El rincón de los problemas
|
|
|
- Ramona Plaza Cuenca
- hace 10 años
- Vistas:
Transcripción
1 Diciembre de 2006, Número 8, páginas ISSN: El rincón de los problemas Pontificia Universidad Católica del Perú Problema 1 Considera un tablero de 25 casillas como el que se muestra en la figura. En cada una de las casillas de la primera fila se escribe una letra A o una letra B y luego se completa escribiendo las mismas letras, de acuerdo con la siguiente regla: se eligen tres casillas consecutivas de la primera fila y se escribe debajo de la casilla del centro de éstas, en la segunda fila, la letra que aparece más veces en las 3 casillas escogidas. Así se completa la segunda fila y se continúa con las siguientes. Cuál es la mínima cantidad de letras A que se debe escribir en la primera fila para asegurar que, en cualquier orden en que éstas se escriban, siempre se tenga una letra A en la casilla de la última fila? Este es un problema de carácter lúdico, que es natural comenzar a resolverlo por ensayo y error. Ciertamente, es fundamental entender bien lo que se está pidiendo y puede usarse muy bien para aclarar algunos conceptos relacionados con la lógica y la formulación de un teorema. Una manera de explotar sus potencialidades es como lo hicimos en un taller con profesores presentándolo por partes, considerando actividades individuales y actividades grupales, como se muestra a continuación: 1 Problema creado por Jorge Tipe, ex olímpico peruano, actualmente estudiante universitario. Se propuso en la fase final de la Olimpiada Nacional Escolar de Matemáticas del Perú, en noviembre del 2006.
2 Situación Se tiene un tablero de 25 casillas como el que se muestra en la figura. En cada una de las casillas de la primera fila se escribe una letra A o una letra B y luego se completa escribiendo las mismas letras, de acuerdo con la siguiente regla: se eligen tres casillas consecutivas de la primera fila y se escribe debajo de la casilla del centro de éstas, en la segunda fila, la letra que aparece más veces en las 3 casillas escogidas. Así se completa la segunda fila y se continúa con las siguientes. Para trabajo individual a. Muestra dos posibles formas de completar el tablero. b. Escribe la letra A en siete casillas cualesquiera de la primera fila y completa el tablero 2. 2 El lector queda invitado a desarrollar las actividades pedidas, e imaginándose varios participantes trabajando individualmente, hacer la actividad b de varias formas REVISTA IBEROAMERICANA DE EDUCACIÓN MATEMÁTICA - DICIEMBRE DE NÚMERO 8 - PÁGINA 114
3 Para trabajo grupal (grupos de dos o tres participantes) a. Escribiendo la letra A en siete casillas de la primera fila, se puede asegurar que se obtendrá una letra A en la casilla de la última fila? b. Cuál es la mínima cantidad de casillas de la primera fila en las que debe escribirse la letra A para asegurar que, en cualquier orden en que éstas se escriban, siempre se tenga una letra A en la casilla de la última fila? c. Con base en el análisis hecho para responder la pregunta planteada en b, formular y demostrar un teorema, relacionado con la situación planteada. Comentarios La actividad c se planteará según el nivel de los participantes. Es muy interesante plantearla en talleres con profesores. Las actividades individuales familiarizan al participante con la situación planteada y dan elementos para responder las preguntas planteadas en las actividades grupales. La experiencia muestra que en los grupos descubren fácilmente que escribiendo la letra A en siete casillas de la primera fila, no se puede asegurar que se obtendrá una letra A en la última fila. Es una excelente oportunidad para hablar de lo que es un contraejemplo, pues si alguien afirma que escribiendo la letra A en siete casillas de la primera fila se asegura obtener la letra A en la última, para demostrar que tal afirmación es falsa, basta mostrar un caso cualquiera en el que se escriba la letra A en siete casillas de la primera fila y se obtenga la letra B en la última fila. Es oportuno conversar con los participantes, replanteando la primera pregunta grupal usando la expresión es suficiente. Las experiencias llevan a concluir que no es suficiente tener siete casillas con la letra A en la primera fila para obtener A en la última fila. Según el nivel de los participantes, puede ser oportuno hacer comentarios relacionados con las proposiciones compuestas de