CORRIENTE ALTERNA CORRIENTE ALTERNA
|
|
|
- Andrea Zúñiga Cárdenas
- hace 8 años
- Vistas:
Transcripción
1 CORRIENTE ALTERNA La corriente alterna es generada por un alternador, las fuerzas mecánicas hacen girar una rueda polar y se obtienen tensiones inducidas en los conductores fijos del estator que la envían a la red exterior. Llamaremos corriente alterna CA al flujo de electrones cuya dirección se invierte periódicamente, de forma que el valor medio a lo largo de un período es cero. La expresión matemática es la función seno o coseno y se utiliza en los sistemas de potencia a frecuencia de 50 Hz en Europa y 60 Hz en America. Función seno y(t) = sen ( ω t ) La corriente CA senoidal se utiliza frente a otro tipo de onda, porque ofrece las siguientes ventajas: La función seno se opera con facilidad y define con precisión analítica y gráfica la evolución de la intensidad a lo largo del tiempo. Se pueden generar con facilidad en magnitudes de valor muy elevado. Se modifican con facilidad los valores de tensión e intensidad mediante transformadores. Todas las ondas no senoidales se pueden descomponer en ondas senoidales de diferentes frecuencias o armónicos. Las operaciones de transporte y utilización son sencillas.
2 DEFINICIÓN MATEMÁTICA La onda senoidal de CA tiene una expresión matemática o analítica que corresponde a la función seno y= sen α y su expresión gráfica corresponde a la proyección sobre un eje de un vector giratorio OA -> que recorre una circunferencia de radio r con movimiento circular uniforme de velocidad angular ω. La expresión y= sen α define la función seno, pero cuando se tratan magnitudes en corriente alterna, que es necesario expresarlas en función del tiempo transcurrido. El ángulo esta relacionado con el tiempo mediante la expresión: α ω = t α = ω t ω: Velocidad angular en rad/s α: Ángulo descrito en radianes (rad). t: tiempo transcurrido en segundos. La expresión analítica de una onda senoidal en función del tiempo transcurrido es: y(t) = sen ( ω t ) A la velocidad angular ω la llamamos pulsación. Es el cociente entre el ángulo recorrido en un ciclo y el período transcurrido en recorrerlo: 2 π ω = T ω: velocidad angular en rad/s. π: Ángulo descrito en radianes (rad). t: tiempo transcurrido en segundos. El inverso del período es la frecuencia f = T queda ω = 2 π f por lo que la ecuación 2
3 f: frecuencia en Hercios o ciclos por segundo. Cuanto más alta es la frecuencia, menor es el periodo. VALORES CARACTERÍSTICOS DE LA CA VALOR INSTANTÁNEO: El valor instantáneo de una onda senoidal es el que toma la ordenada (eje y ) en un instante determinado. VALOR MÁXIMO V max, I max. Es el valor máximo que toma la tensión o corriente en eje de ordenadas (eje Y), también se puede llamar valor de pico. VALOR PICO A PICO Vpp, Ipp Se utiliza en telecomunicaciones para analizar los máxima variación. Es dos veces el valor máximo. fenómenos de Ipp = 2 Im ax 3
4 VALOR MEDIO V med, I med El valor medio de una onda senoidal pura es cero, dado que la semionda positiva es igual y de signo contrario a la semionda negativa. Por este motivo tomamos como valor medio como la media algebraica de los valores instantáneos durante un semiperiodo. V = 2 Vmax π VALOR EFICAZ rms I Este es un valor característico de la intensidad de la corriente alterna y se define el valor eficaz de una corriente alterna como aquel valor que llevado a corriente continua nos produce los mismos efectos caloríficos. En la literatura inglesa se conoce como r.m.s (valor medio cuadrático). En general, el valor eficaz de una magnitud variable en función del tiempo se define como la raíz cuadrada de la media de los cuadrados de los valores instantáneos alcanzados durante un período o ciclo completo. = v dt T V eficaz 2 En la técnica de las corrientes industriales es de gran importancia, pues prácticamente todas las operaciones con magnitudes energéticas se hacen con el valor eficaz. De ahí que por rapidez y claridad se represente con la letra mayúscula del símbolo de la magnitud de que se trate, por ejemplo E, V, I, P. Tiene por expresión: V eficaaz = V max 2 Análogamente para la intensidad. I eficaz = I max 2 4
