reglas de cálculo El resto de las reglas del cálculo de secuentes indican cómo descomponer una fórmula del secuente objetivo (parte inferior de la regla) obteniendo un conjunto de secuentes subobjetivos (parte superior de la regla). Las reglas se clasifican según el tipo de fórmula en cuestión y si ésta se encuentra en el antecedente o en el consecuente del objetivo.

7 Reglas de la negación Γ 1,Γ 2 F, Γ 1, F,Γ 2 I F,Γ 1, 2 Γ 1, F, 2 D donde Γ,Γ 1,Γ 2,, 1 y 2 son secuencias finitas de fórmulas

8 Reglas de la disyunción Γ 1,F,Γ 2 Γ 1,G,Γ 2 I Γ 1,F G,Γ 2 Γ 1,F,G, 2 Γ 1,F G, 2 D donde Γ,Γ 1,Γ 2,, 1 y 2 son secuencias finitas de fórmulas

9 Reglas de la conjunción Γ 1,F,G,Γ 2 Γ 1,F G,Γ 2 I Γ 1,F, 2 Γ 1,G, 2 Γ 1,F G, 2 D donde Γ,Γ 1,Γ 2,, 1 y 2 son secuencias finitas de fórmulas

10 Reglas de la implicación Γ 1,G,Γ 2 Γ 1,Γ 2 F, Γ 1,F G,Γ 2 I F,Γ 1,G, 2 Γ 1,F G, 2 D donde Γ,Γ 1,Γ 2,, 1 y 2 son secuencias finitas de fórmulas

11 Reglas de la equivalencia Γ 1,F G,G F,Γ 2 Γ 1,F G,Γ 2 I Γ 1,F G, 2 Γ 1,G F, 2 Γ 1,F G, 2 D donde Γ,Γ 1,Γ 2,, 1 y 2 son secuencias finitas de fórmulas

12 Procedimiento Para demostrar la validez de una fórmula F mediante el cálculo de secuentes: Considerar F como secuente objetivo inicial Se van aplicando las reglas dando lugar a nuevos subobjetivos El proceso se repite hasta que todos los subobjetivos han sido eliminados mediante la Regla del Axioma. En ese caso, la fórmula F es válida. Si se alcanza un subobjetivo al que no puede aplicarse ninguna regla, entonces F no es válida

13 Ejemplo I Demostrar la validez de la fórmula F p (q p) mediante el cálculo de secuentes:

14 Ejemplo I Demostrar la validez de la fórmula F p (q p) mediante el cálculo de secuentes: Considerar F como secuente objetivo inicial

15 Ejemplo I Demostrar la validez de la fórmula F p (q p) mediante el cálculo de secuentes: Considerar F como secuente objetivo inicial Aplicamos la regla D a p: p q p p (q p) D

16 Ejemplo I Demostrar la validez de la fórmula F p (q p) mediante el cálculo de secuentes: Considerar F como secuente objetivo inicial Aplicamos la regla D a p: Aplicamos la regla D al consecuente del subobjetivo q p: p q p p (q p) D p q,p p q p D

17 Ejemplo I Demostrar la validez de la fórmula F p (q p) mediante el cálculo de secuentes: Considerar F como secuente objetivo inicial Aplicamos la regla D a p: Aplicamos la regla D al consecuente del subobjetivo q p: Aplicamos la regla del Axioma: p q p p (q p) D p q,p p q p D p q,p Ax

18 Ejemplo I Demostrar la validez de la fórmula F p (q p) mediante el cálculo de secuentes: Considerar F como secuente objetivo inicial Aplicamos la regla D a p: Aplicamos la regla D al consecuente del subobjetivo q p: Aplicamos la regla del Axioma: p q p p (q p) D p q,p p q p D p q,p Ax No quedan objetivos pendientes, por tanto F es válida

19 Ejemplo II Demostrar la validez de la fórmula F (p (p q)) q

20 Ejemplo II Demostrar la validez de la fórmula F (p (p q)) q Considerar F como secuente objetivo inicial

21 Ejemplo II Demostrar la validez de la fórmula F (p (p q)) q Considerar F como secuente objetivo inicial Aplicamos la regla D p (p q) q (p (p q)) q D

22 Ejemplo II Demostrar la validez de la fórmula F (p (p q)) q Considerar F como secuente objetivo inicial Aplicamos la regla D Aplicamos la regla I p (p q) q (p (p q)) q D p,p q q p (p q) q I

