2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia."

Transcripción

1 CIDEAD. º BACHILLERATO. ELECTROTECNIA. Desarrollo del tema.. Concepto de elementos. Excitación sinusoidal.. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia. 4. Circuito capacitivo. Los valores eficaces y la potencia. 5. Concepto de Impedancia. 6. El cuerpo de los números complejos C. La representación de los números complejos. 7. La representación de las magnitudes eléctricas en función de los números complejos.

2 CIDEAD. º BACHILLERATO. ELECTROTECNIA.. Concepto de elementos. Excitación sinusoidal. Cuando a un sistema se le somete a una excitación externa mediante una función, éste reacciona mediante una función respuesta. Se dice que el proceso está guiado por elementos si se cumple: a. Existe una combinación lineal entre las funciones excitatrices: k. E (t) + k. E (t) +... b. Existe una combinación lineal entre las funciones respuestas: k. S(t) + k. S(t) +... c. Existe una igualdad entre las excitaciones y las respuestas: k. E (t) + k. E (t) +... k. S(t) + k. S(t) +... En el caso de que la función excitación sea sinusoidal, se dirá que los elementos son cuando la función respuesta es también sinusoidal(seno o coseno) con la misma frecuencia. Existen tres elementos : a. Elementos resistivos. b. Elementos inductivos. c. Elementos capacitivos.. Circuito resistivo. Los valores eficaces y la potencia. Cuando al siguiente circuito le aplicamos la entrada a un osciloscopio se puede observar las imágenes siguientes: V56,6V F50 Hz

3 CIDEAD. º BACHILLERATO. ELECTROTECNIA. t 80 sen. π. 50. t T La pantalla del osciloscopio mostrará: U U0 sen ω t 80 sen 80 V T 0,0 s Si la intensidad es el cociente entre el potencial y la resistencia: I U R Uo sen. t R 0,08 sen. π. 50. t (A) I I0 sen ω t. ;; U0 I0. R Si en lugar de trabajar con los valores máximos, se utilizan los valores eficaces: Uef. R. Ief. Uef.R. I ef. En un circuito de corriente alterna con un resistor, la ley de Ohm se cumple tanto para los valores máximos como para los valores eficaces y las ondas de tensión y de intensidad se encontrarán en fase. 3

4 CIDEAD. º BACHILLERATO. ELECTROTECNIA. La potencia se calculará mediante la siguiente expresión: P U. I U0 sen ω t. I0 sen ω t U0. I0 sen ω t De acuerdo a las relaciones trigonométricas se cumplirá: sen ω t + cos ω t cos ωt sen ω t - cos ω t Resolviendo el sistema : cos t ;;; P Uef. Ief ( - cos ωt ) sen ω t La potencia generada tiene forma pulsante cuya frecuencia es el doble de la intensidad y tensión y su valor máximo será Uef. Ief y su valor mínimo será el 0 W. El valor máximo de la potencia será, P I0. U0 4

5 CIDEAD. º BACHILLERATO. ELECTROTECNIA. Para calcular la potencia media, se deberá determinar el valor medio de la integral: T Pmedia cos ω t. U. I.( ) T Los límites de la integración serán de 0 a T. Al calcular la integral se obtiene el valor : P I 0. U0 I ef.u ef R. I ef Se define como intensidad eficaz de una corriente alterna como la intensidad de corriente continua que en una misma resistencia disipa la misma energía por unidad de tiempo que en el caso de la corriente alterna. Problema.- Se conecta a una resistencia de kω una fuente de alimentación de AC 56,6 V y 50 Hz de frecuencia ( ver la figura del osciloscopio). Calcular la potencia que se disipa en dicha resistencia y el valor de la potencia instantánea 4 ms después de haberse hecho nula la tensión decreciendo en el ciclo. Datos.- R kω ;; Uef 56,6 V ;; f 50 Hz ;; t 0,004 +T/ 0,04 s Resolución.- PR. I ef U ef 300 3, W R 000 U 0 80 Pinst U 0. I 0. sen ω t sen 00 π. t sen 00 π. 0,045,79W R 000 El cálculo del seno se realizará teniendo en cuenta que el argumento está medido en radianes. 3. Circuito inductivo. Los valores eficaces y la potencia. En este caso se coloca una bobina de coeficiente de autoinducción mh, a la que se aplica una corriente alterna : U U0. sen ω t. Por la ley de Fareday de la autoinducción : Uin - L. di Aplicando las leyes de Kirchhoff para la malla constituida : Σ U Σ I. R ;; Como en nuestro circuito no existen resistencias: 5