5 PERIODO El período es el tiempo que que transcurre en un ciclo completo, se representa por la letra T. FRECUENCIA Es el número de ciclos que se produce en un segundo, se representa por la letra f y se mide en hercios (Hz) o ciclos por segundo. Matemáticamrente se expresa como la inversa del periodo. f = T 5
6 CIRCUITO DE CORRIENTE ALTERNA CON RESISTENCIA OHMICA Al conectar una resistencia R a una tensión alterna senoidal de valor eficaz V y frecuencia f, circulará por la resistencia una corriente alterna senoidal de frecuencia f e intensidad eficaz: V I = R La intensidad de corriente estará en fase con la tensión aplicada. Los valores instantáneos de la tensión y corriente serán: Vmax i( t) = seno( ω t) R v( t) = V seno( ω t) max CIRCUITO DE CORRIENTE ALTERNA CON AUTOINDUCCION Al conectar una bobina de coeficiente de autoinducción L a una tensión alterna senoidal de valor eficaz V y frecuencia f, circulará por la bobina una corriente senoidal de frecuencia f e intensidad eficaz I: V V I = = X 2 π f L L Al valor X L se le denomina reactancia o inductancia y se mide en ohmios. X L = 2 π f L La intensidad estará desfasada 90º en retraso respecto a la aplicada. tensión Los valores instantáneos de la tensión y corriente serán: 6
7 Vmax i( t) = seno( ω t 90 XL v( t) = V seno( ω t) max Diagrama Vectorial: 0 ) I V CIRCUITO DE CORRIENTE ALTERNA CON CAPACIDAD Al conectar un condensador de capacidad C a una tensión alterna senoidal de valor eficaz V y frecuencia f, circulará por el circuito una corriente alterna senoidal de frecuencia f y valor eficaz I: V I = ( 2 π f c) Se llama reactancia capacitiva o capacitancia al valor: X C = 2 π f c y se mide en ohmios. La intensidad de corriente alterna está desfasada en adelanto 90º respecto a la tensión aplicada. Los valores instantáneos de la corriente y tensión serán: Vmax i( t) = seno( ω t+ 90 X C v( t) = V seno( ω t) max 0 ) 7
8 Diagrama Vectorial: I V 8
9 CIRCUITO DE CORRIENTE ALTERNA CON RESISTENCIA, AUTOINDUCCION Y CAPACIDAD EN SERIE Al conectar un circuito de resistencia R, autoinducción L y capacidad C a una tensión alterna senoidal de valor eficaz V y frecuencia f, por el circuito circulará una corriente alterna senoidal de frecuencia f e intensidad eficaz I = V Z = R 2 V + ( X L XC ) 2 Al valor Z se le llama impedancia del circuito y se mide en ohmios. La intensidad de corriente estará desfasada un ángulo: ϕ= ( arctan X ) L C X R Si el ángulo es positivo la intensidad estará retrasada respecto a la tensión. ϕ 9
10 Los valores instantáneos de la tensión y corriente serán: v( t) = V seno( ω t) max Vmax i( t) = seno( ω t ϕ ) Z Diagrama Vectorial:
11 ENERGIA EN CORRIENTE ALTERNA En un circuito eléctrico nos encontramos con elementos que transforman la energía eléctrica en otro tipo de energía (mecánica, luz, calor), a esta energía consumida la denominamos Energía activa. Por otro lado nos encontramos con receptores o componentes que estarán consumiendo energía y devolviendo esta misma energía a la fuente que se la ha suministrado, a esta energía la denominaremos energía reactiva. Los elementos que consumen energía activa son las resistencias. Las bobinas y condensadores están tomando energía y devolviéndola, son componentes que funcionan con energía reactiva.
12
13 POTENCIA ACTIVA: Es la potencia que produce un trabajo efectivo en un receptor o es consumida por el receptor P = V eficaz Ieficaz cos ϕ La unidad es el vatio, vatímetro. W, se utiliza el aparato de medida llamado POTENCIA REACTIVA: Es aquella que fluctúa entre el generador y el receptor haciendo circular una corriente pero sin efectuar trabajo efectivo. Q = V eficaz I eficaz sen ϕ La unidad es del Voltio amperio reactivo (Var), aparato de media Varímetro. POTENCIA APARENTE: Es la potencia es: S = V eficaz I eficaz Unidad Voltio amperio (VA) Es la suma vectorial de la potencia activa + la reactiva. TRIANGULO DE POTENCIAS φ S Q P FACTOR DE POTENCIA Es la relación existente entre la potencia activa y la aparente: F P = S P = cosϕ El factor de potencia nos indica qué parte de la potencia aparente se transforma en potencia activa en el circuito.
