λ = es simple se tiene que ( )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "λ = es simple se tiene que ( )"

Transcripción

1 Sección 6 Diagonalización 1- (enero 1-LE) Sea 1 1 = 1 1 a) Es diagonalizable la matriz? En caso afirmativo, calcula las matrices P y D tales que 1 P P = D b) Existe algún valor de a para el que ( 3, 6, a) sea un vector propio de la matriz? a) Primero calculamos los valores propios, que corresponden a las raíces del polinomio característico: 1 λ 1 p( λ) = λi = λ = ( λ)[ λ(1 λ) ] = ( λ)( λ)(1 + λ) 1 1 λ Luego los valores propios son λ = (doble) y λ = 1 (simple) * Como 1 λ = es simple se tiene que ( ) * hora calculamos dim S ( ) : 1 1 I = 1 1 dim S 1 = 1 Entonces, dim S() = nº col( I ) rg( I ) = 3 = 1 mult() y por tanto no es diagonalizable b) ( 3, 6, a) es un vector propio de si: = λ 6, es decir, 1 1 a a 3= 3λ 6= 6λ λ = 1, a = 1 3+ a = aλ Por tanto ( 3, 6,1) es un vector propio asociado al valor propio λ = 1 95

2 - (junio 1-LE) Sea la matriz 1 a = a) Para a =, es diagonalizable la matriz? En caso afirmativo, calcula la matriz diagonal D semejante a b) Existe algún valor de a para el que 4 sea un valor propio de la matriz? a) El polinomio característico de la matriz cuando a = es: 1 λ p( λ) = λi = 3 3 λ 3 = (1 λ)(3 λ)( λ) (3 λ) = 1 λ = (3 λ)((1 λ)( λ) ) = (3 λ)( λ 3 λ) = λ(3 λ)( λ 3) Los valores propios de, es decir, las raíces del polinomio característico son λ = y λ = 3 (doble) Como son reales, sólo tenemos que la dimensión del subespacio espectral asociado a λ = 3 coincide con su multiplicidad dim S(3) = 3 rg( 3 I) = 3 rg 3 3 = 3 1 = 1 1 Luego es diagonalizable y una matriz diagonal semejante a es: 3 D = 3 b) Si λ = 4 es un valor propio de la matriz, entonces es una raíz del polinomio característico: 1 4 a 4I = = 6+ a 1 4 Luego λ = 4 es un valor propio de la matriz si a = 6 96

3 3- (febrero 9-LE) Sea la matriz 1 3 = 3 a, donde a R 3 1 a) Encuentra los valores de a para los cuales - es un valor propio de y halla su subespacio espectral asociado b) Calcula los valores de a para los cuales (1, 5, 1) es un vector propio del valor propio 4 c) Para a = 3, es diagonalizable? a) Calculamos las raíces del polinomio característico para la matriz : 1 λ 3 I a λ = 3 λ = ( λ)[(1 λ) 9] =, λ = 3 1 λ λ = (doble) 4 Por tanto, λ = es valor propio de la matriz para todo a El subespacio espectral S( ) son las soluciones del sistema: * Para 3 * Para x 3 a y = 3 3 z a =, ( ) { } S( ) = x, y, x / x, y { } a, ( ) S( ) =, y, / y b) Si (1, 5, 1) es un vector propio asociado al valor propio λ = 4 se cumple que: x = λx = 3 a 5 = 4 5, sistema incompatible cualquiera que sea a c) Si a = 3 los valores propios de son λ = (doble) y 4 λ = ( ) 3 3 dim S( ) = 3 rango( + I) = 3 rango 3 3 = 3 3 Por tanto, para a = 3 la matriz diagonalizable dim S 4 = 1 97