6 CIDEAD. º BACHILLERATO. ELECTROTECNIA. Σ U 0 U + Uin di U0. sen ω t - L. di 0 ; al separar variable diferenciales se obtiene : U0 U U 0 U. sen ω t. I 0 sen ω t. cos ω t 0 sen ( ω t π )I 0. sen ( ω t π ) L L L. ω L.ω La onda de la intensidad se encuentra desfasada con relación a la tensión. En este caso se encuentra retrasada en π/ radianes. U0 según esto, existirá una impedancia inductiva o inductancia, que es la L.ω I0 resistencia debida a la bobina : XL L. ω En el caso de que la referencia de la onda sea la intensidad: I I 0 sen ω t U U0 sen ( ω t + ) U0 cos ω t Problema.- Una bobina de 00 mh de autoinducción, se conecta a una fuente de alimentación de 0 V y 50 Hz de frecuencia. Calcular la Intensidad eficaz que circula por el circuito y su valor instantáneo sabiendo que el origen de tiempos es el momento que la intensidad comienza a aumentar partiendo del valor nulo. Datos.- L 0, H ;; Vef 0 V ;; f 50 Hz ;; Resolución.- I ef U ef L.ω I I 0 sen ω t 0 6,3 A 0, 50 Ief sen ω t 9,00 sen 34 t ( A) 6

7 CIDEAD. º BACHILLERATO. ELECTROTECNIA. Al conectar la fuente de alimentación a un osciloscopio, la función observada es: En el siguiente dibujo se aprecia cómo la tensión se encuentra desfasada respecto a la intensidad y adelantada π/ Para calcular la potencia de un circuito inductivo, se debe de tener en cuenta lo siguiente: 7

8 CIDEAD. º BACHILLERATO. ELECTROTECNIA. PU 0 cos ω. t I 0 sen ω. t U 0. I 0 sen ω. t I ef. U ef. sen ω.t PU. I U 0 sen( ω.t + π ).I 0 sen ω.tu 0 (sen ω.t.cos π +cos ω.t sen π ). I 0 sen ω.t I ef. U ef.sen ω t T P I.U sen ω.t 0 0 ef ef La potencia varía senoidalmente con una frecuencia el doble que la tensión o la intensidad. El valor medio de la potencia ( potencia activa) es nulo. La amplitud de las oscilaciones será : U ef P U. I L. ω. I M ef ef ef Representando la potencia Lω Cuando la tensión y la intensidad son positivas o negativas, la potencia instantánea es positiva, almacenando energía la bobina. Cuando la tensión y la intensidad son de sentido opuesto, la potencia es negativa y significa que la bobina cede energía; este proceso alternativamente sucede alternativamente. Durante el primer cuarto de periodo la bobina se carga y en el cuarto siguiente se descarga. La energía almacenada por la bobina en un instante determinado será : d W P L I W di I L I di ;; W L. I. di L. I L. I ef sen ω t 0 L Ief ( - cos ω t ) La energía varía senoidalmente con frecuencia el doble que la de la intensidad entre 0 y L I, apreciándose la variación en la siguiente representación: 8

9 CIDEAD. º BACHILLERATO. ELECTROTECNIA. ef ef 4. Circuito capacitivo. Los valores eficaces y la potencia. Está formado por un condensador excitado por una corriente alterna sinusoidal de valor : U U0 sen ω t En este caso, la fuente de alimentación genera una AC de U ef 0 V y frecuencia f 50 Hz. Alimenta un condensador de 00 μf de capacidad. La señal observada se envía a un osciloscopio, cuya pantalla muestra lo siguiente : 9

10 CIDEAD. º BACHILLERATO. ELECTROTECNIA. Con un retraso de la onda de tensión respecto a la intensidad. Para calcular los valores instantáneos, se recurre a la derivación de la tensión respecto al tiempo: IC du du ; ;U U 0 sen ω.t ; ; U 0. ω cos ω t ;; I C U 0 ω cos ω.t I C. ω.u 0 sen( ω. t + π ) ; ; I 0 C. ω.u 0 Por lo tanto, se puede definir una reactancia XC o capacitancia que es igual a : X C U 0X C. I 0 Cω Por otra parte se produce un desfase entre la tensión y la intensidad, en este caso, la intensidad se adelanta π/ respecto a la tensión: U U0 sen ω t 0

