Observadores del estado
|
|
|
- David Paz Vera
- hace 8 años
- Vistas:
Transcripción
1 Observadores del estado Introducción Definición Dinámica del sistema con observador monovariables multivariables U.P.M.-DISAM P. Campoy Control en el espacio de estado 1 Introducción Concepto: el observador estima el estado del sistema a partir de la dinamica de su entrada y su salida. u(t) Sistema y(t) x e (t) observador U.P.M.-DISAM P. Campoy Control en el espacio de estado 2 1
2 Definición dado un sistema lineal, invariante y observable: el siguiente sistema es un observador del sistema anterior: si cumple las dos condiciones: 1. "x e (t o ), x(t o ), u(#) para # > t o $ lim (x e (t) ' x(t)) = 0 t %& 2. Si x e (t o ) = x(t o ) " #u($) $ > t o se verifica (x e (t) % x(t)) = 0 U.P.M.-DISAM P. Campoy Control en el espacio de estado 3 Matrices del observador la dinámica de x e (t)-x(t) es: la segunda condición implica: G = B la primera condición implica que: F = A " HC debe tener todos los polos estables cuanto más rápidos sean los polos de F, antes tenderá x e (t) a x(t) U.P.M.-DISAM P. Campoy Control en el espacio de estado 4 2
3 Observadores del estado Introducción Definición Dinámica del sistema con observador en cadena abierta con realimentación del estado monovariables multivariables U.P.M.-DISAM P. Campoy Control en el espacio de estado 5 Dinámica del sistema con observador en cadena abierta (1/2) u(t) B x C y(t) B A H x e cuál es la dimensión del subespacio controlable? qué variables forman el subsistema no controlable? F U.P.M.-DISAM P. Campoy Control en el espacio de estado 6 3
4 Dinámica del sistema con observador en cadena abierta (2/2) la matriz de controlabilidad: es de rango n la matriz de cambio de base para separar los subsistemas es: la dinámica en la nueva base es: U.P.M.-DISAM P. Campoy Control en el espacio de estado 7 Dinámica del sistema con observador y realimentación (1/2) r(t) u(t) B x C y(t) B A H x e cuál es la dimensión del subespacio controlable? qué variables forman el subsistema no controlable? F cuál es la dinámica de x? K U.P.M.-DISAM P. Campoy Control en el espacio de estado 8 4
5 Dinámica del sistema con observador y realimentación (2/2) la matriz de controlabilidad: es de rango n la matriz de cambio de base : la dinámica en la nueva base: Principio de separabilidad: el observador y la realimentación del estado se pueden calcular de forma independiente U.P.M.-DISAM P. Campoy Control en el espacio de estado 9 Observadores del estado Introducción Definición Dinámica del sistema con observador monovariables multivariables U.P.M.-DISAM P. Campoy Control en el espacio de estado 10 5
6 Cálculo de observadores en sistemas monovariables (1/2) dado un sistema monovariable: existe una matriz de cambio de base T o tal que: U.P.M.-DISAM P. Campoy Control en el espacio de estado 11 Cálculo de observadores en sistemas monovariables (2/2) la dinámica del observador vale: igualándolo con la dinámica de F, representada por su polinomio característico: se calculan los coeficientes de H como: U.P.M.-DISAM P. Campoy Control en el espacio de estado 12 6
7 Problema de observador en sistemas monovariables U 1 s+2 s+1 s+1 Y Dibujar la estructura de un observador del estado Calcular todas las matrices de dicha estructura de manera que la dinámica del observador sea 3 veces más rápida que la del sistema U.P.M.-DISAM P. Campoy Control en el espacio de estado 13 Observadores en sistemas monovariables: cálculo de T o x o son las variables de fase Cálculo de la matriz de cambio de base T o tal que: x = T o donde x son las variables originales y x o U.P.M.-DISAM P. Campoy Control en el espacio de estado 14 7