23 Ejemplo II Demostrar la validez de la fórmula F (p (p q)) q Considerar F como secuente objetivo inicial Aplicamos la regla D Aplicamos la regla I p (p q) q (p (p q)) q D p,p q q p (p q) q I Aplicamos la regla I p p, q p, q q p,p q q I

24 Ejemplo II Demostrar la validez de la fórmula F (p (p q)) q Considerar F como secuente objetivo inicial Aplicamos la regla D Aplicamos la regla I p (p q) q (p (p q)) q D p,p q q p (p q) q I Aplicamos la regla I p p, q p, q q p,p q q I Aplicamos la regla del axioma a los dos subobjetivos: p p,q Ax p,q q Ax

25 Ejemplo II Demostrar la validez de la fórmula F (p (p q)) q Considerar F como secuente objetivo inicial Aplicamos la regla D Aplicamos la regla I p (p q) q (p (p q)) q D p,p q q p (p q) q I Aplicamos la regla I p p, q p, q q p,p q q I Aplicamos la regla del axioma a los dos subobjetivos: p p,q Ax p,q q Ax No quedan objetivos pendientes: la fórmula es válida

26 A qué fórmula corresponde el secuente: p,p q,q q, p r? Utilizando el cálculo de secuentes, encuentra una demostración de los siguientes secuentes: p, p q, q q, p r p q p q (q r) (( q p) (p r)) p q, p q p q Ejercicios

Tema 2: Equivalencias y formas normales

Tema 2: Equivalencias y formas normales Lógica informática Curso 2003 04 Tema 2: Equivalencias y formas normales José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

Introducción a la Lógica

Introducción a la Lógica Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí

Más detalles

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Ejercicios de Lógica Proposicional *

Ejercicios de Lógica Proposicional * Ejercicios de Lógica Proposicional * [email protected] Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

Operaciones con conjuntos (ejercicios)

Operaciones con conjuntos (ejercicios) Operaciones con conjuntos (ejercicios) Ejemplo: Definición de la diferencia de conjuntos. Sean y conjuntos. Entonces \ := { x: x x / }. Esto significa que para todo x tenemos la siguiente equivalencia:

Más detalles

Forma lógica de enunciados

Forma lógica de enunciados Forma lógica de enunciados Marisol Miguel Cárdenas Lenguaje natural y lenguaje formal El lenguaje natural es aquel que utilizamos cotidianamente. Surge históricamente dentro de la sociedad y es aprendido

Más detalles

ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO

ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO Pág. 1 Lógica Proposicional La lógica proposicional es la más antigua y simple de las formas de lógica. Utilizando una representación primitiva del lenguaje, permite representar y manipular aserciones

Más detalles

INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN

INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN Referencias: Inteligencia Artificial Russell and Norvig Cap.6. Artificial Intellingence Nils Nilsson Ch.4

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Métodos de Inteligencia Artificial

Métodos de Inteligencia Artificial Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Contenido Lógica proposicional Lógica de predicados Inferencia en lógica

Más detalles

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza [email protected] Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román.

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román. Inteligencia en Redes de Comunicaciones Razonamiento lógico Julio Villena Román [email protected] Índice La programación lógica Lógica de predicados de primer orden Sistemas inferenciales IRC 2009 -

Más detalles

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO CONJUNTOS Y LÓGICA SEMESTRE: Segundo a cuarto CLAVE: 0271 HORAS A LA SEMANA/SEMESTRE TEÓRICAS PRÁCTICAS CRÉDITOS 5/80

Más detalles

Tema 6: Teoría Semántica

Tema 6: Teoría Semántica Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad

Más detalles

Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS

Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS Curso Extraordinario INTELIGENCIA ARTIFICIAL Y SISTEMAS EXPERTOS Contenidos del Curso Introducción a la I.A. Cómo razonamos?. Algunas experiencias con el razonamiento automático El problema de representación

Más detalles

LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA

LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el

Más detalles

Capítulo 4. Lógica matemática. Continuar

Capítulo 4. Lógica matemática. Continuar Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además

Más detalles

SESIÓN 04 LÓGICA PROPOSICIONAL

SESIÓN 04 LÓGICA PROPOSICIONAL SESIÓN 04 LÓGICA PROPOSICIONAL La Lógica Proposicional, sentencial o lógica de enunciados, es la parte de la Lógica simbólica que trata de las proposiciones sin analizarlas y de sus combinaciones. 1. PROPOSICIONES

Más detalles

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

Lógica proposicional. Ivan Olmos Pineda

Lógica proposicional. Ivan Olmos Pineda Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Lógica : Proposiciones, Conectivos, Tablas de Verdad y Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Lógica Matemáticas Discretas - p. 1/43 En esta lectura

Más detalles

John Venn Matemático y filósofo británico creador de los diagramas de Venn

John Venn Matemático y filósofo británico creador de los diagramas de Venn Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan

Más detalles

IIC2213. IIC2213 Teorías 1 / 42

IIC2213. IIC2213 Teorías 1 / 42 Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente

Más detalles

MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES.

MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES. MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES. Ing. HUGO HUMBERTO MORALES PEÑA MAESTRÍA EN ENSEÑANZA DE LAS MATEMÁTICAS Línea de Matemáticas Computacionales UNIVERSIDAD TECNOLÓGICA

Más detalles

El Autómata con Pila: Transiciones

El Autómata con Pila: Transiciones El Autómata con Pila: Transiciones El Espacio de Configuraciones Universidad de Cantabria Esquema Introducción 1 Introducción 2 3 Transiciones Necesitamos ahora definir, paso por paso, como se comporta

Más detalles

Definición y representación de los

Definición y representación de los Definición y representación de los circuitos lógicos. LÁMARA R + - + - OBJETIVO GENERAL BATERÍA Utilizar el álgebra booleana para analizar y describir el funcionamiento de las combinaciones de las compuertas

Más detalles

Resumen de deducción natural

Resumen de deducción natural Resumen de deducción natural F. Javier Gil Chica 2010 1. Orientación de estas notas El cálculo de argumentos mediante tablas de verdad es un método rápido y seguro. También mecánico, puesto que se puede

Más detalles

Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores

Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores Guía Lógica Proposicional Tema III: Cuantificadores 1.7.2. CUANTIFICADORES Los cuantificadores permiten afirmaciones sobre colecciones enteras de objetos en lugar de tener que enumerar los objetos por

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

PHP: Lenguaje de programación

PHP: Lenguaje de programación Francisco J. Martín Mateos Carmen Graciani Diaz Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Tipos de datos Enteros Con base decimal: 45, -43 Con base octal: 043, -054

Más detalles

Lógica. Matemática discreta. Matemática discreta. Lógica

Lógica. Matemática discreta. Matemática discreta. Lógica Lógica Matemática discreta Lógica: rama de las matemáticas instrumento para representar el lenguaje natural proporciona un mecanismo de deducción 2 y de predicados Razonamientos Cálculo proposicional Cálculo

Más detalles

CAPÍTULO II SISTEMAS NUMÉRICOS. Este método de representar los números se llama sistema de numeración decimal, donde 10 es la base del sistema.

CAPÍTULO II SISTEMAS NUMÉRICOS. Este método de representar los números se llama sistema de numeración decimal, donde 10 es la base del sistema. CIENCIAS DE LA COMPUTACIÓN MAT 1104 12 CAPÍTULO II SISTEMAS NUMÉRICOS 2.1 INTRODUCCIÓN Los números usados en Aritmética están expresados por medio de múltiplos o potencias de 10; por ejemplo: 8654= 8*10

Más detalles

Más sobre Leyes de implicación

Más sobre Leyes de implicación Más sobre Leyes de implicación Dilema constructivo. Se abrevia d.c. Se considera que si hay una disyunción que contiene los antecedentes de dos condicionales, la conclusión será la disyunción de los consecuentes.

Más detalles

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. [email protected] Carrera 9 No 51-11 Bogotá Colombia

Más detalles

Cálculo Proposicional

Cálculo Proposicional Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

Algoritmos. Diagramas de Flujo. Informática IV. L. S. C. Heriberto Sánchez Costeira

Algoritmos. Diagramas de Flujo. Informática IV. L. S. C. Heriberto Sánchez Costeira Informática IV Algoritmos Diagramas de Flujo L. S. C. Heriberto Sánchez Costeira Algoritmos 1 Definición Es una serie finita de pasos o instrucciones que deben seguirse para resolver un problema. Es un

Más detalles

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2 Instituto Raúl calabrini Ortiz Matemática º año NUMERO RACIONALE En la ecuación 0, todos los números que aparecen son enteros in embargo, cuando tratamos de resolverla, vemos que la ecuación no tiene solución

Más detalles

Conjuntos. () April 4, / 32

Conjuntos. () April 4, / 32 Conjuntos En general, un conjunto A se de ne seleccionando los elementos de un cierto conjunto U de referencia (o universal) que cumplen una determinada propiedad. () April 4, 2014 1 / 32 Conjuntos En