4 4- (junio 9-LE) Sea a = 1 a a) Para qué valores de a es diagonalizable? b) Para a =, calcula una matriz diagonal semejante a a) Hallamos las raíces del polinomio característico: λ a I a a a λ λ = 1 = (1 λ)( λ + a)( λ a) = λ = a λ = a λ = 1 λ = λ (1 λ) (1 λ) = (1 λ)[ λ ] = Se tiene: si a = valores propios 1 y (doble) si a = 1 valores propios 1 (doble) y -1 si a = 1 valores propios 1 (doble) y -1 En cualquier otro caso ( a, a 1, a 1 ), se obtienen 3 raíces reales distintas por tanto es diagonalizable * a =, la dimensión del subespacio espectral S(1) es 1 Calculamos la dimensión del subespacio espectral S(), dim S() = 3 rg( I) = 3 rg 1 = Luego coincide con la multiplicidad del valor propio, por tanto es diagonalizable * a = 1, dim S( 1) = 1 y Por tanto, no es diagonalizable 1 1 dim S(1) = 3 rg( I) = 3 rg =

5 * a = 1, dim S( 1) = 1y Por tanto, es diagonalizable En resumen, es diagonalizable para a dim S(1) = 3 rg( I) = 3 rg = 1 1 b) Si a =, por el apartado anterior, una matriz diagonal semejante a ella es: demás D= 1 P P -1 1 D = = donde P es la matriz de -1-1 paso, formada por las vectores de la base de los subespacios espectrales S(1) y S() 6 5- (junio 8-LE) Sea la matriz = a 4 a M3, a a a a) Calcula los valores de a para los cuales es diagonalizable b) Para a = 4, es diagonalizable? En caso afirmativo, encuentra todas las matrices diagonales semejantes a a) Calculamos las raíces del polinomio característico: λ 6 ( ) ( )( ) ( ) ( ) λi = a λ 4 a = λ a λ a λ a 4 a = λ λ 4a a a λ λ = λ = 4a = a λ = 4a = a 99

6 * Si a < : λ = a y λ = a no son valores reales En consequencia no es diagonalizable * Si a = : λ = (doble) y λ = (simple) Luego es diagonalizable si y sólo si dim S ( ) = 6 dim S( ) = 3 rg( I) = 3 rg 4 = 3 = 1 Por tanto no es diagonalizable * Si a = 1: λ = (doble) y λ = (simple) Luego es diagonalizable si y sólo si dim S ( ) = dim S() 6 6 dim S( ) = 3 rg( I) = 3 rg 1 3 = 3 rg 1 3 = 3 1 = Luego es diagonalizable * Si a > y a 1: existen tres valores propios reales y distintos Luego es diagonalizable En resumen, es diagonalizable si y sólo si a = 1 ó a > y a 1 b) El polinomio característico es λ 6 λi = 4 λ = ( λ)( 4 λ)( 4 λ) 4 4 λ Cuyas raíces son λ =, λ = 4, λ = 4 reales y distintas, luego es diagonalizable Todas las matrices diagonales semejantes a son: 4 4 4, 4,, 4, ,

7 a 6- (febrero 5-LE) Sea la matriz = = 1 M3, a a a) Calcula los valores de a para los cuales es diagonalizable b) Para a = 1, calcula una matriz diagonal semejante a y una base de 3 formada por vectores propios de c) Calcula los valores de a para los cuales λ = 4 es un valor propio de ( a λ) a) p ( λ) = λi = 1 λ = ( a λ)( λ)( a λ) ( a λ) Raíces del polinomio característico: λ = a,, * Si a, 1, las raíces del polinomio característico son simples, luego diagonalizable * Si a =, las raíces del polinomio característico son λ = (triple) dim S( ) = 3 rg( 1I) = 3 rg 1 = 3 1 = Luego no diagonalizable * Si a = 1, las raíces del polinomio característico: λ = 1 (doble) y λ = (simple) dim S( ) = 3 rg( 1I) = 3 rg 1 1 = 3 1 = Luego diagonalizable a b) S () 1 son las soluciones del sistema () ( ) x 1 1 y =, es decir, z 3 { } {( ) } S 1 = x, y, z / x = y+ z = y+ z, y, z : y, z Luego una base de S () 1 es ( 1,1, ), (,,1) S ( ) son las soluciones del sistema 1 x 1 1 y =, es decir, 1 z 11

