INSTITUTO DE PROFESORES ARTIGAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTITUTO DE PROFESORES ARTIGAS"

Transcripción

1 INSTITUTO DE PROFESORES ARTIGAS ESPECIALIDAD MATEMÁTICA GEOMETRÍA UNIDAD 3 FICHA 2: PARALELISMO 1 Posiciones relativas de rectas. 2 Axioma de Euclides. 3 Paralelismo de recta y plano. 4 Paralelismo de planos. 5 Paralelismo como relación de equivalencia Material elaborada por la Sala de Geometría a partir del trabajo: PARALELISMO EN EL ESPACIO de Lilián Muñoz y Etda Rodríguez.

2 1 POSICIONES RELATIVAS DE RECTAS. Recordemos de la ficha 1 que las posiciones relativas en que se encuentran un par de rectas en el espacio son: NO COPLANARES o COPLANARES (paralelas o secantes), según se detalla en el siguiente esquema: a, b / a E, b E a = b a, b paralelas a, b coplanares a b = a, b no coplanares a, b secantes 2 AXIOMA DE EUCLIDES. AXIOMA 10 Por cada punto del espacio, existe y es única la recta paralela a una recta dada. 3 PARALELISMO DE RECTA Y PLANO. DEFINICIONES. Recta y plano secantes: una recta y un plano son secantes si su intersección es un conjunto unitario. Recta y plano paralelos: una recta y un plano son paralelos si no son secantes. OBSERVACIÓN: Una recta y un plano paralelos tienen como intersección todos los puntos de la recta o ninguno. r α r// α ( r α) ( r α= ) r α

3 3.1 POSICIONES RELATIVAS DE RECTA Y PLANO. r π r, π / r E, π E PARALELOS r π= SECANTES r π= { P} 3.2 CONDICIÓN NECESARIA Y SUFICIENTE DE PARALELISMO DE RECTA Y PLANO. TEOREMA La condición necesaria y suficiente para que una recta y un plano sean paralelos es que exista una recta incluida en el plano que sea paralela a la recta dada. 1º: Condición necesaria (teorema directo). Si una recta r es paralela a un plano α entonces existe una recta s incluida en α que es paralela a r H) r // α s / s α s / / r. Demo.: Por H) r es paralela a α, entonces por definición: a) r α, en éste caso la propia recta r está incluida en el plano y es paralela a si misma. b) r α= P r Por ax...: P / P α 1) P r β / P β r β teo.... 2) 3) β α s P r r α= α β Por 3) : r β Por 1) : P α s / s =α β, P s teo.... Por 2) : P β

4 s=α β s α r s = r α= α β= s s β r //s... Por 3) : r β Luego se cumple: s / s α s// r 2º: Condición suficiente (teorema recíproco). Si una recta r es paralela a una recta s de un plano α entonces r es paralela a α. H) s / s α s / / r r // α. Demo.: Por H) las rectas r y s son paralelas, entonces por definición son coincidentes o coplanares disjuntas. a) Si r = s como s α r α r // α... b) Si β/r β,s β,r s=, considerando los planos α y β se presentan dos casos: 1) 2) 3) i) α = β, pero por 1) r β r α r // α ii) α β Por H) :s α s =α β Por 2) : s β... α β r s α β= s Por 1) : r β r α= por def. de inclusión eintersección Por 3) : r s = Como r α=, luego por definición se cumple: r // α 3.3 PROPIEDADES DEL PARALELISMO DE RECTA Y PLANO. TEOREMA (1). Dados un punto P y un plano α, existe una recta que pasa por P y es paralela a α.

5 TEOREMA (2). Dados un punto y una recta, existe por el punto un plano paralelo a la recta. OBSERVACIÓN. Se verifica la unicidad en los teoremas (1) y (2)? TEOREMA (3). Si una recta es paralela a un plano, todo plano que la incluya e interseque al primero, cumple que la intersección es una recta paralela a la recta dada. TEOREMA (4). Si una recta es paralela a un plano, toda paralela a ella por un punto del plano, está incluida en él. TEOREMA (5). Transitividad del paralelismo de rectas del espacio. Si una recta a es paralela a una recta b y b es paralela a una recta c, entonces a es paralela a c. H) a // b a // c b // c Demo.: Hay que demostrar que las rectas a y c son coplanares y no secantes. Se presentan dos casos: a y c tienen algún punto en común o son disjuntas. i) P / P a P c Por H) : a / / b c = a ax. 10 def. Por H) : b / / c a // c b ii) a c= 1) Por 3): Por 5) : a β Por H) : a / / b Por 6) : b / / β Por 4) : R β Por 2) : R c Por H) : b / / c R/R c R a β a c 2) 3) R a β / R β a β R )... c β 4) 5) b // β Por 5): a β a // c... Por 1): a c=

6 TEOREMA (6). Si una recta es paralela a dos planos secantes entonces es paralela a su intersección. TEOREMA (7). Si dos rectas se cruzan, existe y es único el plano que incluye a una de ellas y es paralelo a la otra. TEOREMA (8). Por un punto existe y es único el plano paralelo a dos rectas que se cruzan. TEOREMA (9). Todo plano que interseca a una de dos rectas paralelas, también interseca a la otra. 4 PARALELISMO DE PLANOS. DEFINICIONES. Planos secantes: dos planos son secantes si su intersección es una recta. Planos paralelos: dos planos son paralelos si no son secantes. OBSERVACIÓN: Dos planos paralelos son coincidentes o disjuntos. α =β ( ) ( ) α // β α=β α β= α β 4.1 POSICIONES RELATIVAS DE PLANOS. α =β α, β / α E β E PARALELOS α β= SECANTES α β= i