Conversión de Corriente alterna a Corriente continua es sencilla y barata.
TEMA 7 CORRIENTE ALTERNA. En los inicios del desarrollo de los sistemas eléctricos, la electricidad se producía en forma de corriente continua mediante las dinamos, este tipo de generador es más complejo
LA CORRIENTE ALTERNA
LA CORRIENTE ALTERNA Índice INTRODUCCIÓN VENTAJAS DE LA C.A. PRODUCCIÓN DE UNA C.A. VALORES CARACTERÍSTICOS DE C.A. REPRESENTACIÓN DE UNA MAGNITUD ALTERNA SENOIDAL DESFASE ENTRE MAGNITUDES ALTERNAS RECEPTORES
1º- CORRIENTE ALTERNA
º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje
a) De la expresión analítica se obtiene la pulsación: ω = 6280 rad/s. Frecuencia: f ω 1000 Hz=1 khz 12 7,64 A
UNIDAD 5: ORRIENTE ALTERNA ATIVIDADES FINALES PÁG. 136 1. Una onda de corriente alterna senoidal tiene por expresión analítica i=6 sen680t. alcular: a) La frecuencia y el periodo. b) El valor que toma
1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda.
DESARROLLO DEL AMA: 1. Las funciones periódicas. Ondas sinusoidales.. Características de una onda. 3. La representación vectorial de una onda. 4. Ondas sinusoidales simultáneas con la misma frecuencia:
Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS
TEMA 14 CORRIENTES ALTERNAS 14.1. VALORES ASOCIADOS A LAS ONDAS SENOIDALES. Sea un cuadro rectangular de lados h y l, formado por N espiras devanadas en serie, que gira a velocidad angular constante ω
CORRIENTE ALTERNA. Onda senoidal:
CORRIENTE ALTERNA Onda senoidal: En corriente alterna, la tensión varía continuamente en el tiempo, tomando valores positivos y negativos. La forma más común de corriente alterna es la senoidal. Se debe
Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA
2016 Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA Concepto de corriente alterna Generación de c.a. ondas sinusoidales valores característicos magnitudes fasoriales Ing. Rodríguez, Diego 01/01/2016 INTRODUCCIO
En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede:
www.clasesalacarta.com 1 Elementos Lineales Tema 7.- CA Elementos Lineales Cuando se aplica una tensión alterna con forma de onda senoidal a los bornes de un receptor eléctrico, circula por él una corriente
ANÁLISIS DE CIRCUITOS SENOIDALES. Ing. Pablo M. Flores Jara
ANÁLISIS DE CIRCUITOS SENOIDALES Onda Senoidal (I) La corriente alterna es una corriente eléctrica cuyo valor y sentido varían continuamente, tomando valores positivos y negativos en distintos instantes
ELECTROTECNIA 2º B.S. PROF. DIEGO C. GIMÉNEZ INST. SAN PABLO - LUJAN -
ELECTROTECNIA º B.S. PROF. DIEGO C. GIMÉNE PAG. MODULO Nº 3 CIRCUITOS R-L EN CORRIENTE ALTERNA Conexión en serie Sean dos bobinas con las resistencias R y R y los coeficiente de autoinducción L y L conectadas
Clase 7 Inductancia o Reactancia Inductiva
Clase 7 Inductancia o Reactancia Inductiva 1 La Bobina - Autoinducción Autoinducción es un fenómeno electromagnético que se presentan en determinados sistemas físicos como por ejemplo cicuitos eléctricos
CONTINUA: Mantiene constante su valor a lo largo del tiempo. VARIABLE: Su valor cambia a lo largo del tiempo. PERIODICA:
CONTINUA: Mantiene constante su valor a lo largo del tiempo. VARIABLE: Su valor cambia a lo largo del tiempo. PERIODICA: Es un tipo de señal variable que repite cíclicamente una determinada señal. PULSANTE:
PRÁCTICA 3 DE FÍSICA GENERAL II
PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2016-17 Departamento de Física Aplicada e ngeniería de Materiales GRADO EN NGENERÍA DE ORGANZACÓN Coordinador: Rafael Muñoz Bueno [email protected] Práctica 3 Corriente
El valor instantáneo de la f.e.m. inducida en la bobina, de acuerdo con la ley de Faraday vendría dado por:
OIENE AENA SENOIDA Es una corriente eléctrica cuyo sentido se invierte periódicamente. Se caracteriza porque los valores que toma en cada instante su intensidad y su tensión varían de forma proporcional
Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso
oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a
CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 2
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CURSO VIII CICLO SISTEMAS ELECTRICOS DE POTENCIA SEMANA 2 OBJETIVO Representar y analizar un SEP monofásico BIBLIOGRAFIA Duncan-Sarma.2003.