11 CIDEAD. º BACHILLERATO. ELECTROTECNIA. I I m sen (ω t + ) La capacitancia de un circuito disminuye al aumentar la frecuencia. Problema 3.- Un condensador de 00 μ F de capacidad se conecta a una tensión de 0 V y 50 Hz de frecuencia (AC), según el circuito dibujado en esta sección. Hallar los valores eficaz e instantáneo de la intensidad, suponiendo que empieza a contar el tiempo en el instante que la intensidad comienza a aumentar, partiendo del valor nulo. Datos.- C F ;; Vef 0 V ;; f 50 Hz ;;; desfase inicial 0 Resolución : ω. π. f 34,5 rad/s XC 3,83 Ω ;; Ief Uef // Xc 6,9 A ;; I m C. Ief 9,77 A I I m sen ω t 9,77 sen 34,5 t Para calcular la potencia de un circuito capacitivo, es necesario tener en cuenta: ) U0 I 0 sen ω t ( sen ω t. cos sen ω t cos ω t U0 I 0 sen ω t Ief Uef. sen ω t P U. I U0 sen ω t. I 0 sen (ω t + + cos ω t sen ) U0 I 0 Según esto, la potencia varia senoidalmente con una frecuencia el doble de la tensión o intensidad. El valor medio o promedio (la potencia activa), vale cero P0. La amplitud de la potencia será : PM Uef. Ief XC. Ief

12 CIDEAD. º BACHILLERATO. ELECTROTECNIA. La magnitud así definida recibe el nombre de potencia reactiva de capacidad y se representa por la letra Q. Se mide en voltamperio reactivo (Var). Físicamente no es una potencia, como en el caso de la autoinducción, esta magnitud se puede medir y resulta muy importante en los cálculos electrotécnicos. En la representación de la potencia en función del tiempo, se observa que cuando la tensión y la intensidad son positivas o negativas las dos, la potencia es positiva y el condensador almacena energía; cuando la tensión es negativa y la intensidad es positiva o viceversa, la potencia es negativa y el condensador se descarga y pierde energía. Si inicialmente el condensador se encuentra descargado, con tensión nula, la energía varía de la siguiente forma: T T U du W P C.U C.U. du C.U C U ef. sen ω.t C. U ef ( cos. ω. t ) dq du U.C. La energía variará solenoidemente con una frecuencia doble de la tensión y de la intensidad, variando sus valores entre 0 y C Um PU. I U.

13 CIDEAD. º BACHILLERATO. ELECTROTECNIA. 5. Concepto de Impedancia. Como ya se ha explicado en los diferentes elementos de un circuito de AC se cumple la ley de OHM : Uef R. Ief Uef XL Ief Uef XC Ief En general R, XL y XC, reciben el nombre de impedancia Z, por lo que : Uef Z. Ief. También se cumplirá que : U0 Z I 0 6. El cuerpo de los números complejos C. La representación de los números complejos. Matemáticamente existe una operación no cerrada dentro de los números reales. Esta operación es la raíz de índice par de un número R-. Para salvar esta inconveniencia, se definen un nuevo conjunto de números imaginarios, cuya unidad es i. Los números imaginarios se representan en una recta perpendicular a la recta real. La unión de los números imaginarios y los números reales, constituyen los números complejos C, formando un cuerpo de números, pues todas las operaciones son cerradas. Un número complejo se representa : Recta imaginaria Recta Real a 3, es la parte real ;; b 4, es la parte imaginaria. M, es el módulo a M cos Φ ;; b M sen Φ ;; C M ( cos Φ + i senφ ) 3

14 CIDEAD. º BACHILLERATO. ELECTROTECNIA. Dos números complejos son iguales si sus partes reales son iguales y sus partes imaginarias también lo son: a + b i a + b i, si y si solo : a a y b b Dos números complejos son conjugados cuando : a a y b - b ejemplo - + 3i y - - 3i Dos números complejos son opuestos cuando: a - a y b - b ejemplo 4 i y i Operaciones con números complejos: a. Suma o diferencia. (a + b i ) + ( c + d i ) ( a + c ) + ( b + d ) i (,-) + (-3,) ( -3, -3+) (-, - ) - i b. Productos y cocientes.aφ. Bξ ( A. B)φ+ξ (5. 4) La representación de las magnitudes eléctricas de corriente alterna en función de los números complejos. Las magnitudes eléctricas de los circuitos eléctricos de corriente alterna, se puede usar el sistema vectorial complejo, de tal forma que la intensidad, siempre se colocará en la recta real en el sentido positivo. Circuito con resistencia ( R) El valor complejo de U, será : Uef (R Ief, 0 ) Uef (R Ief)0 Circuito con inductancia ( XL ) El valor complejo será Uef ( 0, XL Ief ) 4 Uef (XL Ief)π/