7 4.2 CONDICIÓN NECESARIA Y SUFICIENTE DE PARALELISMO DE PLANOS. TEOREMA (10). Si dos planos son paralelos, toda recta paralela a uno de ellos es paralela al otro. H) a α α/ / β a / / β Demo.: Por H): α// β, entonces por definición de planos paralelos éstos son coincidentes o disjuntos. i) α=β a β a// β Por H) : a... α ii) α β= a β= a// β Por H) : a... α TEOREMA (11). La condición necesaria y suficiente para que dos planos sean paralelos, es que uno de ellos incluya dos rectas secantes paralelas al otro. 1º: Condición necesaria (teorema directo). Si dos planos son paralelos, uno de ellos incluye dos rectas secantes que son paralelas al otro. H) α// β a // β a α,b α b //β Demo.: a b= { P} Como α// β y las rectas a y b están incluidas en α, entonces, por teorema (10): a//β, b // β 2º: Condición suficiente (teorema recíproco). a β. Si un plano α incluye dos rectas secantes que son paralelas a un plano β, entonces α es paralelo H) a b= { P} α //β a α, b α a//β, b //β

8 Demo.: Teorema contrarrecíproco. Por definición de planos paralelos, la negación de la tesis es que α y β son secantes. i/ α β= i Por H) : a α a // i... a// β Idem con la recta b : b // i Por H) : P a, P b a = b, contra H) ax.10 Corolario. El plano α determinado por dos paralelas a β por el punto P, es paralelo al β. 4.3 PROPIEDADES DE PARALELISMO DE PLANOS. TEOREMA (12). Existe y es único el plano paralelo a otro por un punto. TEOREMA (13). Transitividad del paralelismo de planos. Si un plano α es paralelo a un plano β y β es paralelo a un plano γ, se cumple que α es paralelo a γ. H) α //β, β // γ α // γ. Demo.: Teorema contrarrecíproco. Por definición de planos paralelos, la negación de la tesis es que α y γ son secantes. r/ α γ = r P α P γ P/P r γ // β,contra H) teo. (12) α γ Por H) : α // β. TEOREMA (14). Si un plano es secante con uno de dos planos paralelos, también es secante con el otro y las intersecciones son rectas paralelas.

9 TEOREMA (15). El lugar geométrico de los puntos pertenecientes a rectas paralelas a un plano por un punto dado, es el plano paralelo al primero por ese punto. TEOREMA (16). Si una recta es secante con uno de dos planos paralelos, también interseca al otro. 5 PARALELISMO COMO RELACIÓN DE EQUIVALENCIA. 5.1 PARALELISMO DE PLANOS. TEOREMA (17). El paralelismo de planos es una relación de equivalencia. DEFINICIÓN. Llamamos ESTASITURAS a las clases de equivalencia de la partición que la relación paralelismo de planos determina en el conjunto de planos del espacio. La ESTASITURA DE UN PLANO α es el conjunto de todos los planos paralelos a α, es un haz de planos paralelos. Si dos planos pertenecen a la misma estasitura, se dice que tienen la misma YACENCIA. 5.2 PARALELISMO DE RECTAS. TEOREMA (18). El paralelismo de rectas es una relación de equivalencia. OBSERVACIÓN. Como consecuencia del teorema anterior, queda determinada una partición del conjunto de todas las rectas del espacio en clases de equivalencia. DEFINICIÓN. Llamamos DIRECCIONES a las clases de equivalencia que la relación paralelismo de rectas determina en el conjunto de rectas del espacio. La DIRECCIÓN DE UN RECTA es el conjunto de todas las rectas paralelas a ella, es una radiación de rectas paralelas.

10 PROBLEMAS. I) Sean a y b rectas alabeadas y P un punto exterior a ellas. Determinar un plano α paralelo a ambas rectas y que contenga a P. Mostrar la unicidad de α. II) Se consideran: un plano α y en él un trapecio ABCD, con AB//CD. Sean V tal que V no pertenece a α, M punto medio del segmento VC y N punto medio del segmento VD. Probar que la recta MN es paralela al plano VAB. III) Se considera un tetraedro ABCD y M, N y P, puntos medios de los segmentos AD, BD y CD respectivamente. Probar que los planos MNP y ABC son paralelos. IV) Sean a y b rectas paralelas, π el plano que determinan y O un punto que no pertenece a π. Sean los planos α = ( OA, a) y β = ( OB, b) siendo A y B puntos cualesquiera de a y b respectivamente. Determinar la recta intersección de α y β. V) Sea ABCDEFGH un cubo y P punto medio de la arista BF. Sean los planos α = (ABC), β = (EPG). 1) Hallar i tal que i es la intersección de α y β. 2) Probar que i y EG son paralelas. VI) Sean ABCD un tetraedro, M un punto del segmento AC distinto de A y C y α el plano que pasa por M y es paralelo a las rectas AB y CD. Construye los puntos N, P y Q en los que respectivamente las rectas BC, BD y AD cortan al plano α. Precisa la naturaleza del cuadrilátero MNPQ. VII) Sean ABCD un tetraedro, G y G los baricentros de los triángulos ABC y ACD respectivamente. 1) Determina la sección del tetraedro con el plano AGG. 2) Muestra que BD es paralela a AGG. 3) Analiza la posición relativa de GG y AD. 4) Determina la intersección de los planos ABD y AGG. VIII) En el cubo ABCDEFGH sean I, J y K los puntos medios de AB, EF y HG respectivamente. Demuestra que HI // (JKC). IX) Sean un tetraedro ABCD, I y J los puntos medios de los segmentos AB y AC respectivamente, y K 2 un punto del segmento AD tal que AK = AD. Las recta JK y CD se cortan en E y las rectas IK y 3 BD se cortan en F. Demuestra que las rectas EF y JI son paralelas. X) Sean α y α planos paralelos. Sean A, B y C puntos no alineados de α y A, B y C puntos no alineados de α. Construye la intersección de (AA C ) y (BCB ). XI) ABCDEFGH es un cubo e I, J y K son los puntos medios de los segmentos EH, AB y CD respectivamente. Analiza la posición relativa de la recta AI y el plano KJG. XII) ABCD es un tetraedro. M es un punto del segmento AB, N es un punto de la cara ABC y P es un punto de la cara BCD. Construye la sección del tetraedro con el plano MNP en los siguientes casos: 1) MN corta a BC. 2) MN es paralela a BC.