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA

RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA ESCUELA DEL MINISTERIO PÚBLICO Dr. Gonzalo Ortiz de Zevallos Roedel RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA Dr. Luis Alberto Pacheco Mandujano Gerente Central de la Escuela del Ministerio Público

Más detalles

INSTITUTO DE PROFESORES ARTIGAS

INSTITUTO DE PROFESORES ARTIGAS INSTITUTO DE PROFESORES ARTIGAS ESPECIALIDAD MATEMÁTICA GEOMETRÍA UNIDAD 3 FICHA 2: PARALELISMO 1 Posiciones relativas de rectas. 2 Axioma de Euclides. 3 Paralelismo de recta y plano. 4 Paralelismo de

Más detalles

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS.

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. UNIDAD 1.- CONCEPTOS REQUERIDOS CONJUNTOS. AXIOMAS DE PERTENENCIA, PARALELISMO, ORDEN Y PARTICIÓN. 1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. 1.1 Determinaciones de un conjunto. Un conjunto queda determinado

Más detalles

Lógica Matemática, Sistemas Formales, Cláusulas de Horn

Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lic. José Manuel Alvarado La lógica se ocupa de las argumentaciones válidas. Las argumentaciones ocurren cuando se quiere justificar una proposición

Más detalles

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN LOGICA (FCE-UBA) APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente

Más detalles

Algoritmos y solución de problemas. Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal

Algoritmos y solución de problemas. Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal Algoritmos y solución de problemas Fundamentos de Programación Otoño 2008 Mtro. Luis Eduardo Pérez Bernal Introducción Departamento de Electrónica, Sistemas e Informática En las ciencias de la computación

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra.

encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra. Álgebra proposicional Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases u oraciones. Estas

Más detalles

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente

Más detalles

Tema 9: Cálculo Deductivo

Tema 9: Cálculo Deductivo Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 2: LÓGICA DE PRIMER ORDEN Tema 9: Cálculo Deductivo Profesor: Javier Bajo [email protected] Madrid, España 24/10/2012 Introducción a la

Más detalles

Distribución anual de saberes de Matemática para Segundo Ciclo según NAP CUARTO GRADO 1 TRIMESTRE. En relación con el número y las operaciones:

Distribución anual de saberes de Matemática para Segundo Ciclo según NAP CUARTO GRADO 1 TRIMESTRE. En relación con el número y las operaciones: CUARTO GRADO 1 TRIMESTRE Números Naturales * El reconocimiento y uso de los números naturales, de la organización del sistema decimal de numeración y la explicitación de sus características, en situaciones

Más detalles

REGLA DE L'HÔPITAL. En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e

REGLA DE L'HÔPITAL. En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e REGLA DE L'HÔPITAL En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e y se aprenden los artificios necesarios para resolverlas. Generalmente, surgen en límites de

Más detalles

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011 Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento

Más detalles

Métodos para escribir algoritmos: Diagramas de Flujo y pseudocódigo

Métodos para escribir algoritmos: Diagramas de Flujo y pseudocódigo TEMA 2: CONCEPTOS BÁSICOS DE ALGORÍTMICA 1. Definición de Algoritmo 1.1. Propiedades de los Algoritmos 2. Qué es un Programa? 2.1. Cómo se construye un Programa 3. Definición y uso de herramientas para

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños

MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños MATEMÁTICA 1 JRC LÓGICA Es la ciencia formal que estudia los principios y procedimientos que permiten demostrar la validez o invalidez de una inferencia, es decir, reconocer entre un razonamiento correcto

Más detalles

Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos).

Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). Lógica intuitiva Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). A : Las águilas vuelan B : El cielo es rosa C : No existe vida extraterrestre D : 5 < 3 E : Algunos

Más detalles

PROGRAMACIÓN. UNIDAD II. ALGORITMO PROFA : HAU MOY

PROGRAMACIÓN. UNIDAD II. ALGORITMO PROFA : HAU MOY PROGRAMACIÓN. UNIDAD II. ALGORITMO PROFA : HAU MOY ALGORITMO DEFINICIÓN: CONSISTE EN LA DESCRIPCIÓN CLARA Y DETALLADA DEL PROCEDIMIENTO A SEGUIR PARA ALCANZAR LA SOLUCIÓN A UN PROBLEMA EN DONDE SE ESTABLECE