15 CIDEAD. º BACHILLERATO. ELECTROTECNIA. Circuito con capacitancia ( XC ) El valor complejo será Uef ( 0, - XC Ief) Uef (XC Ief) -π/ En la tabla de la siguiente se muestra el resumen : Problema 4.- Una corriente alterna de frecuencia 50 Hz, posee una intensidad nula cuando t 0. Calcular el valor de la intensidad a /6, /8 y ¼ del periodo. Calcular también la intensidad eficaz si la máxima es de 5 A. Datos.- f 50 Hz. ;; I 0 5 A. I ef Resolución. ω T I0 0,6 A ; ; I I 0 sen ω t 5. sen 00 π t ωt T T 0, ,7853,5707 t T/6 ;; I 5 sen 0,396 5,74 A t T/8 I 5 sen 0,7853 0,60 A 5

16 CIDEAD. º BACHILLERATO. ELECTROTECNIA. t T/4 I 5 sen, A Problema 5.- A una inductancia de 5 mh, se le aplica una tensión de alterna de U 0 sen ωt. Si la frecuencia es de 50 Hz, calcular: a. La expresión algebraica del valor instantáneo de la intensidad. b. La fuerza electromotriz inducida en la bobina. Datos.- f 50 Hz. ;; Uef 0 V Resolución.- U U 0 I I 0 sen(00 π t π ); ; I A 3 X L L. ω π di I 40 sen (00 π t π ) ; ; U L L I 0 ω cos ( ω t π )L I 0 ω sen ω t0 sen ω t Problema 6.- La potencia reactiva de una bobina, a la que se aplica una tensión de 0 V, 50 Hz es de 500 Var. Hallar el coeficiente de autoinducción de la bobina. Resolución.- Q 500,7 A ; ; U ef X L. I ef U ef 0 U X 0 96,9 X L ef 96,9 Ω ; ; X L ω. L; ; L ωl 308 mh I ef,7 00 π I ef Problema 7.- Un condensador de 50 μ F se conecta a un generador de tensión U 0 sen 00 π t (V), calcular: a. La reactancia capacitiva del condensador. b. La intensidad eficaz. c. La expresión algebraica de la intensidad referida a la tensión aplicada. Resolución.- X C U 0 63,66 Ω ;; I ef ef 3,46 A ;; I 0. I ef.3,464,89 A 6 ω. C π X C 63,66 II 0 sen( ω t + π )4,89 sen(00 π t + π ) Problema 8.- Un condensador absorbe una intensidad de 0 ma a una tensión de 6 V y frecuencia de 50 Hz. Determinar: a. La reactancia. b. La capacidad. c. La potencia. 6

17 CIDEAD. º BACHILLERATO. ELECTROTECNIA. Resolución.U 6 X C ; ; X C ef 600 Ω ; ; C,98 μ F ; ; QI ef. U ef 6 0 VAr ω.c I ef 0.0 ω. X C π 7

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas. Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

Ejercicios corriente alterna

Ejercicios corriente alterna Ejercicios corriente alterna 1. EJERCICIO 2. (2.5 puntos) A una resistencia de 15Ω en serie con una bobina de 200 mh y un condensador de 100µF se aplica una tensión alterna de 127 V, 50 Hz. Hallar: a)

Más detalles

Ejercicios Resueltos de Circuitos de Corriente Alterna

Ejercicios Resueltos de Circuitos de Corriente Alterna Ejercicios Resueltos de Circuitos de Corriente Alterna Ejemplo resuelto nº 1 Cuál ha de ser la frecuencia de una corriente alterna para que una autoinducción, cuyo coeficiente es de 8 henrios, presente