11 XIII) Sean: ABCD un tetraedro regular de arista a, M el punto medio del segmento BC, P el punto medio del segmento BD. Hallar la sección plana del tetraedro con el plano α paralelo al (AMD) por P. Mostrar que dicha sección es un triángulo isósceles y construirla en verdadera magnitud. 1 XIV) Sean: ABCDEFGH un cubo, J un punto del segmento EA tal que EJ = EA, K un punto del 3 1 segmento FB tal que BK = BF. Sean los planos α y β tales que α = (BJH) y β es paralelo 3 a α por K. Hallar la sección del cubo con β. Justificar. XV) ABCDE es una pirámide cuya base es un paralelogramo BCDE. A 1 F es un punto tal que AF = AB. E F D 3 1) Hallar la intersección de la pirámide con el plano paralelo al (BCE) por F. B C 2) Sea el plano α paralelo a las rectas AD y AE tal que F le pertenece. Sean G, H e I los respectivos puntos de corte de α con BE, CD y AC. Estudiar la naturaleza del cuadrilátero FGHI. 3) Sea J el punto de corte de las rectas FG y HI. Probar que AJ es paralela al (BCD). XVI) Sean ABCDEFGH un cubo, P el punto medio del segmento EG, Q el punto medio del segmento FB e I el punto de corte de EQ y AB. 1) Probar que PQ es paralela a GI. 2) Hallar la recta intersección de los planos (APQ) y (GCI).

GEOMETRÍA. VUELO 3 Secciones de poliedros. Posiciones relativas entre rectas y planos en el espacio

GEOMETRÍA. VUELO 3 Secciones de poliedros. Posiciones relativas entre rectas y planos en el espacio GEOMETRÍA VUELO Secciones de poliedros. Posiciones relativas entre rectas y planos en el espacio Instituto de Profesores Artigas Departamento de Matemática de Formación Docente 201 1? SOBRE CONCEPTOS PRIMITIVOS

Más detalles

TEMA 1: GEOMETRÍA EN EL ESPACIO

TEMA 1: GEOMETRÍA EN EL ESPACIO MATEMÁTICA 2do año A y B Marzo, 2012 TEMA 1: GEOMETRÍA EN EL ESPACIO Ejercicio 1: Indica si cada una de las siguientes proposiciones es verdadera o falsa: Por un punto pasa una recta y una sola Dos puntos

Más detalles

INSTITUTO DE PROFESORES ARTIGAS

INSTITUTO DE PROFESORES ARTIGAS INSTITUTO DE PROFESORES ARTIGAS ESPECIALIDAD MATEMÁTICA GEOMETRÍA UNIDAD 3 FICHA 1: PERTENENCIA, ORDEN Y PARTICIÓN 1 Conceptos primitivos. 2 Relaciones de pertenencia. 3 Orden en las rectas. 4 Partición

Más detalles

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS.

1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. UNIDAD 1.- CONCEPTOS REQUERIDOS CONJUNTOS. AXIOMAS DE PERTENENCIA, PARALELISMO, ORDEN Y PARTICIÓN. 1 NOCIONES BÁSICAS SOBRE CONJUNTOS. SÍMBOLOS. 1.1 Determinaciones de un conjunto. Un conjunto queda determinado

Más detalles

suur Dos teoremas se llaman recíprocos, cuando la tesis de uno es la hipótesis del otro y viceversa.

suur Dos teoremas se llaman recíprocos, cuando la tesis de uno es la hipótesis del otro y viceversa. INTRODUCCIÓN En la teoría que hemos de elaborar, los conceptos primitivos son: espacio, plano, recta y punto. Los axiomas de nuestra teoría expresan las relaciones que ligan a los conceptos primitivos.