Más detalles

Eliminación Gaussiana con pivote parcial

Eliminación Gaussiana con pivote parcial Eliminación Gaussiana con pivote parcial Luis Rández Dpto. Matemática Aplicada Facultad de Ciencias Universidad de Zaragoza Luis Rández (Dpto. Matemática Aplicada) Eliminación Gaussiana con pivote parcial

Más detalles

Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar

Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar ClasesATodaHora.com.ar > Exámenes > UBA - UBA XXI > Introd. al Pensamiento Científico Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar Razonamientos: Conjunto de propiedades

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍAS L Ó G I C A Carrera: Programador Universitario en Informática Equipo Docente: Miriam Alagastino Ximena Villarreal

Más detalles

MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS

MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS 23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue

Más detalles

PROGRAMA ANALÍTICO DE ASIGNATURA

PROGRAMA ANALÍTICO DE ASIGNATURA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO COORDINACIÓN DE DOCENCIA DIRECCIÓN DE PLANEACIÓN Y DESARROLLO EDUCATIVO _ 1.- DATOS GENERALES 1.1 INSTITUTO: CIENCIAS BÁSICAS E INGENIERÍA PROGRAMA ANALÍTICO

Más detalles

Guía práctica de estudio 06: Lenguaje binario

Guía práctica de estudio 06: Lenguaje binario Guía práctica de estudio 06: Lenguaje binario Elaborado por: M.C. Edgar E. García Cano Ing. Jorge A. Solano Gálvez Revisado por: Ing. Laura Sandoval Montaño Guía práctica de estudio 06: Lenguaje binario

Más detalles

Guía para el estudiante

Guía para el estudiante Guía para el estudiante Guía realizada por Jefferson Bustos Profesional en Matemáticas Master en Educación Nombre: Fecha: Curso: Dentro del lenguaje común, las palabras y frases pueden tener diversas interpretaciones.

Más detalles

1.1.1 Conectivos lógicos, formas proposicionales y tablas de verdad.

1.1.1 Conectivos lógicos, formas proposicionales y tablas de verdad. Tema 1 Lógica. 1.1 Cálculo proposicional. Definición 1.1 Una proposición es una frase o sentencia declarativa que es verdadera o falsa pero no ambas cosas a la vez. Los dos posibles valores de verdad que

Más detalles

Equivalencia Entre PDA y CFL

Equivalencia Entre PDA y CFL Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede

Más detalles

Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo

Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo Algoritmos En general, no hay una definición formal de algoritmo. Muchos autores los señalan como listas de instrucciones para resolver un problema abstracto, es decir, que un número finito de pasos convierten

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

Lógica. Lógica Proposicional. Cuáles de las siguientes frases son proposiciones? Proposición

Lógica. Lógica Proposicional. Cuáles de las siguientes frases son proposiciones? Proposición Lógica Lógica Proposicional Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile [email protected] Proposición Definición: Una proposición o enunciado es una frase que a la

Más detalles

Conjunto R 3 y operaciones lineales en R 3

Conjunto R 3 y operaciones lineales en R 3 Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en

Más detalles

2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )]

2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )] Instituto Tecnológico de Costa Rica Escuela de Matemática I semestre 2012 Cálculo Diferencial e Integral. Prof. Juan José fallas. 1 Leyes de la lógica y reglas de inferencia 2 Ejercicios 1 Leyes de la

Más detalles

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones

5 Autómatas de pila 5.1 Descripción informal. 5.2 Definiciones 1 Curso Básico de Computación 5 Autómatas de pila 5.1 Descripción informal Un autómata de pila es esencialmente un autómata finito que controla una cinta de entrada provista de una cabeza de lectura y

Más detalles

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad. nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas

Más detalles

SÍLABO POR COMPETENCIAS MATEMÁTICA BÁSICA. Preparando el Camino

SÍLABO POR COMPETENCIAS MATEMÁTICA BÁSICA. Preparando el Camino SÍLABO POR COMPETENCIAS MATEMÁTICA BÁSICA Preparando el Camino SÍLABO DE ASIGNATURA MATEMÁTICA BÁSICA I. DATOS GENERALES LÍNEA DE CARRERA CURSO CÓDIGO HORAS CURSOS GENERALES MATEMÁTICA BÁSICA CG0101 2

Más detalles

Tema 2: Representación de problemas como espacios de estados

Tema 2: Representación de problemas como espacios de estados Tema 2: Representación de problemas como espacios de estados José Luis Ruiz Reina José Antonio Alonso Franciso J. Martín Mateos Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad

Más detalles

Universidad Nacional Abierta y a Distancia UNAD-Lógica Matemática - Georffrey Acevedo G. A que viene la lógica?