la forma si p entonces q, que se simbolizan p q, en las cuales p es condición suficiente para q y q es condición necesaria si se cumple p Análogamente, pensando en responder la segunda pregunta grupal, es claro que escribiendo la letra A en las nueve casillas de la primera fila, siempre se obtendrá la letra A en la última fila; o dicho de otra manera, es suficiente tener la letra A en las nueve casillas de la primera fila para asegurar tener una A en la última; también se podría enunciar en una forma más usual ( si entonces ): si en todas las casillas de la primera fila se escribe la letra A entonces en la casilla de la última fila obtendremos una A REVISTA IBEROAMERICANA DE EDUCACIÓN MATEMÁTICA - DICIEMBRE DE NÚMERO 8 - PÁGINA 115
4 Sin embargo esto es similar a decir que es suficiente que un paralelogramo tenga cuatro ángulos interiores rectos para que sea un rectángulo; o. en la forma si entonces : si un paralelogramo tiene sus cuatro ángulos interiores rectos entonces el paralelogramo es un rectángulo La similitud está en que ambas proposiciones son verdaderas pero no son útiles o interesantes por ser muy evidentes. Los teoremas de la forma si entonces son proposiciones verdaderas que establecen una o más condiciones suficientes, y son más útiles o interesantes en la medida que la afirmación no sea tan evidente; por ejemplo, si un paralelogramo tiene un ángulo interior recto entonces el paralelogramo es un rectángulo La pregunta planteada en b lleva a buscar una relación lógica que vaya más allá de lo evidente. Si las casillas de la primera fila las numeramos del 1 al 9, de izquierda a derecha, al escribir la letra A en las casillas 4 y 5 ó en las casillas 5 y 6, se puede ver fácilmente que aunque en las siete casillas restantes se haya escrito la letra B, siempre se obtendrá A en la última fila Podría pensarse entonces que dos es la mínima cantidad de casillas de la primera fila en las que debe escribirse la letra A, pero leyendo con cuidado la pregunta b, se encuentra que es acerca del número mínimo de casillas en las que se escriba la letra A, en cualquier orden, por lo cual, dos casillas no es la respuesta correcta, ya que se estaría exigiendo que se escriba en las casillas 4 y 5 ó 5 y 6, con lo cual ya el orden no es cualquiera. Por otra parte, fácilmente se puede construir un contraejemplo, pues basta escribir A sólo en las casillas 1 y 9 (y obviamente B en las siete casillas restantes) para obtener B en la última fila. Como ya se vio que con siete letras A en la primera fila no se puede asegurar la obtención de A en la última fila, la respuesta a la pregunta b no puede ser siete. Más aún, no puede ser siete ni menor que siete, pues en tales casos en la primera fila habría por lo menos dos casillas con la letra B y bastaría que tales casillas sean la 4 y la 5 ó la 5 y la 6 para que inevitablemente se tenga B en la última fila. En consecuencia, sólo resta analizar qué pasa al escribir la letra A en ocho casillas de la primera fila. En tal caso sólo se escribirá B en una casilla y en todo trío de casillas consecutivas siempre aparecerá más veces la letra A, por lo cual es imposible que en la segunda fila haya alguna casilla con la letra B y como resultado final, en la última fila se tendrá siempre la letra A. Finalmente, podemos dar una presentación matematizada de lo analizado respecto a la situación planteada: REVISTA IBEROAMERICANA DE EDUCACIÓN MATEMÁTICA - DICIEMBRE DE NÚMERO 8 - PÁGINA 116
5 Lema 1: Si se escribe la letra A en ocho casillas cualesquiera de la primera fila entonces se obtendrá la letra A en la última fila Lema 2: Si se escribe la letra A en siete o menos casillas cualesquiera de la primera fila, no se puede asegurar que en la última fila se tendrá la letra A. Teorema: El mínimo número de casillas de la primera fila en las que debe escribirse la letra A, en cualquier orden, para asegurar que se obtendrá A en la última fila, es ocho. La demostración de los lemas se ha hecho con detalle, y la del teorema es consecuencia de ambos lemas. El lema 1 garantiza que con la A en ocho casillas cualesquiera de la primera fila se asegura la A en la última, y el lema 2 garantiza que ocho es el número mínimo. El lector queda invitado a pensar en una situación similar generalizando la idea, con n casillas en la primera fila. Cómo serían los lemas y teorema correspondientes, y sus respectivas demostraciones? REVISTA IBEROAMERICANA DE EDUCACIÓN MATEMÁTICA - DICIEMBRE DE NÚMERO 8 - PÁGINA 117