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 20-2 Profesor: Jaime Andres Jaramillo González Parte del material ha sido tomado de documentos de los profesores

Más detalles

PREGUNTAS A SER PROPUESTAS EN EL ORAL DEL EXAMEN DE GEOMETRÍA

PREGUNTAS A SER PROPUESTAS EN EL ORAL DEL EXAMEN DE GEOMETRÍA PREGUNTAS A SER PROPUESTAS EN EL ORAL DEL EXAMEN DE GEOMETRÍA 1ª PARTE DEL CURSO Expedición 1 Hoy en día para hallar el área de un círculo usamos la fórmula π.r 2. Cómo se hallaba el área de un círculo

Más detalles

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 3 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA. 20-2 Profesor: Jaime Andrés Jaramillo González (jaimeaj@conceptocomputadores.com) Parte del material ha sido tomado

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan

Más detalles

CÓMO SE CONSTRUYE LA GEOMETRÍA MODERNA?

CÓMO SE CONSTRUYE LA GEOMETRÍA MODERNA? CÓMO SE CONSTRUYE LA GEOMETRÍA MODERNA? Comenzó siendo un conjunto de reglas y conocimientos obtenidos por la experiencia, usados por los constructores y medidores de terrenos. Luego se organiza en forma

Más detalles

2. De acuerdo a lo determinado en el numeral anterior, alguno de los polígonos es simple?. Justifique su respuesta.

2. De acuerdo a lo determinado en el numeral anterior, alguno de los polígonos es simple?. Justifique su respuesta. 8.16 EJERCICIOS PROPUESTOS Temas: Poligonal. Polígonos. Cuadriláteros convexos. 1. En las figuras siguientes B está entre A y C; K, está entre S y M; D, H, V, T son colineales. O está entre P y Q y O está

Más detalles

ESPACIO AFÍN REAL TRIDIMENSIONAL. Sistema de referencia (E3, V3, f). Coordenadas cartesianas.

ESPACIO AFÍN REAL TRIDIMENSIONAL. Sistema de referencia (E3, V3, f). Coordenadas cartesianas. 1. Puntos y Vectores. ESPACIO AFÍN REAL TRIDIMENSIONAL Sistema de referencia (E3, V3, f). Coordenadas cartesianas. 2. Primeros resultados analíticos. Vector que une dos puntos. Punto medio de un segmento.

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2015 2016) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = (1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2016 2017) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = {(1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8

x + 1 y 4 z x + 3 y z 1 x 3 y 2 z + 8 Paralelismo y perpendicularidad MATEMÁTICAS II 1 1 Una recta es paralela a dos planos secantes, a quién es también paralela? Una recta paralela a dos planos secantes también es paralela a la arista que

Más detalles

TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA

TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA UNIVERSIDAD PEDAGÓGICA NACIONAL FRANCISCO MORAZÁN CENTRO UNIVERSITARIO REGIONAL DE LA CEIBA COMITÉ NACIONAL DE OLIMPIADAS MATEMÁTICAS DE HONDURAS ACADEMIA TALENTOS MATEMÁTICOS DE ATLÁNTIDA TEOREMAS, POSTULADOS

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Sea P el conjunto de todos los poliedros convexos del espacio, esto es P X / X es

Sea P el conjunto de todos los poliedros convexos del espacio, esto es P X / X es 2. LA FUNCIÓN VOLUMEN Definición 9. Volumen de un poliedro convexo Sea P el conjunto de todos los poliedros convexos del espacio, esto es P X / X es un poliedro convexo, X E. Definimos una función que

Más detalles

Soluciones Nota nº 1

Soluciones Nota nº 1 Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos

Más detalles

Actividades y ejercicios Mat II 6 I- Prof. Freire 2016

Actividades y ejercicios Mat II 6 I- Prof. Freire 2016 Selección de actividades y ejercicios Matemática II- Prof. Elena Freire Para los ejercicios propuestos se diseñará una carpeta con imágenes geogebra y con el nombre del alumno impreso dentro de cada imagen.

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

CURSO DE GEOMETRÍA DESCRIPTIVA

CURSO DE GEOMETRÍA DESCRIPTIVA CURSO DE GEOMETRÍA DESCRIPTIVA (MATEMÁTICA C ) PRÁCTICOS AÑO 2008 Sergio Weinberger 1 PRÁCTICO 1 ESPACIO POLIEDROS REGULARES. CUBO Se considera el cubo ABCDEFGH : Sean MyN puntos medios de BF y DH rspectivamente.

Más detalles

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo

Más detalles

TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA

TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA TALLER 4 GEOMETRÍA VECTORIAL Y ANALÍTICA FACULTAD DE INGENIERÍA 013- UNIVERSIDAD DE ANTIOQUIA Profesor: Jaime Andrés Jaramillo G jaimeaj@conceptocomputadorescom 1 Coloque para cada una de las siguientes

Más detalles

SOLUCIONES PRIMER NIVEL

SOLUCIONES PRIMER NIVEL SOLUCIONES PRIMER NIVEL 1. Los cuatro polígonos de la figura son regulares. Halla los valores de los tres ángulos, de vértice A limitados por dos lados de los polígonos dados, indicados en la figura. Solución:

Más detalles

CURSO DE GEOMETRÍA 2º EMT

CURSO DE GEOMETRÍA 2º EMT CURSO DE GEOMETRÍA 2º EMT UNIDAD 0 REPASO 1º REPASO SOBRE TRIÁNGULOS Clasificación de los triángulos Por sus lados Propiedad La suma de los ángulos de un triángulo vale 180º A + B + C = 180 Los ángulos

Más detalles

Ilustración N 1 En cada una de las dos figuras siguientes determinar el valor de X, en función de los términos dados:

Ilustración N 1 En cada una de las dos figuras siguientes determinar el valor de X, en función de los términos dados: 6.12 EJERCICIOS RESUELTOS Ilustración N 1 En cada una de las dos figuras siguientes determinar el valor de X, en función de los términos dados: a) Uno de los procedimientos a seguir es: 1. Determinemos

Más detalles

BLOQUE II : GEOMETRIA EN EL ESPACIO.