Más detalles

TEMA 6 CORRIENTE ALTERNA

TEMA 6 CORRIENTE ALTERNA TEMA 6 CORRIENTE ALTERNA CARACTERÍSTICAS DE LA CORRIENTE ALTERNA Un circuito de corriente alterna consta de una combinación de elementos: resistencias, condensadores y bobinas y un generador que suministra

Más detalles

Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas

Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de

Más detalles

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle Introducción a la Física Experimental. Experimento guiado. Abril 2009. M. López Quelle Circuito RC en corriente alterna. Comportamiento de un filtro RC. 1.- Breve introducción teóricateoría previa Utilizamos

Más detalles

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

CORRIENTE CONTINUA. 1. Calcular el valor de R X para que, conocido el valor de R, la resistencia total entre los bornes. R 1 R x. R x (R x R) 2R x R E

CORRIENTE CONTINUA. 1. Calcular el valor de R X para que, conocido el valor de R, la resistencia total entre los bornes. R 1 R x. R x (R x R) 2R x R E Corriente contínua - CORRIENTE CONTINUA. Calcular el valor de R X para que, conocido el valor de R, la resistencia total entre los bornes A y B sea, precisamente, igual a R. Calcularemos, paso a paso,

Más detalles

Bloque 3 Análisis de circuitos alimentados en corriente alterna. Teoría de Circuitos Ingeniería Técnica Electrónica

Bloque 3 Análisis de circuitos alimentados en corriente alterna. Teoría de Circuitos Ingeniería Técnica Electrónica Bloque 3 Análisis de circuitos alimentados en corriente alterna Teoría de Circuitos Ingeniería Técnica Electrónica 3. Introducción. Representación de ondas sinusoidales mediante fasores Corriente alterna

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC

Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC PATA - 12 EATANA DE UN ONDENSADO Y AATEÍSTAS DE UN UTO SEE - Finalidades 1.- Determinar la reactancia capacitiva (X ) de un condensador. 2.- omprobar la fórmula: X? 1?? 3.- Determinar experimentalmente

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Electrotecnia. Tema 7. Problemas. R-R -N oro

Electrotecnia. Tema 7. Problemas. R-R -N oro R-R -N oro R 22 0^3 22000 (+-) 00 Ohmios Problema.- Calcular el valor de la resistencia equivalente de un cubo cuyas aristas poseen todas una resistencia de 20 Ω si se conecta a una tensión los dos vértices

Más detalles

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse.

Cuando más grande sea el capacitor o cuanto más grande sea la resistencia de carga, más demorará el capacitor en descargarse. CONDENSADOR ELÉCTRICO Un capacitor es un dispositivo formado por dos conductores, en forma de placas o láminas, separados por un material que actúa como aislante o por el vacío. Este dispositivo al ser

Más detalles

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA CIRCUITOS Y SISTEMAS EN CORRIENTE CONTINUA MOD. MCM1/EV EB 15 CIRCUITOS Y SISTEMAS EN CORRIENTE ALTERNADA MOD. MCM2/EV EB 16 CIRCUITOS Y SISTEMAS TRIFASICOS

Más detalles

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 5 CIRCUITOS ELÉCTRICOS. LEYES Y TEOREMAS Electrónica Analógica ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 1.1. CIRCUITO EQUIVALENTE... 5 1.. leyes de hirchhoff... 9 1.3. teorema de thevenin... 11 1.4. teorema

Más detalles

ELECTROTECNIA. PRÁCTICA nº 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA.

ELECTROTECNIA. PRÁCTICA nº 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA. ELECTROTECNIA PRÁCTICA nº 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA. 1 PRACTICA 3 ANÁLISIS DE CIRCUITOS EN CORRIENTE ALTERNA 1.- OBJETO. Esta práctica tiene por objeto en primer lugar conocer y analizar

Más detalles

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura. EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación

Más detalles

Aplicando la identidad trigonometrica en la expresión anterior:

Aplicando la identidad trigonometrica en la expresión anterior: UNIDAD 1: Fundamentos de los Sistemas Electicos de Potencia 1. Potencia en Circuitos de Corriente Alterna (C.A): La potencia es la rapidez con la cual se transforma la energía electrica en cualquier otro

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras 0 3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras En los sonidos del habla no existen ondas sonoras simples. Las ondas sonoras simples son siempre periódicas. También reciben el

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

1.-Relé. 2.-Condensador. 3.-LED. 4.-Piezoeléctrico. 5.-Diodo. 6.-Transistor.