8 3 { } {( ) } ( ) ( ) S = x, y, z / x =, z = =, y, : y Por tanto, S ( ) = (,1,) Base de vectores propios de = ( 1,1, ), (,,1 ), (,1, ) Matriz Diagonal semejante a : 1 1 ó 1 ó c) Opción 1 Si λ = 4 es un valor propio de, entonces ( a ) 4 4I = 1 4 = ( a 4)( 4)( a 4) = 4 ( a ) Luego a =,, 4 Opción Si λ = 4 es un valor propio de, entonces 4 es raíz del polinomio característico ( λ) p = λi (calculadas en el apartado a): λ = λ = 4 es un valor propio de si a =,, 4 a,, a Por tanto, 1

9 a 1 7- (junio 5-LE) Sea la matriz = 1 3 M3, a a) Calcula los valores de a para los cuales λ = 3es un valor propio de b) Calcula los valores de a para los cuales (,1,1 ) es un vector propio de c) Calcula los valores de a para los cuales es diagonalizable a) Calculamos los valores propios de ; es decir, las raíces del polinomio característico: λ a 1 λi = 1 λ 3 = λ λ λ+ 3 λ ( )( )( ) Raíces del polinomio característico λ = 3 (simple) y λ = (doble) Independientemente de los valores de a, λ = 3 es un valor propio de b) a 1 a = = λ 1 Luego, λ = y a = c) Raíces del polinomio característico λ = 3 (simple) y λ = (doble) dim S ( 3) = 1 a 1 dim S( ) = 3 rg I = * Si 1 * Si 1 a =, ( ) dim S = dim S = 1 a, ( ) Por lo tanto es diagonalizable si a = 1 13

10 8- (enero 4-LE) a b 3 a) Sea la matriz = 1 a M3 1, ab, i) Calcula los valores de a y b para los cuales λ = 3 es un valor propio de ii) Calcula los valores de a y b para los cuales (,1,1 ) es un vector propio de iii) Para a =, es la matriz diagonalizable? En caso afirmativo, encuentra una matriz diagonal semejante a iv) Para a= b=, calcula todos los vectores propios asociados al valor propio λ = 3 b) Escribe, razonando la respuesta, una matriz no diagonal semejante a 1 a) i) λ= 3 es un valor propio de la matriz si y sólo si 3I = y 3 I = ( a 3)( a) Luego λ= 3 es un valor propio de, para a = 3 y b y para a = y b ii) (,1,1) es un vector propio de la matriz si y sólo a b 3 1 a 1 =λ Luego λ = 3 a = b = 3 iii) Para calcular los valores propios de planteamos el polinomio característico: λ b 3 λi = 1 λ = λ(1 λ)( λ) 1 λ Los valores propios son λ =,1,, todos simples y reales, luego es diagonalizable 14

11 Una matriz diagonal semejante a es: 1 iv) El subespacio espectral asociado al valor propio es la solución del sistema de ecuaciones homogéneo cuya matriz de coeficientes es 3 I = 1 1 La solución es y, z = = Luego S () = {( x,,), x } y una base es: ( ) 1,, Por tanto, los vectores propios asociados al valor propio son los puntos de la forma ( x,,), x, menos el punto (,, ) 3 b) Por ejemplo, ya que sus valores propios son 3 y 1, reales y simples, 1 3 luego es diagonalizable, y por tanto semejante a 1 a b 9- (junio 4-LE) Sea la matriz = = a M3, ab, 1 a a) Calcula los valores de a y b para los cuales es diagonalizable b) Para a = y b =, calcula una matriz diagonal semejante a y una base de 3 formada por vectores propios de a λ b a) λi = a λ = ( a λ)( a λ)( a λ) 1 a λ Por tanto los valores propios de la matriz son: λ = a (doble) y λ = a (simple) Casos: 15

12 * Si a =, entonces el único valor propio es λ = (triple) Como b rg( I) = rg, 1 se tiene que dim S () = 3 rg( I) 3 = mult(), luego la matriz no es diagonalizable en este caso * Si a, los valores propios son λ = a (doble) y λ = a (simple) Luego será diagonalizable si dim S ( a) = = mult( a) Como tiene que rg( a I) =, si b, y rg( a I) = 1, si b = b rg( a I) = rg a, 1 se Luego dim S ( a) = 1, si b, y dim S ( a) =, si b = Es decir, dim S ( a) = = mult( a) para todo a y b= Entonces es diagonalizable si a y b = b) En este caso se cumple que a y b =, entonces, por el apartado anterior, la matriz es diagonalizable Como los valores propios son: λ = (doble) y λ = (simple), se tiene que una matriz diagonal semejante a es D = Para calcular una base formada por vectores propios calculamos el subespacio espectral asociado al valor propio, es decir, la solución del sistema de ecuaciones homogéneo cuya matriz de coeficientes es I = 4 La solución es 1 y = Luego S () {( x,, z), x, z } = y una base es: ( ) ( ) 1,,,,,1 16