BLOQUE II : GEOMETRIA EN EL ESPACIO. MATEMÁTICAS : 2º Curso PROBLEMAS : Bloque II 1 BLOQUE II : GEOMETRIA EN EL ESPACIO. 1.- Sea ABCDA'B'C'D' un cubo.: a) Hállense las coordenadas del centro de la cara CDD'C' en el sistema de referencia R=

Más detalles

TORNEOS GEOMÉTRICOS 2016 Segunda Ronda. Soluciones 1º Nivel

TORNEOS GEOMÉTRICOS 2016 Segunda Ronda. Soluciones 1º Nivel TORNEOS GEOMÉTRICOS 2016 Segunda Ronda Soluciones 1º Nivel 1. Halla la suma de los ángulos marcados en el cuadrilátero inscripto en la circunferencia, como indica la figura. Solución: Por la propiedad

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES MATEMÁTICA 1 GEOMETRÍA EUCLIDIANA

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES MATEMÁTICA 1 GEOMETRÍA EUCLIDIANA GEOMETRÍA EUCLIDIANA Axiomas de Pertenencia 1) Existe un conjunto infinito llamado espacio, cuyos elementos se llaman puntos. 2) En el espacio existen subconjuntos estrictos llamados planos, cada uno de

Más detalles

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por 1. [01] [SEP-B] Halla el punto simétrico del P(,1,-5) respecto de la recta r definida por x-z = 0 x+y+ = 0.. [01] [SEP-A] Sean los puntos A(0,0,1), B(1,0,-1), C(0,1,-) y D(1,,0). a) Halla la ecuación del

Más detalles

Tema 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1

Tema 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 Tema 7 Rectas y planos en el espacio Matemáticas II - º Bachillerato 1 ÁNGULOS EJERCICIO 33 : Halla el ángulo que forma la recta y el plano π: x y + 4z 0. 3x y z + 1 0 r : x + y 3z 0 EJERCICIO 34 : En

Más detalles

EJERCICIOS ÁREAS DE REGIONES PLANAS

EJERCICIOS ÁREAS DE REGIONES PLANAS EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que

Más detalles

Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d

Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d Semejanza Razones Razones y proporciones Teorema de Thales Triángulos semejantes Teoremas de semejanza Teoremas de Euclides Perímetro y Área a) Razón. Es el cuociente entre dos números (positivos). b)

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

RESUMEN DE GEOMETRIA EUCLIDIANA. Profesor: Manuel J. Salazar Jiménez. Relaciones no definidas: pertenecer a, estar entre, congruente a, equidistar

RESUMEN DE GEOMETRIA EUCLIDIANA. Profesor: Manuel J. Salazar Jiménez. Relaciones no definidas: pertenecer a, estar entre, congruente a, equidistar RESUMEN DE GEOMETRIA EUCLIDIANA Profesor: Manuel J. Salazar Jiménez Nociones no definidas o nociones primitivas: Punto, recta, plano, espacio, distancia. Relaciones no definidas: pertenecer a, estar entre,

Más detalles

es el lugar geométrico de los puntos p tales que ; R (1)

es el lugar geométrico de los puntos p tales que ; R (1) LA RECTA DEL PLANO ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS La recta en el plano como lugar geométrico Dados un punto p un vector no nulo u, la recta T paralela a u que pasa por p es el lugar geométrico

Más detalles

Polígonos Polígonos especiales: Cuadriláteros y triángulos

Polígonos Polígonos especiales: Cuadriláteros y triángulos Polígonos Polígonos especiales: Cuadriláteros y triángulos 1) a) Busca información sobre polígonos equiláteros, equiángulares y regulares. Lista semejanzas y diferencias. b) Haz una lista de los polígonos

Más detalles

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ).

190. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R = ( O, OA, OB, OC ). Hoja de Problemas Geometría VIII 90. Dado el paralelepípedo OADBFCEG en el espacio afín ordinario, se considera el sistema de referencia afín R O, Sean: OA, OB, OC ). OG la recta determinada por los puntos

Más detalles

Curso Curso

Curso Curso Problema 84. Sea AB el diámetro de una semicircunferencia de radio R y sea O el punto medio del segmento AB. Con centro en A y radio OA se traza el arco de circunferencia OM. Calcular, en función de R,

Más detalles

Geometría. 2 (el " " representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

Geometría. 2 (el   representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. Geometría 1 (Junio-96 Dados los vectores a,b y c tales que a, b 1 y c 4 y a b c, calcular la siguiente suma de productos escalares: a b b c a c (Sol: -1 (Junio-96 Señalar si las siguientes afirmaciones

Más detalles

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría

IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,

Más detalles

UADER - PROFESORADO Y LICENCIATURA DE MATEMATICA GEOMETRIA I UNIDAD Nº 2 ENTES GEOMETRICOS FUNDAMENTALES

UADER - PROFESORADO Y LICENCIATURA DE MATEMATICA GEOMETRIA I UNIDAD Nº 2 ENTES GEOMETRICOS FUNDAMENTALES UNIDAD Nº 2 ENTES GEOMETRICOS FUNDAMENTALES Los entes geométricos fundamentales son el punto. La recta y el plano. POSTULADO I: existen infinitos puntos, infinitas rectas e infinitos planos. POSTULADO