1.-Relé. 2.-Condensador. 3.-LED. 4.-Piezoeléctrico. 5.-Diodo. 6.-Transistor. 1.-Relé. 2.-Condensador. 3.-LED. 4.-Piezoeléctrico. 5.-Diodo. 6.-Transistor. 1.-Relé. Realiza el montaje de la figura comprobando el funcionamiento del relé. V=12v B1 V= Prueba ahora los contactos NC.

Más detalles

Parte A: Circuito RC

Parte A: Circuito RC Circuitos RC, RL Y RLC Parte A: Circuito RC EQUIPAMIENTO - Osciloscopio Digital Tektronic - Circuito RLC, PASCO CI-6512 - Fuente de Poder 30V,5 A - Conectores banana - 2 cables BNC - 1 resistencia de 10

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

= CBD

= CBD ANCHO DE BANDA Cuando el valor máximo de la corriente a la derecha o a la izquierda de, desciende hasta á (se toma por dos razones). 1. Se tiene el valor absoluto de. Son los puntos de potencia media (±5

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable.

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable. PROGRAMA IEM-212 1.1 Introducción. En el curso anterior consideramos la Respuesta Natural y Forzada de una red. Encontramos que la respuesta natural era una característica de la red, e independiente de

Más detalles

Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona

Máquinas eléctricas de corriente alterna. Capítulo 3 Máquina Síncrona Universidad Carlos III de Madrid Dept. Ingenería eléctrica Máquinas eléctricas de corriente alterna Capítulo 3 Máquina Síncrona David Santos Martín CAPÍTULO 3 Máquina Síncrona 3.1.- Introducción 3.2.-

Más detalles

Apuntes Teoría de Circuitos. Universidad de La Laguna 2/20 TABLA DE CONTENIDO TABLA DE CONTENIDO INTRODUCCIÓN...

Apuntes Teoría de Circuitos. Universidad de La Laguna  2/20 TABLA DE CONTENIDO TABLA DE CONTENIDO INTRODUCCIÓN... RÉGIMEN PERMANENTE Apuntes Teoría de Circuitos. Universidad de La Laguna www.ull.es 2/20 TABLA DE CONTENIDO TABLA DE CONTENIDO...2 1. INTRODUCCIÓN...3 2. CONCEPTOS BÁSICOS...3 2.1 CIRCUITOS DE CONTINUA...3

Más detalles

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S.

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S. CORRIENTE ALTERNA 1. En el circuito de la figura R1 = 20 Ω, R2 = 30Ω, R3 =40Ω, L= 2H. Calcular: (INF-ExSust- 2003-1) a) La potencia entrega por la batería justo cuando se cierra S. S b) La potencia disipada

Más detalles

SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS

SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS ANTONIO JOSE SALAZAR GOMEZ UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA ELECTRICA Y ELECTRONICA TABLA DE CONTENIDO 1.

Más detalles

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin Circuitos de Corriente Continua Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin 1. OBJETIVOS - Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles

Problemas de Teoría de Circuitos. Josep Prades Nebot José Manuel Mossi García Juan Antonio Sastre Domenech Antonio Albiol Colomer

Problemas de Teoría de Circuitos. Josep Prades Nebot José Manuel Mossi García Juan Antonio Sastre Domenech Antonio Albiol Colomer Problemas de Teoría de Circuitos Josep Prades Nebot José Manuel Mossi García Juan Antonio Sastre Domenech Antonio Albiol Colomer 16 de noviembre de 2005 2 Índice 1 Conceptos básicos y leyes fundamentales

Más detalles

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO

Más detalles

CIRCUITOS CON CORRIENTE VARIABLE

CIRCUITOS CON CORRIENTE VARIABLE 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchho. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchho.

Más detalles

Circuitos Eléctricos RL RC y RLC

Circuitos Eléctricos RL RC y RLC Circuitos Eléctricos RL RC y RLC Andrés Felipe Duque 223090 Grupo:10 Resumen. En esta práctica podremos analizar básicamente los circuitos RLC donde se acoplan resistencias, capacitores e inductores, y

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS Práctica Nº 6 MEDID DE POTENI EN TRIFÁSI MÉTODO DE OS DOS VTÍMETROS 1. Objetivos a) Medida de la potencia activa, reactiva y el factor de potencia, en una red trifásica a tres hilos (sin neutro), utilizando

