Problemas de probabilidad: binomial
|
|
|
- Jesús Lozano Crespo
- hace 8 años
- Vistas:
Transcripción
1 Problemas de probabilidad: binomial 1) Un jugador de baloncesto tiene un porcentaje de encestar del 5%. Calcula la probabilidad de que en 9 lanzamientos enceste exactamente 5 veces. 2) Un juego consiste en lanzar veinte veces un dado de seis caras, y el jugador se anota un tanto por cada seis que consiga. Si consigue menos de cuatro tantos, debe retirarse del juego, y si consigue más de 1, gana automáticamente. Calcula: a) la probabilidad de que un jugador deba retirarse b) gane automáticamente. 3) Una pareja tiene pensado tener seis hijos. Si la probabilidad de que cada bebé sea niño es de 0,49, calcular la probabilidad de: a) Tres sean niñas. b) Al menos dos sean niños. c) Haya al menos una niña. 4) Un estreno de cine ha sido visto, según las encuestas, por el 85% de la gente. Se escogen doce personas al azar. Calcular la probabilidad de que entre ellas hayan visto la película a) dos personas. b) Al menos dos personas. c) Como máximo dos personas. 5) En una población determinada se ha estimado que la probabilidad de que un hombre llegue a los 80 años es del 78%. Se escogen cinco personas al azar. Calcular la probabilidad de que: a) Las cinco personas lleguen a los 80 años. b) Ninguna llegue a los 80 años.
2 Soluciones 1) Un jugador de baloncesto tiene un porcentaje de encestar del 5%. Calcula la probabilidad de que en 9 lanzamientos enceste exactamente 5 veces. Recordamos la fórmula básica de la binomial: P (x = n) = m n m-n pn q Donde n es el número de aciertos, m el número de intentos, p la probabilidad de éxito y q la de fracaso. Para este caso, 9 5 0,55 0,35 4 = 0,22 2) Un juego consiste en lanzar veinte veces un dado de seis caras, y el jugador se anota un tanto por cada seis que consiga. Si consigue menos de cuatro tantos, debe retirarse del juego, y si consigue más de 1, gana automáticamente. Calcula: a) la probabilidad de que un jugador deba retirarse b) gane automáticamente. Aunque este problema nos hable de lanzar un dado, que tiene posibles resultados, sigue siendo un problema de binomial, porque solo tenemos en cuenta los casos éxito (sacar un, probabilidad = 1/) o fracaso (sacar menos de, probabilidad = 5/) a) para que un jugador se retire, debe conseguir 0, 1, 2 o 3 tantos; es decir P(x<4). Pero la binomial no nos permite trabajar con rangos, sino solo con casos concretos. En resumen, hay que calcular las siguientes probabilidades: P(x=0) P(x=1) P(x=2) P(x=3) Pues vamos a ellas: P (x = 1) = 0 1/0 5/ = 0,03 1 1/1 5/ 19 = 0,10
3 P (x = 2) = P (x = 3) = 2 1/2 5/ 18 = 0, 3 1/3 5/ 17 = 0,24 Por lo que P (x<4) = 0,03+0,10+0,+0,24 = 0,57 b) Sigue el mismo planteamiento: P (x = 17) = P (x = 18) = P (x = 19) = P (x = ) = 17 1/17 5/ 3 = 3, /18 5/ 2 = 2, /19 5/ 1 = 2, / 5/ 0 = 2, Entonces P (x>1) = 3, , , , = 3, ) Una pareja tiene pensado tener seis hijos. Si la probabilidad de que cada bebé sea niño es de 0,49, calcular la probabilidad de: a) Tres sean niñas. Sin ningún tipo de connotación, vamos a llamar éxito a tener una niña, y fracaso a tener un niño. Teniendo en cuenta esto, el problema se plantea como los anteriores: P (x = 3) = 3 0,513 0,49 3 = 0,31 b) Al menos dos sean niños. Al menos dos sean niños quiere decir que como mucho, cuatro pueden ser niñas. Podemos calcular las probabilidades para 0, 1, 2, 3 y 4 niñas, o bien, una forma mucho más corta calcular el suceso contrario (5 y niñas) y restarlo de la probabilidad total (que siempre vale 1). P (x < 4) = 1 - P (x = 5) - P (x = ) 5 0,515 0,49 1 = 0,10
4 P (x = ) = 0,51 0,49 0 = 0,02 P (x < 4) = 1-0,10-0,02 = 0,88 c) Haya al menos una niña. Otro caso que se resuelve mejor calculando el suceso contrario. Ojo, que en este punto muchos se equivocan: lo contrario a al menos una es ninguna. 0 0,510 0,49 = 0,01 P (x > 1) = 1-0,01 = 0,99 4) Un estreno de cine ha sido visto, según las encuestas, por el 85% de la gente. Se escogen doce personas al azar. Calcular la probabilidad de que entre ellas hayan visto la película Un problema muy parecido al anterior. En este caso, la probabilidad de éxito es de 0,85. a) dos personas. P (x = 2) = 2 0,852 0,15 10 = 2, b) Al menos dos personas. Al menos dos personas es el suceso contrario de menos de dos. 0 0,850 0,15 = 1, ,851 0,15 11 = 8, P (x > 2) = 1-1, , = 0,99 c) Como máximo dos personas. Como máximo dos quiere decir que nos valen los sucesos 0, 1 y 2. Ya los hemos calculado en apartados anteriores, así que solo tenemos que sumar: P (x < 2) = 1, , , = 2, ) En una población determinada se ha estimado que la probabilidad de que un hombre llegue a los 80 años es del 78%. Se escogen cinco personas al azar. Calcular la probabilidad de que:
5 Ahora llamamos éxito a llegar a los 80 años, con una probabilidad de 0,78. a) Las cinco personas lleguen a los 80 años ,785 0,22 0 = 0,29 b) Ninguna llegue a los 80 años ,780 0,22 5 = 5, Este último ejercicio, aunque más simple comparado con los dos precedentes, lo hemos incluido como un ejemplo de aplicación en la vida real: no es ninguna tontería el que las compañías aseguradoras utilizan la probabilidad y la estadística para maximizar los beneficios de sus negocios!
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo?
Ejemplo: el valor esperado y los juegos justos. En los juegos de azar es importante la variable aleatoria X = beneficio del jugador = (ganancia neta) (recursos invertidos) El juego consiste en una caja
PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.
PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta
Nombre: Fecha: Curso:
Begoña tiene camisetas para hacer deporte de tres colores: blancas, grises y negras. Completa la siguiente tabla de frecuencias con los datos del dibujo. Cuántas camisetas tiene en total? camiseta blanca
PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015
CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS
Tema 7. Aproximación de la distribución Binomial a la Normal
Tema 7. Aproximación de la distribución Binomial a la Normal Indice 1. Problemas de la distribución binomial... 2 2. Aproximación de la binomial a la normal... 2 Apuntes realizados por José Luis Lorente
1.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda.
.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda. Si A sacar al menos una cara en n lanzamientos entonces A no sacar ninguna cara en n lanzamientos. Si A i sacar cara
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.
Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,
Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial.
La distribución geométrica Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial. Consideramos otro experimento relacionado. Vamos a
RELACIÓN DE EJERCICIOS TEMA 2
1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 2 Nombre: Probabilidad Contextualización En la sesión anterior analizamos cómo a largo plazo un fenómeno aleatorio o probabilístico posee un
Gráficos estadísticos. Estadígrafo
Tema 12: Estadística y probabilidad Contenidos: Gráficos estadísticos - Estadígrafos de tendencia central Nivel: 4 Medio Gráficos estadísticos. Estadígrafo 1. Distribución de frecuencias Generalmente se
Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades
Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas
Ejercicios resueltos de tiro oblicuo
Ejercicios resueltos de tiro oblicuo 1) Un arquero dispara una flecha cuya velocidad de salida es de 100m/s y forma un ángulo de 30º con la horizontal. Calcula: a) El tiempo que la flecha está en el aire.
El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A
Prueba de Acceso a la Universidad SEPTIEMBRE Bachillerato de Ciencias Sociales El alumno debe responder a una de las dos opciones propuestas, A o B En cada pregunta se señala la puntuación máima OPCIÓN
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO -.1 - CONVOCATORIA: Junio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar
5 DISTRIBUCIONES BINOMIAL Y DE POISSON
5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria
1.1 CASO DE ESTUDIO: JUEGO DE CRAPS
. CASO DE ESTUDIO: JUEGO DE CRAPS El juego de Craps se practica dejando que un jugador lance dos dados hasta que gana o pierde, el jugador gana en el primer lanzamiento si tiene como total 7 u, pierde
Ejercicios resueltos de progresiones aritméticas
Ejercicios resueltos de progresiones aritméticas 1) En cada una de las progresiones siguientes, halla los términos que faltan en cada una de ellas: a) 4, 8, 12, 16,, 24,,, 36, 40... b) 1, 3/2,,,,,,,, 11/2...
Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta
Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos
Pureza y rendimiento en reacciones
Pureza y rendimiento en reacciones En este documento vamos a ver cómo se resuelven problemas de estequiometría que incluyan cálculos sobre pureza de un elemento o rendimiento de una reacción. Pero primero
GUÍA PARA LA CONFECCIÓN DEL MODELO F69 EN MÓDULOS (IVA: DECLARACIÓN-LIQUIDACIÓN TRIMESTRAL)
GUÍA PARA LA CONFECCIÓN DEL MODELO F69 EN MÓDULOS (IVA: DECLARACIÓN-LIQUIDACIÓN TRIMESTRAL) IVA: Régimen Especial Simplificado (módulos): Modelo F69 A quién se aplica: A todos aquellos empresarios que
En el diagrama de árbol, las monedas aparecen en céntimos. 1 = 100 cént. b) P [NINGUNA DE 1 ] = 4 9( 3 8 + 3 8) + 3 9( 4 8 + 2 8) =
0 Soluciones a Ejercicios y problemas PÁGIN Pág. 8 Javier tiene monedas de cinco céntimos, de veinte y de un euro. Si coge dos al azar, halla la probabilidad de estos sucesos: a) Que las dos sean de cinco
Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).
Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión
Distribuciones binomial y normal
Distribuciones binomial y normal LITERATURA Y MATEMÁTICAS El teorema Como la mayoría de los que estamos presentes en esta aula, Laplace fue incomprendido por sus padres dijo Caine mientras caminaba por
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
CAPÍTULO 4 TÉCNICA PERT
54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con
Tutorial MT-m5. Matemática Tutorial Nivel Medio. Probabilidad
356790356790 M ate m ática Tutorial MT-m5 Matemática 006 Tutorial Nivel Medio Probabilidad Matemática 006 Tutorial Probabilidad Marco Teórico. Probabilidad P(#). Definición: La probabilidad de ocurrencia
CINCO JUEGOS PARA TRABAJAR LOS CONCEPTOS MÚLTIPLOS, DIVISORES Y NÚMEROS PRIMOS JUEGO 1
CINCO JUEGOS PARA TRABAJAR LOS CONCEPTOS MÚLTIPLOS, DIVISORES Y NÚMEROS PRIMOS Obtenidos de la revista SUMA 62 pp.51-54 JUEGO 1 OBJETIVOS: Trabajar el cálculo de divisores de un número. Número de jugadores:
lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =
LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-
APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC
APROXIMACIÓN DE LA DISTRIBUCIÓN BINOMIAL A LA NORMAL, LA CALCULADORA Y LAS TIC SIGMA 28 Abel Martín (*) y Rosana Álvarez García (**) En dos artículos anteriores ya hemos estudiado la distribución Binomial
Restar es de devolver la pelota que proviene de un servicio. Es un golpe defensivo muy importante para seguir jugando y pasar al ataque.
DEPORTES DE RAQUETA CARACTERÍSTICAS COMUNES EN LOS DEPORTES DE RAQUETA Entendemos por deportes de raqueta, aquellos deportes de adversario en los que se golpea una pelota, con un instrumento o con la mano
Creación de un juego de tenis en clase de informática mediante la utilización de Visual Basic.