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles

ejerciciosyexamenes.com GEOMETRIA

ejerciciosyexamenes.com GEOMETRIA GEOMETRIA 1.- Dado el vector AB= (2,-1,3) y el punto B(3,1,2) halla las coordenadas del punto A. Sol: A =(1,2,-1) 2.- Comprobar si los vectores AB y CD son equipolentes, siendo A(1,2,-1), B(0,3,1), C(1,1,1)

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

Polígonos. 6 K ˆ 5ˆ 5. De 1: s alternos internos entre paralelas

Polígonos. 6 K ˆ 5ˆ 5. De 1: s alternos internos entre paralelas Polígonos. Ilustración 14: En un paralelogramo ABCD, las bisectrices de A ) y C ) cortan las prolongaciones de BC y DA en E y F respectivamente. a.) Demostrar que AFCE es un paralelogramo. b.) Demostrar

Más detalles

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO ESPACIO AFIN 1.Hallar la ecuación del plano que contenga al punto P(1, 1, 1) y sea paralelo a las rectas: r x 2y = 0 ; y 2z + 4 = 0; s

Más detalles

ANDALUCÍA Pruebas de acceso a la Universidad. x y z 2= , λ.

ANDALUCÍA Pruebas de acceso a la Universidad. x y z 2= , λ. MATEMÁTICAS II ANDALUCÍA Pruebas de acceso a la Universidad GEOMETRÍA SOLUCIONES. (-A-4) Centro: C (, ) Radio: r =. (-B-4) 7 a = y 4 b =. (-A-4) π x 4y z 5= 4. (-B-) a = 5. (-A-4) 45º z = 6. (-B-4) A(,,

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

MATEMÁTICAS II. 2º BACHILLERATO EJERCICIOS DE GEOMETRÍA

MATEMÁTICAS II. 2º BACHILLERATO EJERCICIOS DE GEOMETRÍA MATEMÁTICAS II. º BACHILLERATO EJERCICIOS DE GEOMETRÍA REAL COLEGIO NTRA. SRA. DE LORETO FUNCACIÓN SPÍNOLA.- Halla la ecuación del plano, a. que pasa por A(,, 0) es perpendicular a w, 0 b. que pasa por

Más detalles

Ejercicio 7: Hallar las coordenadas del punto B sabiendo que M es el punto medio del segmento [AB], A(7,8), M(3,-2).

Ejercicio 7: Hallar las coordenadas del punto B sabiendo que M es el punto medio del segmento [AB], A(7,8), M(3,-2). Geometría Analítica Investiga 1- Qué significa geometría analítica? Cómo surge? Quién es considerado el padre de la geometría analítica? Por qué? Qué otros matemáticos puedes encontrar en su historia?

Más detalles

GEOMETRÍA (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016

GEOMETRÍA (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016 GEOMETRÍA (Selectividad 6) ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 6 Aragón, junio 6 ( puntos) a) ( punto) a) (,5 puntos) Si los vectores w y s verifican que w = s =,

Más detalles

TORNEOS GEOMÉTRICOS Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres. DNI Tu Escuela. Localidad Provincia

TORNEOS GEOMÉTRICOS Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres. DNI Tu Escuela. Localidad Provincia TORNEOS GEOMÉTRICOS 2017. Segunda Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela. Tu domicilio: Calle. Nº Piso Dpto C.P... Localidad Provincia Lee con atención: 1- Es posible

Más detalles

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela.. Localidad Provincia

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela.. Localidad Provincia Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Problema 2. Usando sólo una regla sin marcas, dibujar en la cuadrícula

Más detalles

= λ + 1 y el punto A(0, 7, 5)

= λ + 1 y el punto A(0, 7, 5) 94 GEOMETRÍA ANALÍTICA DEL ESPACIO en las PAU de Asturias Dados los puntos A(1, 0, 1), B(l, 1, 1) y C(l, 6, a), se pide: a) hallar para qué valores del parámetro a están alineados b) hallar si existen

Más detalles

12. Espacios afines euclídeos

12. Espacios afines euclídeos 12. Espacios afines euclídeos Distancia y sistema de referencia métrico Ejercicio 12.1. Teorema de Sylvester-Gallai. Sean P 1,...,P n,n 3 puntos del espacio euclídeo afín A 2 (R) que no están sobre una

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES MATEMÁTICA 1 GEOMETRÍA EUCLIDIANA

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES MATEMÁTICA 1 GEOMETRÍA EUCLIDIANA GEOMETRÍA EUCLIDIANA Introducción Etimológicamente, Geometría significa medida de la tierra haciendo referencia a su origen práctico, relacionado con las actividades de reconstrucción de los límites de

Más detalles

Año 1 - Número 1 - Junio Redacctadas por los Doctores José Araujo, Guillermo Keilhauer y la Lic. Norma Pietrocola

Año 1 - Número 1 - Junio Redacctadas por los Doctores José Araujo, Guillermo Keilhauer y la Lic. Norma Pietrocola Año 1 - Número 1 - Junio 2013 Notas de Geometría Redacctadas por los Doctores José Araujo, Guillermo Keilhauer y la Lic. Norma Pietrocola Esta es la primera de una serie de Notas previstas para dar apoyo

Más detalles

Si A B C D todos ellos pertenecientes a una misma circunferencia con AD BC,

Si A B C D todos ellos pertenecientes a una misma circunferencia con AD BC, 9.0 EJERCICIOS RESUELTOS Ilustración N Si A B C D todos ellos pertenecientes a una misma circunferencia con AD BC, entonces, AB. CD i. A B C D Hipótesis ii. A, B, C, D ε C(O, R) Tesis iii. AD BC AB CD.