8 Observadores y realimentación: variables de estado involucradas r(t) u(t) y(t) sistema B observador realimentación H F K U.P.M.-DISAM P. Campoy Control en el espacio de estado 15 x eo x ec To T c "1 x e Problema en sistema monovariable: observador y realimentación U 1 s+2 s+1 s+1 Y Dibujar la estructura de un observador y de realimenatción del estado, usando el observador calculado anteriormente y la realimentación calculada en el capitulo 5 que coloca ambos polos en -2: Comprobar el comportamiento del sistema en Simulink U.P.M.-DISAM P. Campoy Control en el espacio de estado 16 8
Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT
Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil
EXAMEN PARCIAL I
UNIVERSIDAD NACIONAL DE INGENIERÍA - FIM MT 7 Control Moderno y Óptimo EXAMEN PARCIAL - 04I Problema : Un tanque vacio con masa m o es posicionado sobre g un resorte lineal con rigidez k. El tanque es
Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático
ASIGNATURA: TEORÍA DE SISTEMAS LINEALES Nombre de la asignatura: TEORÍA DE SISTEMAS LINEALES Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático Tiempo de dedicación del estudiante
CONTROL DE VELOCIDAD DE UN MOTOR DC, USANDO FILTROS DE KALMAN EN TIEMPO CONTINUO
CONTROL DE VELOCIDAD DE UN MOTOR DC, USANDO FILTROS DE KALMAN EN TIEMPO CONTINUO Julio C Mansilla Hernández (1); Julio N. García Silverio (2); Francisco J. Arteaga (3) (1) ELEOCCIDENTE, Dpto. de Planificación
como el número real que resulta del producto matricial y se nota por:
Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,
Controlabilidad y observabilidad
Controlabilidad p. 1/16 Controlabilidad y observabilidad En las próximas clases discutiremos dos conceptos fundamentales de la teoría de sistemas: controlabilidad y observabilidad. Esos dos conceptos describen
Sistemas continuos. Francisco Carlos Calderón PUJ 2010
Sistemas continuos Francisco Carlos Calderón PUJ 2010 Objetivos Definir las propiedades básicas de los sistemas continuos Analizar la respuesta en el tiempo de un SLIT continuo Definición y clasificación
Autovalores y autovectores Diagonalización y formas canónicas
Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,
8. Control Multivariable
Control de Procesos Industriales 8. Control Multivariable por Pascual Campoy Universidad Politécnica Madrid U.P.M.DISAM P. Campoy Control Multivariable 007/08 ejemplo sistemas multivariables Dado el mezclador
Tema 9. Espacio de Estados : Representación y propiedades importantes
Ingeniería de Control Tema 9. Espacio de Estados : Representación y propiedades importantes Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Esquema del tema 9.1. Representación de sistemas discretos en
5 Estabilidad de soluciones de equilibrio
Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas
Control Avanzado con variables auxiliares
Control de Procesos Industriales 7. Control Avanzado: Control en cascada por Pascual Campoy Universidad Politécnica Madrid Control Avanzado con variables auxiliares 7. Control en cascada 8. Control anticipativo
Control de Procesos Industriales 1. INTRODUCCIÓN
Control de Procesos Industriales 1. INTRODUCCIÓN por Pascual Campoy Universidad Politécnica Madrid U.P.M.-DISAM P. Campoy Control de Procesos Industriales 1 Control de Procesos Industriales: Introducción
Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Dr. Rodolfo Salinas abril 2007 Control Moderno N1 abril 2007 Dr. Rodolfo Salinas Modelo Ecuación
2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS
º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 7 SISTEMAS. UTILIDADES MATLAB. TRANSFORMADAS Y ANTITRANSFORMADAS Matlab permite obtener transformadas y antitransformadas de Fourier, Laplace
Controladores PID. Virginia Mazzone. Regulador centrífugo de Watt
Controladores PID Virginia Mazzone Regulador centrífugo de Watt Control Automático 1 http://iaci.unq.edu.ar/caut1 Automatización y Control Industrial Universidad Nacional de Quilmes Marzo 2002 Controladores
Tema 1. Espacios Vectoriales Definición de Espacio Vectorial
Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.