13 El subespacio espectral asociado al valor propio - es la solución del sistema de ecuaciones homogéneo cuya matriz de coeficientes es solución es x, y 4 z (, 4,1 ) = = Luego S ( ) {(, 4 z, z): z } 4 + I = La 1 4 = y una base es: Por tanto, una base formada por vectores propios es: ( 1,, ),(,,1 )(,, 4,1 ) 17

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

Forma canónica de Jordan. Ejemplos 2 2 y 3 3

Forma canónica de Jordan. Ejemplos 2 2 y 3 3 Forma canónica de Jordan. Ejemplos 2 2 y 3 3 GAL2 IMERL 26 de agosto de 2010 forma canónica de Jordan forma canónica de Jordan repaso (forma canónica de Jordan) forma canónica de Jordan forma canónica

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema 5: Diagonalización de matrices La intención en este tema es, dada una matriz cuadrada, ver si existe otra matriz semejante a ella que sea diagonal. Recordemos del Tema 4 que dos matrices cuadradas

Más detalles

Tema 5: Diagonalización de matrices

Tema 5: Diagonalización de matrices Tema 5: Diagonalización de matrices La intención en este tema es dada una matriz cuadrada ver si existe otra matriz semejante a ella que sea diagonal Recordemos (ver Tema : Matrices determinantes y sistemas

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Prueba de Evaluación Continua Grupo A 9-04-14 ESPACIOS VECTORIALES-DIAGONALIZACIÓN (parte sin DERIVE) 1. a) Definir sistema ligado de vectores de un espacio vectorial V. b) Demostrar que si un sistema

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Ejercicios resueltos del capítulo 1

Ejercicios resueltos del capítulo 1 Ejercicios resueltos del capítulo Ejercicios impares resueltos..b Resolver por el método de Gauss el sistema x +x x +x 4 +x = x x +x 4 = x +x +x = x +x x 4 = F, ( ) F 4, () F, ( ) F, () 8 6 8 6 8 7 4 Como

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES EJERCICIOS RESUELTOS DE SISTEMAS LINEALES 1. Dado el sistema de ecuaciones lineales: 2x + 3y 3 4x +5y 6 a) Escribir la expresión matricial del sistema. b) Discutir el sistema. c) Resolver el sistema por

Más detalles

Autovalores y autovectores. Diagonalización y formas canónicas

Autovalores y autovectores. Diagonalización y formas canónicas Capítulo 4 Autovalores y autovectores Diagonalización y formas canónicas Dado un homomorfismo, nos hemos planteado el problema de elegir bases cualesquiera de manera que la matriz del homomorfismo sea

Más detalles

ENDOMORFISMOS Y DIAGONALIZACIÓN.

ENDOMORFISMOS Y DIAGONALIZACIÓN. ENDOMORFISMOS Y DIAGONALIZACIÓN. En lo que resta de este tema, nos centraremos en un tipo especial de aplicaciones lineales: los endomorfismos. Definición: Endomorfismo. Se llama endomorfismo a una aplicación

Más detalles

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K Sesión 8: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K ) Calculamos los valores propios de A y sus multiplicidades algebraicas con: d A λ = det A λi nxn = Si d A

Más detalles

Universidad de Salamanca

Universidad de Salamanca Universidad de Salamanca Gloria Serrano Sotelo Departamento de MATEMÁTICAS 1. Subespacios invariantes por un endomorfismo Sea E un k-espacio vectorial y T un endomorfismo de E. Un subespacio vectorial

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] = ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}

Más detalles

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. TEMA 4 Ejercicios / 1 TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. 1. Tenemos un sistema homogéneo de 5 ecuaciones y 3 incógnitas: a. Es posible que sea incompatible?. Por qué? b. Es posible

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán MATEMÁTICAS TICAS I Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III Ana Isabel Garralda Guillem y Manuel Ruiz Galán Tema. Diagonalización de matrices.1. Diagonalización de matrices por

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.