Universidad Nacional Abierta y a Distancia UNAD-Lógica Matemática - Georffrey Acevedo G. A que viene la lógica? A que viene la lógica? Autor: Georffrey Acevedo G. Noviembre 16 de 2008. Los conceptos de proposiciones, conectivos e inferencias confluyen al analizar un razonamiento. Para tener claridad sobre los conceptos

Más detalles

RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal

RELACIONES Y FUNCIONES. M.C. Mireya Tovar Vidal RELACIONES Y FUNCIONES M.C. Mireya Tovar Vidal IDEA INTUITIVA DE RELACIÓN Una relación es una correspondencia entre dos elementos de dos conjuntos con ciertas propiedades. En computación las relaciones

Más detalles

Taller matemático. Razonamiento. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid

Taller matemático. Razonamiento. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid Taller matemático Razonamiento Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid 1. Razonamiento matemático Conocimiento aceptado - Axiomas o

Más detalles

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN OBJETIVOS Conocer los cuatro primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta cuatro cifras.

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo

Autómatas Mínimos. Encontrar el autómata mínimo. Universidad de Cantabria. Introducción Minimización de Autómatas Deterministas Resultados Algoritmo Autómatas Mínimos Encontrar el autómata mínimo. Universidad de Cantabria Introducción Dado un lenguaje regular sabemos encontrar un autómata finito. Pero, hay autómatas más sencillos que aceptan el mismo

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

La asignatura de Matemática estimula el desarrollo de diversas habilidades:

La asignatura de Matemática estimula el desarrollo de diversas habilidades: La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,

Más detalles

Inteligencia Artificial II La Lógica Proposicional como un lenguaje formal

Inteligencia Artificial II La Lógica Proposicional como un lenguaje formal Inteligencia Artificial II La Lógica Proposicional como un lenguaje formal Dr. Alejandro Guerra-Hernández Universidad Veracruzana Centro de Investigación en Inteligencia Artificial mailto:[email protected]

Más detalles

EL SUJETO DE LAS OPERACIONES FORMALES

EL SUJETO DE LAS OPERACIONES FORMALES EL SUJETO DE LAS OPERACIONES FORMALES EL SUJETO ACCIÓN LO FORMAL CONSTRUCCIÓN Y DESARROLLO DEL SUJETO EPISTÉMICO ESQUEMA LÓGICA (METODO Y DESARROLLO DE LAS ESTRUCTURAS DEL SUJETO DEL CONOCIMIENTO) EGOCENTRISMO

Más detalles

CENTROS DE EXCELENCIA EN CIENCIAS Y MATEMÁTICAS (AlACiMa 2 - FASE IV)

CENTROS DE EXCELENCIA EN CIENCIAS Y MATEMÁTICAS (AlACiMa 2 - FASE IV) DEMOSTRANDO TRIÁNGULOS PARTE 2 GUÍA DEL ESTUDIANTE MATERIA: Matemáticas NIVEL: 7-9 AUTOR: Prof. Josiel Rosado Tirado CONCEPTO PRINCIPAL TRIÁNGULOS CONCEPTOS SECUNDARIOS Teorema de Pitágoras Recíproca del

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

Notación Asintótica 2

Notación Asintótica 2 Notación Asintótica 2 mat-151 1 Éxamen Rápido (6 minutos) Cada operación fundamental usa c milisegundos, cuánto tiempo toma contar hasta 1,000,000? Cuál es el valor de N? Cuál es el órden de complejidad

Más detalles

RAZONAMIENTO MATEMÁTICO

RAZONAMIENTO MATEMÁTICO RAZONAMIENTO MATEMÁTICO I. LÓGICA PROPOSICIONAL A. Proposiciones B. Conectivos proposicionales B.. Negación B.2. Conjunción B.3. Disyunción B.4. Condicional B.5. Bicondicional B.6. Otros conectivos C.

Más detalles

EL LÍMITE AL INFINITO EN EL CÁLCULO DE ÁREAS BAJO UNA CURVA

EL LÍMITE AL INFINITO EN EL CÁLCULO DE ÁREAS BAJO UNA CURVA EL LÍMITE AL INFINITO EN EL CÁLCULO DE ÁREAS BAJO UNA CURVA Sugerencias al Profesor: Comentar que uno de los problemas fundamentales que dieron origen al Cálculo Integral es el de acumulación, el cual

Más detalles