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,
Comportamiento de los componentes pasivos en C.A
Comportamiento de los componentes pasivos en C.A Los componentes pasivos tienen distinto comportamiento cuando se les aplican dos corrientes de distinta naturaleza, una alterna y la otra continua. La respuesta
Corriente Alterna: Potencia en corriente alterna
Corriente Alterna: Potencia en corriente alterna Si le preguntaran a Emilio que lámpara lucirá más, una de 100 W o una de 60 W, la respuesta sería inmediata: la de 100, que tiene mas potencia. Luego, está
PRÁCTICA 3 DE FÍSICA GENERAL II
PRÁCTCA 3 DE FÍSCA GENERAL CURSO 2017-18 Departamento de Física Aplicada e ngeniería de Materiales Juan Antonio Porro González Francisco Cordovilla Baró Rafael Muñoz Bueno Beatriz Santamaría Práctica 3
C.A. : Circuito con Resistencia R
Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar
Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica
Instalaciones y Servicios Parte II Corriente Alterna Monofásica Unidad Didáctica 2 Corriente Alterna Monofásica Instalaciones y Servicios Parte II- UD2 CONTENIDO DE LA UNIDAD Introducción a la corriente
En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.
Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía
CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos.
Desarrollo del tema.1. Concepto de sistemas polifásicos. 2. Conexión de las fuentes en estrella y en triángulo. 3. La conexión de los receptores. 4. Conexión en estrella y triángulo en receptores. 5. Resolución
TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA.
TRABAJO PRÁCTICO DE LABORATORIO 6 Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. OBJETIVO: Analizar el comportamiento de circuitos RC, RL y RLC cuando son alimentados con corriente alterna.
2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia.
CIDEAD. º BACHILLERATO. ELECTROTECNIA. Desarrollo del tema.. Concepto de elementos. Excitación sinusoidal.. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces
CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO
CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida
Potencia en corriente alterna
Potencia en corriente alterna En una corriente eléctrica la potencia se define como el producto entre la tensión y la intensidad de corriente: P(t) = V(t) I(t) En corriente alterna, al ser valores que
COLECCIÓN DE PROBLEMAS IV REPASO
COLECCIÓN DE PROBLEMAS I REPASO 1. Una tensión alterna de 100Hz tiene un valor eficaz de 10. Deducir la expresión de la corriente instantánea que circularía por una bobina de L=3H si se le aplica dicha
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
OPCIÓN A Dos pilas iguales de fuerza electromotriz 1,5 V y resistencia interna 0,1 Ω. a) Si se asocian en serie y se conectan a una resistencia exterior, la intensidad que circula es de 3 A, cuál es el
Tema 11: CIRCUITOS ELÉCTRICOS
Tema 11: CIRCUITOS ELÉCTRICOS Esquema 1. Estructura atómica 2. El circuito eléctrico 3. Magnitudes eléctricas básicas 4. Ley de Ohm 5. Energía eléctrica. Efecto Joule. 6. Potencia eléctrica. Tipos de resistencias
BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS
Dpto. de Ingeniería Eléctrica E.T.S. de Ingenieros Industriales Universidad de Valladolid TECNOLOGÍA ELÉCTRICA Ingeniero Químico Curso 2004/2005 BOLETÍN DE PROBLEMAS SISTEMAS MONOFÁSICOS Problema 1 Calcular
Potencia Eléctrica en C.A.