Más detalles

1. Dibujar un punto del primer cuadrante y su simétrico respecto del plano vertical de proyección.

1. Dibujar un punto del primer cuadrante y su simétrico respecto del plano vertical de proyección. Referencias.- En todos los ejercicios: La primera coordenada representa a la distancia al plano lateral de referencia, la segunda coordenada es el alejamiento y la tercera coordenada es la elevación. [P(x,

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

open green road Guía Matemática SEMEJANZA tutora: Jacky Moreno .cl

open green road Guía Matemática SEMEJANZA tutora: Jacky Moreno .cl Guía Matemática SEMEJANZA tutora: Jacky Moreno.cl 1. Semejanza En el lenguaje que manejamos en nuestro diario vivir utilizamos la palabra semejanza para referirnos a que dos cosas comparten algunas características

Más detalles

Problema 1. Cuántos triángulos rectángulos se pueden formar que tengan sus vértices en vértices de una caja?

Problema 1. Cuántos triángulos rectángulos se pueden formar que tengan sus vértices en vértices de una caja? Nota4: Soluciones problemas propuestos Problema 1. Cuántos triángulos rectángulos se pueden formar que tengan sus vértices en vértices de una caja? Solución: Consideremos primero todos aquellos triángulos

Más detalles

Espacio métrico 2º Bachillerato

Espacio métrico 2º Bachillerato Espacio métrico 2º Bachillerato Presentación elaborada por la profesora Ana Mª Zapatero a partir de los materiales utilizados en el centro (Editorial SM) Ángulo entre dos rectas El ángulo de dos rectas

Más detalles

TEMA 6. ANALÍTICA DE LA RECTA

TEMA 6. ANALÍTICA DE LA RECTA TEMA 6. ANALÍTICA DE LA RECTA = 2 + 5t 1. Dadas las rectas r: = 4 3t cada una de ellas. = 1 + 9t y s: = 8 6t, indicar tres vectores directores y tres puntos de 2. Dada la recta 2x 3y + 8 = 0, encontrar

Más detalles

GEOMETRÍA es la ciencia que tiene por objeto el estudio de la extensión, considerada bajo sus tres formas: línea, superficie y volumen.

GEOMETRÍA es la ciencia que tiene por objeto el estudio de la extensión, considerada bajo sus tres formas: línea, superficie y volumen. GEOMETRÍA es la ciencia que tiene por objeto el estudio de la extensión, considerada bajo sus tres formas: línea, superficie y volumen. AXIOMA DE EXISTENCIA DEL ESPACIO: Existe un conjunto llamado el espacio

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Dada la recta del plano de ecuación x 6y + = 0, escríbela en forma continua, paramétrica, vectorial y explícita. La recta x 6y + = 0 pasa por el punto (0,

Más detalles

GEOMETRÍA ANALÍTICA. 6.- Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

GEOMETRÍA ANALÍTICA. 6.- Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. GEOMETRÍA ANALÍTICA 1.- a) Expresa en forma paramétrica y continua la ecuación de la recta que es perpendicular a la recta s de ecuación s: 5x y + 1 = 0 y pasa por el punto B: (, 5). b) Halla la ecuación

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

PÁGINA 84 AB = ( 2, 7) (1, 1) = ( 3, 6) 8 AB = ( 3) = = 45 = CD = (3, 6) (6, 0) = ( 3, 6) 8 = 45 = 3 5

PÁGINA 84 AB = ( 2, 7) (1, 1) = ( 3, 6) 8 AB = ( 3) = = 45 = CD = (3, 6) (6, 0) = ( 3, 6) 8 = 45 = 3 5 Soluciones a las actividades de cada epígrafe PÁGINA 4 1 Representa los vectores AB y CD, siendo A(1, 1), B(, 7), C(6, 0), D(3, 6) y observa que son iguales. Comprueba que AB = CD hallando sus coordenadas.

Más detalles

GEOMETRÍA EUCLIDIANA EJERCICIO RESUELTO

GEOMETRÍA EUCLIDIANA EJERCICIO RESUELTO GEOMETRÍA EUCLIDIANA EJERCICIO RESUELTO Sobre los lados iguales AB y AC de un triángulo isósceles ABC se toman longitudes iguales AE = AF. Luego se unen los puntos E y F con el pie H de la altura. Demostrar

Más detalles

6 Propiedades métricas

6 Propiedades métricas 6 Propiedades métricas ACTIVIDADES INICIALES 6.I Dados los puntos P(, ) Q(, 5), la recta r :, calcula: a) d(p, Q) b) d(p, r) c) d(q, r) 6.II Se tienen las rectas r :, s : 4 t :. Halla: a) d(r, s) b) d(r,

Más detalles

Problemas de geometría afín

Problemas de geometría afín Problemas de geometría afín Teóricos Problema A Para un subconjunto no vacío X de R n se cumple: X es subvariedad afín cada recta que pasa por dos puntos distintos de X está totalmente contenida en X Problema