El rincón de los problemas
Marzo de 2010, Número 21, páginas 165-172 ISSN: 1815-0640 El rincón de los problemas Pontificia Universidad Católica del Perú [email protected] De lo particular a lo general, usando grafos Problema En
El rincón de los problemas. Nuevos horizontes matemáticos mediante variaciones de un problema
www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 35. Septiembre de 2013 páginas 135-143 Pontificia Universidad Católica del Perú [email protected] Nuevos horizontes matemáticos
El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema
www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 37. Marzo 2014 páginas 139-145 Pontificia Universidad Católica del Perú [email protected] Oportunidades para estimular el pensamiento
Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1
. ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio
Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina
Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: [email protected] =========0========= Introducción
Un problema sobre repetidas apuestas al azar
Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito
Apuntes de Matemática Discreta 9. Funciones
Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y
Cómo registrarse y crear su cuenta de usuario? < IMAGEN 2.1.1: HAZ CLIC SOBRE EL BOTÓN RESALTADO
Cómo registrarse y crear su cuenta de usuario? Si es la primera vez que visita la página, y nunca ha creado un usuario para poder acceder a todos los servicios que el sistema ofrece, deberá registrarse
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Aplicaciones lineales continuas
Lección 13 Aplicaciones lineales continuas Como preparación para el cálculo diferencial, estudiamos la continuidad de las aplicaciones lineales entre espacios normados. En primer lugar probamos que todas
VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico
I.- En todos los problemas siguientes de esta sección, encuentra qué número (o números) debe seguir según la sucesión, y explica el por qué. 1) 1, 4, 27, 256,? (5 puntos) R = 3125 Observa que 1=1 1, 4=2
FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES
FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración
El rincón de los problemas Uldarico Malaspina Jurado Pontificia Universidad Católica del Perú [email protected]
Septiembre de 2012, Número 31, páginas 131-137 ISSN: 1815-0640 El rincón de los problemas Pontificia Universidad Católica del Perú [email protected] Creando problemas para educación primaria Problema
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse.
TABLA DE DECISION La tabla de decisión es una herramienta que sintetiza procesos en los cuales se dan un conjunto de condiciones y un conjunto de acciones a tomar según el valor que toman las condiciones.
ESTRUCTURAS ALGEBRAICAS 1
ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
Vectores: Producto escalar y vectorial
Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con
Módulo 9 Sistema matemático y operaciones binarias
Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
MLM 1000 - Matemática Discreta
MLM 1000 - Matemática Discreta L. Dissett Clase 04 Resolución. Lógica de predicados c Luis Dissett V. P.U.C. Chile, 2003 Aspectos administrativos Sobre el tema vacantes: 26 personas solicitaron ingreso
1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS
1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una
Análisis de propuestas de evaluación en las aulas de América Latina
Este trabajo de evaluación tiene como objetivo la caracterización de figuras del espacio. Para ello el alumno debe establecer la correspondencia entre la representación de la figura y algunas de sus propiedades.
Unidad: Representación gráfica del movimiento
Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce
x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos
UNIDAD 1. LOS NÚMEROS ENTEROS.
UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar
Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones
Es una persona que ayudará a que los derechos de las personas con discapacidad se hagan realidad
Naciones Unidas Asamblea General - Concejo de Derechos Humanos Acerca de la Relatora Especial sobre los derechos de las personas con discapacidad Es una persona que ayudará a que los derechos de las personas
Segmentación de redes. CCNA 1: módulo 10.