Potencia Eléctrica en C.A. Potencia Eléctrica en Circuitos Puramente Resistivos (o en Circuitos con C.C.) Si se aplica una diferencia de potencial a un circuito, éste será recorrido por una determinada
9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3
1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta
NÚMEROS COMPLEJOS. Se puede considerar C como el conjunto de los pares ordenados de números reales z=(x,y) con las siguientes operaciones:
NÚMEROS COMPLEJOS Definición Se puede considerar C como el conjunto de los pares ordenados de números reales z=(x,y) con las siguientes operaciones: Elemento neutro: Elemento opuesto: Elemento unidad:
CORRIENTE ALTERNA ÍNDICE
CORRIENTE ALTERNA ÍNDICE 1. Introducción 2. Generadores de corriente alterna 3. Circuito de CA con una resistencia 4. Circuito de CA con un inductor 5. Circuito de CA con un condensador 6. Valores eficaces
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico
Circuitos de corriente alterna
UNIDAD 5 Circuitos de corriente alterna H asta ahora hemos estudiado circuitos con fuentes de corriente continua, en los que la tensión no cambia con el tiempo. En esta unidad estudiaremos circuitos en
GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA
GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA 1. Un circuito serie de corriente alterna consta de una resistencia R de 200 una autoinducción de 0,3 H y un condensador de 10 F. Si el generador
ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA
Universidad Católica del Maule Escuela de Ingeniería en Construcción Asignatura : Circuitos Eléctricos ANÁLISIS DE CIRCUITOS DE CORRIENTE ALTERNA Profesor: Francisco Valdebenito A. ELECTRICIDAD ETAPA DEL
VOLTAJE Y CORRIENTE ALTERNA CA
LECCIÓN Nº 05 VOLTAJE Y CORRIENTE ALTERNA CA 1. GENERALIDADES Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica
INSTALACIONES ELECTRICAS ELECTROTECNIA CORRIENTE CONTINUA Y ALTERNA
INSTALACIONES ELECTRICAS ELECTROTECNIA CORRIENTE CONTINUA Y ALTERNA 1) BIBLIOGRAFIA 2) LEY DE OHM 3) INTRODUCCION CORRIENTE CONTINUA 4) CIRCUITOS de CORRIENTE CONTINUA 5) INTRODUCCION CORRIENTE ALTERNA
En la figura se muestra un generador alterno sinusoidal conectado a una resistencia.
INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-2 CIRCUITOS BASICOS EN CORRIENTE ALTERNA SINUSOIDAL En esta unidad se estudiará el comportamiento de circuitos puros ( resistivos, inductivos y capacitivos)
CONCEPTOS BÁSICOS GENERADORES
CONCEPTOS BÁSICOS 1. Los dos cables de alimentación de un motor tienen una longitud de 3 m y están separados entre sí por 5 mm. Calcula la fuerza que se ejercen entre sí cuando por los cables circula una
TEMA I. Teoría de Circuitos
TEMA I Teoría de Circuitos Electrónica II 2007 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:
CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA
www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si
Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.
Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia
ρ = = 2 x 10 : 100 = 0,2 Ω.mm2/m (ohmios por milímetro cuadrado por cada metro)
Materiales conductores. En general existen dos tipos: de primera y de segunda clase. Los primeros son los que al ser recorridos por la corriente eléctrica no sufren cambios químicos en su constitución.
Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.
Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia
BANCO DE 100 REACTIVOS y PROBLEMAS DE LA UNIDAD DE APRENDIZAJE FUNDAMENTOS DE ELECTRICIDAD DE CORRIENTE ALTERNA
BANCO DE 100 REACTIVOS y PROBLEMAS DE LA UNIDAD DE APRENDIZAJE FUNDAMENTOS DE ELECTRICIDAD DE CORRIENTE ALTERNA UNIDAD DIDACTICA 1: LAS FORMAS DE ONDA SENOIDALES ALTERNAS. 1.-Al número de veces que una
ALTERNA (III) TRIFÁSICA: Problemas de aplicación
ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de
Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1
Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 1 Andrés García Rodríguez. I.E.S. Enrique Nieto. Electrotecnia 2 a) La tensión en vacío coincide con la fem de la pila. Al conectarle una carga
EL CIRCUITO ELÉCTRICO
EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO
MAGNITUDES ELÉCTRICAS
MAGNITUDES ELÉCTRICAS Intensidad de corriente eléctrica: Cantidad de carga que atraviesa un conductor por unidad de tiempo. Unidades: Amperio (A) Diferencia de potencial: (entre dos puntos) Causa origen
POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores
POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,
CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna
Desarrollo del tema.- 1. Los dipolos. 2. Las relaciones de potencia en los dipolos. 3. Concepto de potencia aparente y reactiva. 4. La notación compleja de la potencia. 5. El teorema de Boucherot. 6. El
1. CONCEPTOS GENERALES
ITEM DETALLE GUÍA N 1 Conceptos Generales ASIGNATURA Circuitos de Corriente Alterna CÓDIGO 51133254 DOCENTE William López Salgado CÓDIGO 34167 1. CONCEPTOS GENERALES 1.1 OBJETIVO DE LA UNIDAD Que el estudiante
Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J).
Tema 21.6 Trabajo y potencia Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Trabajo = Fuerza espacio 1 J (1 julio) = 1 N m (newton metro) 1 cal (caloría) = 4,187 J 1
1º. CIRCUITO CON R: Empezaremos con un circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal:
CIRCUITOS EN CORRIENTE ALTERNA. Estudiaremos los circuitos básicos, formados por resistencias (R), condensadores (C) y bobinas (L), cuando se alimentan por una fuente de tensión alterna senoidal. En corriente
INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA
INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-1 INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA INTRODUCCION A LA TEORIA DE LA CORRIENTE ALTERNA El suministro de energía eléctrica a las viviendas e
FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS -
SITEMAS DE CORRIENTE TRIFÁSICA 9. Tres bobinas de resistencia 10 Ω y coeficiente de autoinducción 0,01 H cada una se conectan en estrella a una línea trifásica de 80 V, 50 Hz. Calcular: a) Tensión de fase.
INDUCCIÓN ELECTROMAGNÉTICA
INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética
3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2
3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una
SISTEMAS TRIFASICOS.
SISTEMAS TRIFASICOS. Indice: 1. SISTEMAS TRIFASICOS...2 1.1. Producción de un sistema trifásico de tensiones equilibradas...2 1.2. Secuencia de fases...3 2. CONEXIONES DE FUENTES EN ESTRELLA Y EN TRIÁNGULO...3
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
OPCIÓN A EJECICIO 1. (2,5 puntos) En el circuito de la figura; calcular: a) El valor de E 2 en el circuito sabiendo que la potencia disipada en 2 es de 8 W. b) Las intensidades de corriente indicadas en
MÓDULO 1. Líneas eléctricas de baja tensión en edificios y equipamientos urbanos
MÓDULO 1 Líneas eléctricas de baja tensión en edificios y equipamientos urbanos EDICIÓN: TAG FORMACIÓN RESERVADOS TODOS LOS DERECHOS. No está permitida la reproducción total o parcial de este texto, ni
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA CURSO 97/98
CURSO 97/98 EXAMEN DE JUNIO OPCIÓN A 1. Para la conexión de resistencias mostrada en la figura calcule: a) Indicación de cada uno de los aparatos de medida. b) Potencia consumida por la resistencia de
CORRIENTE ALTERNA TRIFÁSICA
CORRENTE ATERNA TRFÁSCA Es un conjunto de tres corrientes alternas de iguales características (amplitud y recuencia) y desasadas entre sí un tercio de período o 10º ( π/ radianes). ATERNADOR TRFÁSCO Es
es e valor máximo de la fem
U Tópicos apítulo de : Electricidad orriente Alterna y Magnetismo J. Pozo, J. Pozo, A. A. eón eón y.m. y.m. horbadjian. APÍTUO OENTE ATENA (A.. ntroducción Para generar corriente alterna, se puede considerar
BLOQUE III CIRCUITOS ELÉCTRICOS EN CA
1.- Una tensión viene dada por la expresión es de: v(t)=240 sen( t+30). Si se aplica la tensión v(t) a un receptor puramente inductivo cuya impedancia es de j2 2 Ω, hallar el valor de la intensidad instantánea
ANALISIS DE CIRCUITOS DE CORRIENTE ALTERNA
ANALISIS DE CIRCUITOS DE CORRIENTE ALTERNA FORMAS DE ONDAS PERIÓDICAS Además de la corriente directa, existen muchas formas de onda generadas y utilizadas en fuentes de voltaje y de corriente de circuitos
Glosario Electrotecnia de Tecnología de la Producción Hortofrutícola
Universidad Politécnica de Cartagena Escuela Técnica Superior de Ingeniería Agronómica Glosario Electrotecnia de Tecnología de la Producción Hortofrutícola Cartagena 2015 Cartagena 2015 Jorge Cerezo Martínez
PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.
PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A Hallar el valor que ha de tener la fuerza electromotriz, ε del generador intercalado en el circuito de la figura, para que el potencial del punto A sea 9 voltios. Para conseguir crear una inducción
La inductancia de la corriente contínua y alterna
La inductancia de la corriente contínua y alterna La Inductancia también denominada inductancia propia es la propiedad de un circuito o elemento de un circuito para retardar el cambio en la corriente que
Circuitos de corriente alterna
Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.
Tema Fuerza electromotriz inducida
Tema 21.11 Fuerza electromotriz inducida 1 Orígenes de la Fuerza electromotriz inducida Hemos visto que cuando circula una corriente eléctrica por un conductor se genera un campo magnético (solenoide,
EIA Electromagnetismo. Análisis circuitos eléctricos 1ª EVALUACIÓN
1. CONCEPTOS Y FENÓMENOS ELÉCTRICOS Y ELECTROMAGNÉTICOS 1.1 INDUCCIÓN MAGNÉTICA: EL CAMPO MAGNÉTICO (VARIABLE) CREA CORRIENTE Sabemos que la corriente es una fuente de campo. Pasamos ahora a otro de los
CIRCUITOS ELÉCTRICOS TECNOLOGÍA
1. COMPONENTES DE UN CIRCUITO Los circuitos eléctricos son sistemas por los que circula una corriente eléctrica. Un circuito eléctrico está compuesto por los siguientes elementos: Corriente Eléctrica e
01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente.
Control de Máquinas Eléctricas Primavera 2009 1. Análisis vectorial de sistema trifásicos 1. Campo magnético 2. Devanado trifásico 3. Vector espacial de un sistema de corrientes 4. Representación gráfica
POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores
POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores Introducción En algún instante dado, la potencia en una carga es igual al producto y la corriente Ahora consideremos el caso de C.
EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA. A. 0.2 A D. 7.5 A B. 5 A E. Indeterminada ( g?) C. 10 A F.
EXAMEN DE CICUITOS NOMBE: TEST DE CICUITOS 1ª PEGUNTA ESPUESTA E gv V 1 1 A En el circuito de la figura, el generador E proporciona una tensión de 100V y =10Ω. El generador Equivalente de Norton del circuito
ELSP14 Electricidad Aplicada II. ELSP14 Electricidad Aplicada II
Guía de ÁREA Ejercicios ELECTRICIDAD-ELECTRÓNICA en Aula N 1 Tema: Relación de grafica de función seno con onda sinusoidal Docente: Milton Sepúlveda P. Unidad de Aprendizaje N 1: Origen y teoría de la
CIRCUITOS DE CORRIENTE ALTERNA CON ELEMENTOS PASIVOS
CIRCUITOS DE CORRIENTE ALTERNA CON ELEMENTOS PASIVOS En este apartado analizaremos circuitos alimentados con generadores de ca, donde intervienen resistencias, bobinas y condensadores por separado y después,
Fundamentos Físicos y Tecnológicos de la Informática, P. Gómez et al. Ejemplos del capítulo 5º
Fundamentos Físicos y Tecnológicos de la nformática, P. Gómez et al. Eemplos del capítulo º º Dada una señal x(t)sen(000tπ/3) expresada en la forma de un seno, expresarla como un coseno. espuesta: sen(000t
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro
Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r
Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano
PARÁMETROS ELÉCTRICOS DE LAS INSTALACIONES ELÉCTRICAS
PARÁMETROS ELÉCTRICOS DE LAS INSTALACIONES ELÉCTRICAS Objetivo específico: Dimensionar, verificar y medir los parámetros eléctricos de las instalaciones eléctricas. Capacidades a desarrollar: Identificar