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso

3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso 3º - Matemática B La Blanqueada Nocturno Práctico Nº 6 - Repaso 1) Hallar los puntos de corte de la recta x+ y= 3 y la cfa: x 2 + y 2 = 5 2) Sea v= ( 1,2) tal que OB v. Halle el área del triángulo OBC

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA I. VECTORES LIBRES 1. Dada la siguiente figura, calcula gráficamente los siguientes vectores: a. AB BI b. BC EF c. IH 2BC d. AB JF DC e. HG 2CJ 2CB 2. Estudia si las siguientes

Más detalles

Potencia de un Punto

Potencia de un Punto 1 Potencia de un Punto Luis F. Cáceres Ph.D UPR-Mayagüez Propiedad 1. Las cuerdas AB y CD se cortan en P, entonces P A P B = P C P D. Demostración. El P AC = BCD pues abren el mismo arco y AP C = BP D

Más detalles

GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad

GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad GEOMETRÍA ANALÍTICA - Ejercicios de Selectividad 1 Se sabe que los puntos A (1,0,-1), B (3,, 1) y C (-7, 1, 5) son los vértices consecutivos de un paralelogramo ABCD. (a) Calcula las coordenadas del punto

Más detalles

Práctico de 5º Científico, Matemática "B". Liceo Nº 3 Nocturno. Año Profesora María del Rosario Quintans.

Práctico de 5º Científico, Matemática B. Liceo Nº 3 Nocturno. Año Profesora María del Rosario Quintans. 1 1) Dibuje un triángulo cualquiera ABC. Se desea construir un triángulo A'B'C' igual al ABC, investigue la mínima cantidad de condiciones que deben cumplirse entre los elementos de los dos triángulos

Más detalles

Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos.

Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos. Triángulos Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos. Teoremas 1) La suma de las medidas de los ángulos interiores de un triángulo es 180º. δ + β+ α = 180 0 2) Todo

Más detalles

GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS

GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS GEOMETRÍA ANALÍTICA La Geometría Analítica hace uso del Álgebra y la Geometría plana. Con ella expresamos y resolvemos fácilmente problemas geométricos de forma algebraica, siendo los sistemas de coordenadas

Más detalles

MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA. A) Reproduce la siguiente figura, luego trace las bisectrices de los ángulos ACD y BCD.

MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA. A) Reproduce la siguiente figura, luego trace las bisectrices de los ángulos ACD y BCD. Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA-PRIMER AÑO REVISIÓN INTEGRADORA Construcciones con regla no graduada y compás A) Reproduce la siguiente figura, luego trace las

Más detalles

Soluciones Primer Nivel

Soluciones Primer Nivel Soluciones Primer Nivel Torneos Geométricos 2017 2º Ronda 1. En un papel cuadriculado con cuadrados de un centímetro de lado, se ha dibujado un cuadrilátero con vértices en los nodos del mismo (vértices

Más detalles

Problemas del capítulo rectas paralelas

Problemas del capítulo rectas paralelas Problemas del capítulo rectas paralelas Rectas: intersección, paralelas y oblicuas Trabajo en clase Utiliza la imagen 1 1. Nombra todos los segmentos paralelos a GH : 2. Nombra todos los segmentos oblicuos

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2).

1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2). 1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(,3,5) y B(-1,0,).. Dados los puntos A(,3,-1) y B(-4,1,-), hallar las coordenadas de un punto C perteneciente

Más detalles

Entonces, por semejanza tenemos que. Trazamos la perpendicular desde F a CD, y corta a este lado en G. También son semejantes los

Entonces, por semejanza tenemos que. Trazamos la perpendicular desde F a CD, y corta a este lado en G. También son semejantes los PROBLEMA Dado un cuadrado ABCD, llamamos E al punto medio del lado CD. Unimos A con E; desde B trazamos la perpendicular a AE y esta corta a AE en F. Probar que CF=CD. Solución 1 Como ABCD es un cuadrado,

Más detalles

Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2.

Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2. Módulo 17 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 210 Capítulo 4: Cuadriláteros Figura 7 Figura 8 Figura 9 2. En

Más detalles

B) Solo II C) I y II D) I y III E) I, II y III. A) 8 cm 2 B) 15 cm 2 C) 40 cm 2 D) 60 cm 2 E) 120 cm 2

B) Solo II C) I y II D) I y III E) I, II y III. A) 8 cm 2 B) 15 cm 2 C) 40 cm 2 D) 60 cm 2 E) 120 cm 2 EJERCICIOS DE ÁREAS Y PERÍMETROS DE TRIÁNGULOS 1. En el triángulo ABC es isósceles y rectángulo en C. Si AC = 5 cm y AD = cm, cuál (es) de las siguientes proposiciones es (son) verdadera (s)?: I) Área

Más detalles

1.1. Un segmento OB congruente con AB y con uno de sus extremos en un punto correspondiente al origen de una semirrecta OW. Figura 253.

1.1. Un segmento OB congruente con AB y con uno de sus extremos en un punto correspondiente al origen de una semirrecta OW. Figura 253. 13.1 CONSTRUCCIONES. EJERCICIOS RESUELTOS Ilustración N 1 Dado un segmento AB de medida l, contruir: 1.1. Un segmento OB congruente con AB y con uno de sus extremos en un punto correspondiente al origen

Más detalles