9. Análisis en frecuencia: lugar de las raíces
Ingeniería de Control I Tema 9 Análisis en frecuencia: lugar de las raíces 1 9. Análisis en frecuencia: lugar de las raíces Introducción: Criterios de argumento y magnitud Reglas de construcción Ejemplo
Guía de uso de DERIVE. 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función
Sobre la pantalla principal de DERIVE distinguimos: 1) La barra del menú 2) Botones de acceso rápido Al colocar el cursor sobre el botón aparece un recuadro con su función UNIDAD DOCENTE DE MATEMÁTICAS
Métodos, Algoritmos y Herramientas
Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.
DIE UPM. Se dispone de una etapa amplificadora conectada a una resistencia de carga R L de valor 1KΩ en paralelo con un condensador C L.
UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES UPM DIE DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL DIVISIÓN DE INGENIERÍA ELECTRÓNICA
λ = es simple se tiene que ( )
Sección 6 Diagonalización 1- (enero 1-LE) Sea 1 1 = 1 1 a) Es diagonalizable la matriz? En caso afirmativo, calcula las matrices P y D tales que 1 P P = D b) Existe algún valor de a para el que ( 3, 6,
Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden
Lección 11 Ecuaciones Diferenciales de Segundo Orden 1 En forma normal: Ejemplo: Ecuaciones de segundo orden x = f (t, x, x ) 2tx x + 1 x = 0 x = (x ) 2 1 2tx Casos Particulares Ecuaciones en las que no
un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:
CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse
Espacio de estado.- el espacio n dimensional cuyos ejes de coordenadas consisten en el eje X1, X2... Xn y se denomina espacio de estado
ANÁLII DE ITEMA DE CONTROL CON EL EPACIO DE ETADO La teoria de control clásica se basa en técnicas gráficas de tanteo y error mientras el control moderno es mas preciso Además se puede usar en sistemas
Modelos Dinámicos Continuos basados en Ecuaciones Diferenciales Ordinarias Lineales de Segundo Orden a Coeficientes Constantes
Modelos Dinámicos Continuos basados en Ecuaciones Diferenciales Ordinarias Lineales de Segundo Orden a Coeficientes Constantes Apellidos nombre Departamento Centro Cortés López Juan Carlos; Romero Bauset
Técnicas Avanzadas de Control Memoria de ejercicios
Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..
Propiedades de los sistemas (con ecuaciones)
Propiedades de los sistemas (con ecuaciones) Linealidad: Para verificar si un sistema es lineal requerimos que le sistema sea homogéneo y aditivo es decir, cumplir con la superposición. Método: Dada una
TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.
TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A
EJERCICIOS DE DETERMINANTES
EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla
Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden
niversidad Carlos III de Madrid Departamento de Ingeniería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica 1 Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden 1 Introducción Teórica Se denomina
07 - Control Todo o Nada.doc 1
1. Control Todo o Nada 1. Control Todo o Nada 1 1.1. Problema de control On-Off 2 1.2. Control en realimentación con ganancia elevada 2 1.3. Modelo para la habitación 3 1.4. Respuesta a Lazo Abierto 4
Análisis Dinámico de Sistemas
Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Tema 1. Concepto de Sistema Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 Concepto de señal Señal: función de una o más variables
Construcción de bases en la suma y la intersección de subespacios (ejemplo)
Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores
APLICACIONES LINEALES. DIAGONALIZACIÓN
I.- Sea f una transformación lineal de un espacio vectorial V de dimensión n. Sea B una base de V. Sea A la matriz asociada a f respecto de la base B. Señala, sin demostrar, cuáles de las siguientes afirmaciones
Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.
Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente
Propiedades de los Sistemas Lineales e Invariantes en el Tiempo
Propiedades de los Sistemas Lineales e Invariantes en el Tiempo La respuesta al impulso de un sistema LTIC (h(t)), representa una descripción completa de las características del sistema. Es decir la caracterización
Respuesta transitoria
Capítulo 4 Respuesta transitoria Una ves que los diagramas a bloques son desarrollados, el siguiente paso es llevar a cabo el análisis de los sistemas. Existen dos tipos de análisis: cuantitativo y cualitativo.
Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. [email protected].
Transformaciones Lineales Definiciones básicas de Transformaciones Lineales wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 007-009 Contenido 1 Transformaciones Lineales 11 Núcleo e imagen
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.
Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto
Ejercicios Resueltos
Ejercicios Resueltos Ejercicio 1 La función de transferencia de un sistema de control tiene como expresión: Determinar, aplicando el método de Routh, si el sistema es estable. Para comprobar la estabilidad
Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21
Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.
Construcción de bases en el núcleo e imagen de una transformación lineal
Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.
TEMA 3: CONTROL AVANZADO CON VARIABLES AUXILIARES
Técnicas del CRA: más de una variable manipulada/controlada/perturbación Contenido: 3.1 Introducción 3.2 Control en cascada 3.3 Control anticipativo Anticipativo incremental. Anticipativo estático. Control
DIAGRAMAS DE BLOQUES. Figura 1 Elementos de un diagrama de bloques
DIAGRAMAS DE BOQUES 1. EEMENTOS DE UN DIAGRAMA DE BOQUES Un diagrama de bloques de un sistema es una representación gráfica de las funciones realizadas por cada componente y del flujo de las señales. os
Ecuaciones diferenciales de orden superior
CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.5 Obtención de una ecuación diferencial asta ahora el problema tratado ha sido: Obtener la solución general de una ED lineal homogénea con coeficientes
VARIABLES ESTADÍSTICAS BIDIMENSIONALES
VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes
TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones. Robótica Industrial. Universidad de Granada
Dpt. Teoría de la Señal, Telemática y Comunicaciones Robótica Industrial Universidad de Granada Tema 5: Análisis y Diseño de Sistemas de Control para Robots S.0 S.1 Introducción Sistemas Realimentados
Problemas de exámenes de Aplicaciones Lineales y Matrices
1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector
Sistemas de ecuaciones diferenciales con SAGE Calcular los autovalores de una matriz:
Dpto. Matemática Aplicada, Facultad de Informática, UPM EDO Sistemas 1 Sistemas de ecuaciones diferenciales con SAGE Calcular los autovalores de una matriz: A = matrix([[1,-2],[4,5]]) A.eigenvalues() [3-2*I,
Aplicaciones de la Clasificación de endomorfismos Gloria Serrano Sotelo
Aplicaciones de la Clasificación de endomorfismos Gloria Serrano Sotelo Potencia y exponencial de una matriz Calculemos A 150 y e A siendo A 1 0 2-1 1 3 El polinomio característico de T es chxl Hx + 1L
Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.
Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o
(Ec.1) 2α + β = b (Ec.4) (Ec.3)
Problema 1. Hallar t R para que el vector x = (3, 8, t) pertenezca al subespacio engendrado por los vectores u = (1, 2, 3) y v = (1, 3, 1). Solución del problema 1. x L{ u, v} si, y sólo si, existen α,
Diagonalización de matrices.
Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que
Descomposición en forma canónica de Jordan (Segunda versión)
Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin
Glosario de Términos de Control
Glosario de Términos de Control Unifiquemos términos a fin de utilizar un lenguaje común en este aspecto de la tecnología. Siempre teniendo en cuenta que nuestro objeto de estudio serán los sistemas de
Solución de Sistemas de Ecuaciones Diferenciales Lineales
Solución de Sistemas de Ecuaciones Diferenciales Lineales Departamento de Matemáticas, CCIR/ITESM 9 de febrero de Índice..Introducción.................................................Ejemplo.................................................3.Ejemplo................................................
Tema 3: Aplicaciones de la diagonalización
TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:
ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Fundamentos de automatica. CURSO ACADÉMICO - SEMESTRE Primer semestre
ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Fundamentos de automatica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_06IE_65004044_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación
Sistemas Lineales. Examen de Septiembre Soluciones
Sistemas Lineales Examen de Septiembre 25. Soluciones. (2.5 pt.) La señal y(t) [sinc( t)] 4 puede escribirse como y(t) [sinc( t)] 4 [ ] sin(o πt) 4 o πt [ sin(o πt) ] 4 4 πt 4 [y (t)] 4 4 y (t) y (t) y
Lazos de control. Lazos de control. Ing. Leni Núñez
Lazos de control Ing. Leni Núñez . Definición.. Elementos del lazo de control 3. Caracterización del proceso: Modelos dinámicos lineales.. Respuesta al impulso y función de transferencia.. Diagrama de
Objetivos formativos de Álgebra
Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo
Problemas de Álgebra Lineal Espacios Vectoriales
Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo
Tema 6. Diseño de controladores discretos
Ingeniería de Control Tema 6. Diseño de controladores discretos Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Como obtener el
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
Cambio de representaciones para variedades lineales.
Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
Contenido Objetivos División Sintética de Polinomios. Carlos A. Rivera-Morales. Precálculo 2
Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido 1 2 : Discutiremos: la división sintética de polinomios División sintética es un método corto de dividir un polinomio P(x) en una variable por un
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Clasificación de sistemas
Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta
Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2)
SISTEMAS LINEALES Tema. Sistemas Lineales e Invariantes en el Tiempo (Sesión ) 4 de octubre de 00 F. JAVIER ACEVEDO [email protected] TEMA Contenidos. Representación de señales discretas en términos
MENORES, COFACTORES Y DETERMINANTES
MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una
Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : , y los vectores
FASÍCULO: ESPACIOS CON PRODUCTO INTERNO Teorema. Sea un espacio vectorial sobre y sea un producto interno en ; entonces, : i) ii) iii) iv) Ejemplo: Sean el espacio vectorial con el producto interno definido
COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II
COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2
Diagonalización de matrices, Semejanza.
para cada i de 1 a n. Cuando se encuentra un número real l y un vector no nulo x que verifican la relpractica6.nb 1 Diagonalización de matrices, Semejanza. Introducción Si A es una matriz real cuadrada
Espacios vectoriales
Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna
MT 227C: Clase Introducción n a la realimentación n y control
MT 227C: Clase 01-01 Introducción n a la realimentación n y control Elizabeth Villota Cerna 08 Abril 2009 Objetivos Proveer información general acerca de MT 227 - describir la estructura del curso, método
1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo.
Capítulo 5 Campos finitos 5.1. Introducción Presentaremos algunos conceptos básicos de la teoría de los campos finitos. Para mayor información, consultar el texto de McEliece [61] o el de Lidl y Niederreiter
Retardo de transporte
Retardo de transporte Escalón Escalón con retardo de transporte T Retardo de Transporte. Ejemplo de un Tiristor Tiempo Muerto Ángulo de Disparo (desde controlador) Pulso de disparo Nuevo Pulso de disparo
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
Tema 3. Apartado 3.3. Análisis de sistemas discretos. Análisis de estabilidad
Tema 3. Apartado 3.3. Análisis de sistemas discretos. Análisis de estabilidad Vemos que la región estable es el interior del circulo unidad, correspondiente a todo el semiplano izquierdo en s. El eje imaginario
PRÁCTICAS DE REGULACIÓN AUTOMÁTICA
PRÁCTICAS DE REGULACIÓN AUTOMÁTICA Dpto. Ing. Sistemas y Automática Universidad de Sevilla Manuel López Martínez Análisis y Control de Sistemas usando MATLAB 1.1. Introducción En lo que sigue, se va a
Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones
Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Herramientas 6 1.1. Factorización
Espacios vectoriales y aplicaciones lineales.
Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en
OPTIMIZACIÓN VECTORIAL
OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de
Calibración de un termómetro de resistencia de platino según los coeficientes de Callendar Van Dusen
Calibración de un termómetro de resistencia de platino según los coeficientes de Callendar Van Dusen Resumen En la calibración de un termómetro de resistencia de platino, (PRT por sus abreviaturas en inglés),
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación. Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30
Tema 2 Análisis Dinámico de Sistemas 2º Ing. Telecomunicación Octubre de 2003 Análisis Dinámico de Sistemas (2º Teleco, EPSIG) 1 de 30 Ecuaciones Diferenciales y Dinámica definición de la RAE Modelo: (definición
La recta en el plano.
1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación
Tema 11.- Autovalores y Autovectores.
Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica
SISTEMAS DE ECUACIONES
SISTEMAS DE ECUACIONES Ecuación es una igualdad que contiene por lo menos una incógnita, que se representa por medio de una letra, cuyo valor se debe averiguar. Por ejemplo: 3x + 2 = 4 donde debemos calcular