Autor: Benito Moreno Peña. - 1 - Creación de un juego de tenis en clase de informática mediante la utilización de Visual Basic. Autor: Benito Moreno Peña Resumen: Dentro de este artículo se detallan algunos
Probabilidad. Experimento aleatorio
Probabilidad Pierre Simón Laplace 1749-1827 Astrónomo, físico y matemático francés. Creó una curiosa fórmula para expresar la probabilidad de que el sol saliera por el horizonte. Así: d 1 P d 2 Donde d
DISTRIBUCIONES DE PROBABILIDAD BINOMIAL
Probabilidad DISTRIBUCIONES DE PROBABILIDAD BINOMIAL Copyright 21, 27, 24 Pearson Education, Inc. All Rights Reserved. 4.1-1 Ejemplo de repaso Use la siguiente distribución de probabilidad para contestar
EJERCICIOS RESUELTOS DE ESTADÍSTICA II
EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS
Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos)
Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos) Alberto Contreras Cristán, Miguel Ángel Chong Rodríguez. Departamento de Probabilidad y Estadística Instituto de Investigaciones en
TALLER DE JUEGOS DE PROBABILIDAD Y ESTADÍSTICA
TALLER DE JUEGOS DE PROBABILIDAD Y ESTADÍSTICA Sevilla. Noviembre 2015 Ana García Azcárate Grupo Azarquiel [email protected] www.anagarciaazcarate.wordpress.com JUGAR EN CLASE DE MATEMÁTICAS! A muchos
Conceptos Fenomenos Aleatorios
Probabilidad Conceptos Fenomenos Aleatorios Conceptos de Probabilidad Qué es Probabilidad? En general, es un numero que evalúa la posibilidad de que algo suceda. Valor que va desde 0 hasta 1,inclusive,
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ La estadística descriptiva Le concierne el resumen de datos recogidos de eventos pasados. Por ejemplo los precios de
UNIDAD XI Eventos probabilísticos
UNIDAD XI Eventos probabilísticos UNIDAD 11 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua
Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones
UNIDAD II Eventos probabilísticos
UNIDAD II Eventos probabilísticos UNIDAD 2 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;
P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249
Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen
Tema 5: Principales Distribuciones de Probabilidad
Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad
DISTRIBUCIONES DE PROBABILIDAD DISCRETA (PARTE 2)
Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA (PARTE 2) Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 EJEMPLO Calcular σ y σ 2 para una variable aleatoria discreta
Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones.
PROBABILIDAD Y ESTADÍSTICA Sesión 2 2 MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS DISCRETOS 2.1 Definición de variable aleatoria discreta 2.2Función de probabilidad y de distribución 2.3 Valor esperado
MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad
MEDIDAS ESTADÍSTICAS Medidas de Tendencia Central y de Variabilidad 1 Propiedades deseables de una medida de Tendencia Central. 1) Definida objetivamente a partir de los datos de la serie. 2) Que dependa
Probabilidad condicional
Probabilidades y Estadística (M) Práctica 2: Probabilidad Condicional e Independencia 2 cuatrimestre 2008 Tiempo estimado: 3 clases Probabilidad condicional 1. Hay 3 cajas A, B y C con 20 piezas cada una,
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)
UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM
Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy
0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5
1.- Cómo utilizar la tabla de la distribución Binomial? Supongamos que lanzamos al aire una moneda trucada. Con esta moneda la probabilidad de obtener cara es del 30%. La probabilidad que salga cruz será,
Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24
Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00
3. Qué posibilidades hay de que me toquen los cuatro ases en una mano de tute?.
Capítulo 1 COMBINATORIA Previamente al estudio de la probabilidad en sí, conviene dedicar algún tiempo al repaso de las técnicas combinatorias. Recordemos que la Combinatoria es la parte de las Matemáticas
1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD
1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD 1 1.- FRECUENCIAS Para organizar y analizar una serie de datos estadísticos se utiliza una tabla de frecuencias Tabla de frecuencias Valores (xi) 0 1 2 Frecuencia
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS
CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos
JUNIO Opción A
Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se
PRUEBA ESPECÍFICA PRUEBA 2011
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta cinco de los seis ejercicios propuestos.
Por ejemplo, lanzar al aire un dado o una moneda son experimentos aleatorios. Los experimentos aleatorios pueden ser simples o compuestos.
.- CONCEPTOS BÁSICOS DE PROBABILIDAD Experimento aleatorio: Es aquel cuyo resultado depende del azar y, aunque conocemos todos los posibles resultados, no se puede predecir de antemano el resultado que
C. Distribución Binomial
Objetivos de aprendizaje 1. Definir los resultados binomiales 2. Calcular la probabilidad de obtener X éxitos en N pruebas 3. Calcular probabilidades binomiales acumulativas 4. Encontrar la media y la
Curso de nivelación Estadística y Matemática
Curso de nivelación Estadística y Matemática Tercera clase: Introducción al concepto de probabilidad y Distribuciones de probablidad discretas Programa Técnico en Riesgo, 2014 Agenda 1 Concepto de probabilidad
Metodología de la Investigación [DII-711] Capítulo 7: Selección de la Muestra
Metodología de la Investigación [DII-711] Capítulo 7: Selección de la Muestra Dr. Ricardo Soto [[email protected]] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia Universidad
Ecuaciones del plano. Cajón de Ciencias
Ecuaciones del plano Cajón de Ciencias Un plano tiene sus propias ecuaciones que lo definen, al igual que ocurría con la recta. Algunas de ellas son bastante parecidas, y de hecho verás que el plano tiene
Algebra Lineal XXVI: La Regla de Cramer.
Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx
INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.
Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno
Matemática. Leyendo, interpretando y organizando datos. Cuaderno de Trabajo. Clase 3
Cuaderno de Trabajo Clase Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Leyendo, interpretando y organizando datos Cuaderno de trabajo Módulo didáctico para la enseñanza
T1. Distribuciones de probabilidad discretas
Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de
EJERCICIOS DE PROBABILIDAD
EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al
PROBABILIDAD CONDICIONAL E INDEPENDENCIA
PROBABILIDAD CONDICIONAL E INDEPENDENCIA Definición Si A y B son dos eventos, se define la probabilidad de A dado B como la probabilidad de que ocurra el evento A cuando el evento B ya ocurrió o se tiene
Prueba de selección 5 de junio de Nombre:... Apellidos:... Fecha de nacimiento:... Teléfonos:...
Prueba de selección 5 de junio de 2007 Nombre:... Apellidos:... Fecha de nacimiento:... Teléfonos:... Información importante que debes leer antes de comenzar a trabajar En primer lugar debes mirar todos
Relación 1. Sucesos y probabilidad. Probabilidad condicionada.
Relación. Sucesos y probabilidad. Probabilidad condicionada.. Sean A, B y C tres sucesos cualesquiera. Determine expresiones para los siguientes sucesos: Ocurre sólo A. Ocurren A y B pero no C. c) Ocurren
en 200 días aplicando el T.C.L o convergencia de la Poisson
EJERCICIOS T13- APLICACIONES DE LA PROBABILIDAD: CONVERGENCIA Y TEOREMAS LÍMITE 1. En una fábrica la probabilidad de que se produzcan n piezas defectuosas sigue una distribución de Poisson de media 3 diarias.
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM
Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Probabilidades P(A) = Casos favorables Casos posibles Objetivos: Definir el concepto de
Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
Matemáticas segundo medio COLEGIO SSCC CONCEPCION NOMBRE: Clase Teórica Práctica Nº 30 Probabilidad Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado
Acerca del proceso de creación de un videojuego
Página 1 de 5 Acerca del proceso de creación de un videojuego Crear un videojuego es una tarea apasionante en la que suele intervenir un equipo multidisciplinario. En el juego, cada componente se relaciona
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor
2 4. c d. Se verifica: a + 2b = 1
Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
PRUEBA ESPECÍFICA PRUEBA 2009
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA SOLUCIONARIO UNIBERTSITATERA SARTZEKO HAUTAPROBAK 25 URTETIK GORAKOAK 2009ko MAIATZA ESTATISTIKA PRUEBAS DE ACCESO
MOOC UJI: La Probabilidad en las PAU
4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro
MATEMÁTICAS 2º ESO SEMEJANZA Y TEOREMA DE THALES
MATEMÁTICAS º ESO SEMEJANZA Y TEOREMA DE THALES S1 SEMEJANZA DE FIGURAS. RAZÓN DE SEMEJANZA O ESCALA. Dos figuras son semejantes si tienen la misma forma, aunque quizá distinto tamaño. La razón de semejanza
LOS COLLARES DE MACARRONES
LOS COLLARES DE MACARRONES Diseño: Mariela Orozco Esta actividad se trabaja por mesas y con niños entres los 5 y los 8 años (de acuerdo a la edad se adecua el numero de macarrones por collar o pulsera
Percentil q (p q ) Si en este conjunto de valores se quiere encontrar el percentil 20, la solución gráfica es muy simple
Percentil q (p q ) Una medida de posición muy útil para describir una población, es la denominada 'percentil'. En forma intuitiva podemos decir que es un valor tal que supera un determinado porcentaje
Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales
Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley
Cinemática del sólido rígido, ejercicios comentados
Ejercicio 10, pag.1 Planteamiento La barra CDE gira con una velocidad angular y acelera con, si la deslizadera desciende verticalmente a una velocidad constante de 0,72m/s. Se pide: a) velocidades y aceleraciones
Modelos de PERT/CPM: Probabilístico
INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Modelos de PERT/CPM: Probabilístico M. En C. Eduardo Bustos Farías 1 Existen proyectos con actividades que tienen tiempos inciertos, es decir,
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
a) 8 triángulos equiláteros y 6 cuadrados. V=12, C=14, A=24. b) 8 triángulos equiláteros y 6 octógonos no regulares. V=24, C=14, A=36.
1. CUBO CORTADO a) Uniendo los puntos medios de las aristas de un cubo, como se ve en la figura, se obtiene una pirámide triangular por cada vértice. Quitando estas pirámides qué polígonos forman las caras
POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las
POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,