Más detalles

Tema II: Régimen transitorio

Tema II: Régimen transitorio Tema II: égimen transitorio egímenes permanente y transitorio... 35 Notación del régimen transitorio... 36 Elementos pasivos en régimen transitorio... 37 Cálculo de condiciones iniciales y finales... 38

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

3.1. FUNCIÓN SINUSOIDAL

3.1. FUNCIÓN SINUSOIDAL 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.

Más detalles

Laboratorio de Electricidad PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA

Laboratorio de Electricidad PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA I - Finalidades 1.- Introducción y uso del osciloscopio. 2.- Efectuar medidas de tensiones alternas con el osciloscopio. alor máximo, valor pico

Más detalles

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. 38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión

Más detalles

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z

CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z CAPITULO 7 LUGARES GEOMETRICOS 7. INTRODUCCION Si tenemos elementos que pueden variar sus valores en un circuito, ya sea una resistencia una reactancia o la frecuencia de la señal de entrada, las respuestas

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como

Más detalles

Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C.

Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C. Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C. Experiencia N 6 1.- OBJETIVOS 1. Mostrar la potencia eléctrica como función del voltaje y de la corriente, calculando y midiendo la potencia

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

Practicas de Fundamentos de Electrotecnia ITI. Curso 2005/2006

Practicas de Fundamentos de Electrotecnia ITI. Curso 2005/2006 Practicas de Fundamentos de Electrotecnia ITI. Curso 005/006 Práctica 4 : Modelo equivalente de un transformador real. Medidas de potencia en vacío y cortocircuito. OBJETIVO En primer lugar, el alumno

Más detalles

Práctica 5 Diseño de circuitos con componentes básicos.

Práctica 5 Diseño de circuitos con componentes básicos. Práctica 5 Diseño de circuitos con componentes básicos. Descripción de la práctica: -Con esta práctica, se pretende realizar circuitos visualmente útiles con componentes más simples. Se afianzarán conocimientos

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad

Más detalles

PRINCIPIOS DE LA ELECTRICIDAD

PRINCIPIOS DE LA ELECTRICIDAD PRINCIPIOS DE LA ELECTRICIDAD La materia está constituida por moléculas y a su vez éstas por átomos, que es la estructura mínima. Los átomos tienen un núcleo central compuesto por neutrones y protones,

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

MANEJO DE CIRCUITOS ELÉCTRICOS. 1ª unidad. Segundo semestre.

MANEJO DE CIRCUITOS ELÉCTRICOS. 1ª unidad. Segundo semestre. MANEJO DE CIRCUITOS ELÉCTRICOS. 1ª unidad. Segundo semestre. 1. IDENTIFICACIÓN DE COMPONENTES ELÉCTRICOS. A Identificación de los conceptos básicos de la electricidad. Investiga que es la Carga eléctrica.

Más detalles

TEMA 7. POTENCIA EN CIRCUITOS MONOFÁSICOS. 7.1.- Potencia instantánea, media y fluctuante de un dipolo

TEMA 7. POTENCIA EN CIRCUITOS MONOFÁSICOS. 7.1.- Potencia instantánea, media y fluctuante de un dipolo EMA 7. POENCA EN CRCUOS MONOFÁSCOS pasivo. 7..- Potencia instantánea, media y fluctuante de un dipolo 7...- Elemento Resistencia. 7..2.- Elemento nductancia. 7..3.- Elemento Condensador. 7.2.- Potencia

Más detalles

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados.

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. CORRIENTE ALTERNA Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. Generalidades sobre la c. alterna. Respuesta de los elementos pasivos básicos

Más detalles

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS Tema. Dispositivos Electrónicos. Análisis de Circuitos. rev TEMA DSPOSTVOS ELECTONCOS ANALSS DE CCUTOS Profesores: Germán Villalba Madrid Miguel A. Zamora zquierdo Tema. Dispositivos Electrónicos. Análisis

Más detalles

1 - Turbulencia insuficiente, que las partículas de combustible tienen a bajas temperaturas

1 - Turbulencia insuficiente, que las partículas de combustible tienen a bajas temperaturas Estos sensores pueden ser de Coeficiente de Temperatura Negativo (NTC) la resistencia eléctrica y el voltaje disminuyen al aumentar la temperatura o de Coeficiente de Temperatura Positivo (PTC) la resistencia

Más detalles

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología FILTROS

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología FILTROS UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología Introducción. FILTROS En el tema de ALTAVOCES, el apartado 2.4 hacia referencia a los tipos

Más detalles

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V. 1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO

EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Práctica de Inducción electromagnética.