CURSO A DISTANCIA CCNA: Técnico experto en redes e Internet. MATERIAL DIDÁCTICO COMPLEMENTARIO: Segmentación de redes. CCNA 1: módulo 10. RUBÉN MUÑOZ HERNÁNDEZ. 1.- INTRODUCCIÓN. Aunque los materiales
VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.
VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman
DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:
DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)
Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos
Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
IIC 2252 - Matemática Discreta
IIC 2252 - Matemática Discreta L. Dissett Clase 04 Lógica de predicados. Reglas de inferencia en lógica de predicados. Lógica de predicados Definiciones básicas: Un predicado es una afirmación que depende
Espacios generados, dependencia lineal y bases
Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO.
342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO. ALGUNAS APLICACIONES A LA TEORIA DE LAS FORMAS BINARIAS. Encontrar una forma cuya duplicación produce una forma dada del género principal. Puesto que los elementos
Mantenimiento Limpieza
Mantenimiento Limpieza El programa nos permite decidir qué tipo de limpieza queremos hacer. Si queremos una limpieza diaria, tipo Hotel, en el que se realizan todos los servicios en la habitación cada
Lección 7 - Coordenadas rectangulares y gráficas
Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano
Lección 24: Lenguaje algebraico y sustituciones
LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce
Problemas Resueltos del Tema 1
Tema 1. Probabilidad. 1 Problemas Resueltos del Tema 1 1- Un estudiante responde al azar a dos preguntas de verdadero o falso. Escriba el espacio muestral de este experimento aleatorio.. El espacio muestral
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0
MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0 José Antonio Guijarro Guijarro Profesor de Secundaria Especialidad de Informática Profesor Técnico de F.P. Especialidad de Sistemas
EXPLORAR RELACIONES NUMÉRICAS EN LAS TABLAS DE MULTIPLICAR
EXPLORAR RELACIONES NUMÉRICAS EN LAS TABLAS DE MULTIPLICAR er. Grado Universidad de La Punta Consideraciones Generales: En este año es necesario realizar un trabajo específico que favorezca la construcción
Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas
Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Videoconferencias semana de estadística Universidad Latina, Campus Heredia Costa Rica Universidad del Valle
1. Lección 5 - Comparación y Sustitución de capitales
Apuntes: Matemáticas Financieras 1. Lección 5 - Comparación y Sustitución de capitales 1.1. Comparación de Capitales Se dice que dos capitales son equivalentes cuando tienen el mismo valor en la fecha
La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. [email protected]
La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. [email protected] Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad
1. Números Reales 1.1 Clasificación y propiedades
1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,
Las Tasas de Interés Efectiva y Nominal
1 Las Tasas de Interés Efectiva y Nominal En el presente documento se explican los diferentes tipos de tasas de interés que normalmente se utilizan en el mercado financiero. Inicialmente veremos la diferencia
OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO
OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Cuál de los siguientes números es par? A 2009 B 2 + 0 + 0 + 9
3º Sesión NAIPES Y SUMA-100. I. Algo Sencillo para comenzar:
3º Sesión NAIPES Y SUMA-100 I. Algo sencillo para comenzar. II. La barajada perfecta! III. El juego del Suma-100 IV. Poker Matemático I. Algo Sencillo para comenzar: Vamos a comenzar con un ejercicio de
EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores
EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u
Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)
Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.