Práctica de Inducción electromagnética. Práctica Práctica de Inducción electromagnética. Luis Íñiguez de Onzoño Sanz 1. Introducción Teórica II. Materiales III 3. Descripción de la práctica IV 4. Procedimiento IV 5. Resultados V 6. Errores IX

Más detalles

Práctica 2. Circuitos con bobinas y condensadores en CC y CA

Práctica 2. Circuitos con bobinas y condensadores en CC y CA Electrotecnia y Electrónica (34519) Grado de Ingeniería Química Práctica 2. Circuitos con bobinas y condensadores en CC y CA Francisco Andrés Candelas Herías Con la colaboración de Alberto Seva Follana

Más detalles

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA E.T. Nº 17 - D.E. X Reg. PRÁCTCAS UNFCADAS 1 ntroducción Teórica TRABAJO PRÁCTCO Nº 2 ANÁLSS DE CRCUTOS DE CORRENTE CONTNUA a Multímetro digital: El multímetro digital es un instrumento electrónico de

Más detalles

Electrónica REPASO DE CONTENIDOS

Electrónica REPASO DE CONTENIDOS Tema 1 Electrónica Conocerás las principales componentes de los circuitos eléctricos. Resistencias, condensadores, diodos y transistores. Sabrás cómo montar circuitos eléctricos simples. REPASO DE CONTENIDOS

Más detalles

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje

Momento de un vector deslizante respecto a un punto. Momento de un vector deslizante respecto a un eje Magnitudes escalares y vectoriales Tipos de vectores Operaciones con vectores libres Momento de un vector deslizante respecto a un punto Momento de un vector deslizante respecto a un eje Magnitudes escalares

Más detalles

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009

Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione

Más detalles

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N? FÍSICA 2º DE BACHILLERATO PROBLEMAS DE ONDAS 1.- De las funciones que se presentan a continuación (en las que todas las magnitudes están expresadas en el S.I.), sólo dos pueden representar ecuaciones de

Más detalles

Práctica de Laboratorio. Tema: Medición de Potencia Activa en Sistemas Trifásicos.

Práctica de Laboratorio. Tema: Medición de Potencia Activa en Sistemas Trifásicos. Universidad Nacional de Mar del lata. ráctica de Laboratorio Tema: Medición de otencia Activa en Sistemas Trifásicos. Cátedra: Medidas Eléctricas I º año de la carrera de Ingeniería Eléctrica. Área Medidas

Más detalles

Experimento 3: Circuitos rectificadores con y sin filtro

Experimento 3: Circuitos rectificadores con y sin filtro Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Johan Carvajal, Ing. Adolfo Chaves, Ing. Eduardo Interiano, Ing. Francisco Navarro Laboratorio de Elementos Activos

Más detalles

[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA]

[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 2013 [PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 3º E.S.O. PRACTICA Nº 1. RESISTENCIAS VARIABLES POTENCIÓMETRO Monta los circuitos de la figura y observa que ocurre cuando el potenciómetro es de 100Ω, de 1kΩ

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Introducción teórica En el cuadro de la última página resumimos las caídas de tensión, potencia instantánea

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR. eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador P. Abad Liso J. Aguarón de Blas 13 de junio de 2013 Resumen En este informe se hará una pequeña sinopsis de la práctica

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso

DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso DEFINICIONES Y CONCEPTOS (SISTEMAS DE PERCEPCIÓN - DTE) Curso 2009-10 1. Generalidades Instrumentación: En general la instrumentación comprende todas las técnicas, equipos y metodología relacionados con

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

Corriente continua : Condensadores y circuitos RC

Corriente continua : Condensadores y circuitos RC Corriente continua : Condensadores y circuitos RC Marcos Flores Carrasco Departamento de Física mflorescarra@ing.uchile.cl Tópicos introducción Condensadores Energia electroestática Capacidad Asociación

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

MATEMÁTICAS GRADO DÉCIMO

MATEMÁTICAS GRADO DÉCIMO MATEMÁTICAS GRADO DÉCIMO SEGUNDA PARTE TEMA 1: VELOCIDAD ANGULAR Definición Velocidad Angular CONCEPTO: DEFINICIONES BÁSICAS: La velocidad angular es una medida de la velocidad de rotación. Se define como

Más detalles