PROYECTO DE LA REAL ACADEMIA DE CIENCIAS Estímulo del talento matemático
PROYECTO DE L REL CDEMI DE CIENCIS Estímulo del talento matemático Prueba de selección 8 de junio de 2013 Nombre:... pellidos:... Fecha de nacimiento:... Teléfonos:... Información importante que debes
Base de datos en Excel
Base de datos en Excel Una base datos es un conjunto de información que ha sido organizado bajo un mismo contexto y se encuentra almacenada y lista para ser utilizada en cualquier momento. Las bases de
Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo
Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie
Explicación de la tarea 3 Felipe Guerra
Explicación de la tarea 3 Felipe Guerra 1. Una ruleta legal tiene los números del 1 al 15. Este problema corresponde a una variable aleatoria discreta. La lectura de la semana menciona lo siguiente: La
MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 2009 2010 Temario por Grados
MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 009 010 Temario por Grados Nombre: Grado: Escuela: Provincia: Municipio: Número C.I.: Calif: La distribución de
Ejercicios guiados de comentario de texto. Ejercicio 2. Descartes
Ejercicios guiados de comentario de texto Ejercicio 2. Descartes Así, por ejemplo, estimaba correcto que, suponiendo un triángulo, entonces era preciso que sus tres ángulos fuesen iguales a dos rectos;
1 Espacios y subespacios vectoriales.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto
Valoramos nuestro derecho a la educación participando de los talleres de cocina
sexto Grado - Unidad 3 - Sesión 06 Valoramos nuestro derecho a la educación participando de los talleres de cocina En esta sesión, se espera que los niños y las niñas aprendan a estrategias para multiplicar
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
Ejercicios Resueltos Combinatoria. 1. De cuántas maneras pueden sentarse 10 personas en un banco si hay 4 sitios disponibles?
Ejercicios Resueltos Combinatoria 1. De cuántas maneras pueden sentarse 10 personas en un banco si hay sitios disponibles? Nótese que importa el orden en que se sienten las personas, ya que los cuatro
15 CORREO WEB CORREO WEB
CORREO WEB Anteriormente Hemos visto cómo funciona el correo electrónico, y cómo necesitábamos tener un programa cliente (Outlook Express) para gestionar los mensajes de correo electrónico. Sin embargo,
CÓMO APROVECHAR EL JUEGO DE DOMINÓ EN LAS CLASES DE MATEMÁTICA
CÓMO APROVECHAR EL JUEGO DE DOMINÓ EN LAS CLASES DE MATEMÁTICA Traducción Adriana Rabino Original Fran Tapson 2004, ver http://www.cleavebooks.co.uk/trol/trolxe.pdf La idea es utilizar un material en general
La conveniencia de erradicar de nuestro sistema educativo las preguntas que restan en los exámenes tipo test
DESARROLLO Y EXPLICACIONES ADICIONALES DEL ARTÍCULO DE LA VANGUARDIA RESTAR NO SUMA Por Fernando Trias de Bes La conveniencia de erradicar de nuestro sistema educativo las preguntas que restan en los exámenes
Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una
Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas.
El primer paso en el diseño de una base de datos es la producción del esquema conceptual. Normalmente, se construyen varios esquemas conceptuales, cada uno para representar las distintas visiones que los
1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.
Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular
REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.
REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
RELACIONES DE RECURRENCIA
Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos
INTRODUCCION A LA LÓGICA DE ENUNCIADOS
INTRODUCCION A LA LÓGICA DE ENUNCIADOS Carlos S. Chinea 0. Enunciados: Lo fundamental en el lenguaje ordinario, la herramienta para manifestar las ideas, sentimientos, descripción de situaciones diversas,
Florero Figura 2. Tres tipos de presentaciones
Plan de clase (1/3) Escuela: Fecha: Profesor (a). Curso: Matemáticas 7 Eje temático: MI Contenido: 7.4.6 Resolución de problemas de conteo mediante diversos procedimientos. Búsqueda de recursos para verificar
EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN
EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN Una de las aplicaciones más comunes de los conceptos relacionados con la derivada de una función son los problemas de optimización.
SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL
SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,
Objeto del informe. ALUMNO 1 Página: 1
Nombre: ALUMNO 1 Centro: NOMBRE DEL COLEGIO Curso: 5º E. PRIMARIA Responsable: RESPONSABLE Localidad: LOCALIDAD Fecha: 21 / julio / 2015 Objeto del informe El presente informe recoge la evaluación psicológica
Un juego de cartas: Las siete y media
Un juego de cartas: Las siete y media Paula Lagares Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad de Sevilla
MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO
MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad
Materia: Informática. Nota de Clases Sistemas de Numeración
Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos
El ERROR que todos cometen
BLACKJACK El juego de azar que los Casinos temen Por qué debes jugar BlackJack? El BlackJack es uno de los pocos juegos de los Casinos en el cual puedes colocar las probabilidades de ganar a tu favor,
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones
Segunda Parcial Lapso 2013-1 175-176-177 1/8
Segunda Parcial Lapso 2013-1 175-176-177 1/8 Universidad Nacional Abierta Matemática I (175-176-177) Vicerrectorado Académico Cód. Carrera: 126 236 280 508 521 542 610 611 612 613 Área De Matemática Fecha:
Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones
Matemáticas 104, 01 Semestre II Tarea 5 Soluciones Problema 1: Una definición errónea de línea tangente a una curva es: La línea L es tangente a la curva C en el punto P si y sólamente si L pasa por C
Qué es un ensayo? Pasos mínimos para escribir un ensayo
Qué es un ensayo? En términos generales llamamos ensayo a una composición escrita en prosa, de extensión variable, en la que damos nuestras ideas y punto de vista particulares sobre un tema que nos interesa
Criterios de Selección de Inversiones: El Valor Actual Neto y sus derivados *.
Criterios de Selección de Inversiones: El Valor Actual Neto y sus derivados *. Uno de los criterios más válidos para la selección de inversiones alternativas es la determinación del Valor Actual Neto (VAN)
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices
CONSULTAS CON SQL. 3. Hacer clic sobre el botón Nuevo de la ventana de la base de datos. Aparecerá el siguiente cuadro de diálogo.
CONSULTAS CON SQL 1. Qué es SQL? Debido a la diversidad de lenguajes y de bases de datos existentes, la manera de comunicar entre unos y otras sería realmente complicada a gestionar de no ser por la existencia
COMBINACIONES página 29 COMBINACIONES
página 29 DEFINICIÓN: Dados n elementos, el número de conjuntos que se pueden formar con ellos, tomados der en r, se llaman combinaciones. Por ejemplo, sean cuatro elementos formar con esos cuatro elementos
SOLUCIÓN CASO GESTIÓN DE COMPRAS
SOLUCIÓN CASO GESTIÓN DE COMPRAS Comenzamos por abrir un libro de trabajo y lo guardaremos con el nombre Compras. 1) En primer lugar resolveremos el primer apartado en la hoja 1 del libro de trabajo procediendo
Un juego curioso con conexiones interesantes
Un juego curioso con conexiones interesantes EDAD desde: 8 años hasta adulto NÚMERO DE JUGADORES: 2 a 4. Objetivo: El objetivo es obtener el número más alto de puntos haciendo unos SETs conectando hasta
SUMA Y RESTA DE FRACCIONES
SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:
Funciones polinomiales de grados 3 y 4
Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados
Lección 2. Objetivo: Interpretar una fracción como división. Lección 2 5 4. Problema de aplicación (8 minutos) Estructura de lección sugerida
Lección 2 Objetivo: Interpretar una fracción como división. Estructura de lección sugerida Problema de aplicación Práctica de agilidad Desarrollo del concepto Resumen de alumnos Tiempo total (8 minutos)
E 6.3-2 Evaluación de pilotos. : Versión: 0.1 Fecha: 07/02/13 Autor: Pablo Martín Email: [email protected]
E 6.3-2 Evaluación de pilotos : Versión: 0.1 Fecha: 07/02/13 Autor: Pablo Martín Email: [email protected] Historial de cambios Versión Fecha Autor Cambios 0.1 10/12/12 Pablo Martín Blanco Versión
QUÉ ES UN NÚMERO DECIMAL?
QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y
FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS 1. FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS EN Q.
FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS CON APLICACIONES EN EL CÁLCULO DIFERENCIAL E INTEGRAL JORGE ALFONSO HERNÁNDEZ Profesor Titular de Matemática Facultad de Ciencias Económicas Universidad de El