Más detalles

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre

Más detalles

AUTOVALORES Y AUTOVECTORES

AUTOVALORES Y AUTOVECTORES 12 de Julio de 2011 AUTOVALORES Y AUTOVECTORES (Clase 01) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1 Puntos a tratar 1. Valores y vectores propios 2.

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

PRUEBA DE DIAGONALIZACIÓN CURSO Apellidos: Nombre: Grupo: Fecha:

PRUEBA DE DIAGONALIZACIÓN CURSO Apellidos: Nombre: Grupo: Fecha: Tipo 1 Apellidos: Nombre: Grupo: Fecha: 1.- Sea f una transformación lineal de un espacio vectorial V de dimensión n. Sea B una base de V. Sea A la matriz asociada a f respecto de la base B. Señala, sin

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden

Lección 11 Ecuaciones Diferenciales de Segundo Orden. Ecuaciones de segundo orden Lección 11 Ecuaciones Diferenciales de Segundo Orden 1 En forma normal: Ejemplo: Ecuaciones de segundo orden x = f (t, x, x ) 2tx x + 1 x = 0 x = (x ) 2 1 2tx Casos Particulares Ecuaciones en las que no

Más detalles

Diagonalización de matrices

Diagonalización de matrices Diagonalización de matrices María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Diagonalización de matrices Matemáticas I 1 / 22 Valores y vectores propios de una matriz Definición

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

EXAMEN A PP 1A SEMANA

EXAMEN A PP 1A SEMANA EXAMEN A PP A SEMANA XAVI AZNAR Ejercicio. Defina. Simetría. Proyección. Homotecia vectorial y escriba sus polinomios mínimos. Demostración.. Una simetría σ de base B y dirección D es un endomorfismo tal

Más detalles

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ?

Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 2011/ ? Matemáticas I Grado de Administración y Dirección de Empresas Examen de Febrero Curso 011/1 1) (1 punto) Dado el subespacio vectorial,,,,,,,,,,, a) Obtener la dimensión, unas ecuaciones implícitas, unas

Más detalles

PROBLEMAS DE ÁLGEBRA II - 1ER CUATRIMESTRE HTTP://FISICAUNED.WORDPRESS.COM ÍNDICE

PROBLEMAS DE ÁLGEBRA II - 1ER CUATRIMESTRE HTTP://FISICAUNED.WORDPRESS.COM ÍNDICE PROBLEMAS DE ÁLGEBRA II - ER CUATRIMESTRE ÍNDICE Parte. Teoría básica Endomorfismos vectoriales con significado geométrico 3 Diagonalización de matrices 4 Matrices diagonalizables 5 Definiciones que aparecen

Más detalles

Aproximación funcional por mínimos cuadrados

Aproximación funcional por mínimos cuadrados Aproximación funcional por mínimos cuadrados Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Introducción

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U.

2. Ortogonalidad. En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U. 2 Ortogonalidad En todo el capítulo trabajaremos sobre un espacio vectorial euclídeo U 1 Vectores ortogonales Definición 11 Dos vectores x, ȳ U se dicen ortogonales si: x ȳ = 0 Veamos algunas propiedades

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

Diagonalización de Endomorfismos

Diagonalización de Endomorfismos Tema 5 Diagonalización de Endomorfismos 5.1 Introducción En este tema estudiaremos la diagonalización de endomorfismos. La idea central de este proceso es determinar, para una aplicación lineal f : E E,

Más detalles

Sistemas de ecuaciones diferenciales lineales con coeficientes constantes

Sistemas de ecuaciones diferenciales lineales con coeficientes constantes Lección 9 Sistemas de ecuaciones diferenciales lineales con coeficientes constantes 9.. Introducción En esta lección estudiaremos una forma de obtener analíticamente las soluciones de los sistemas lineales

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales N(f)

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Formas canónicas reales

Formas canónicas reales Capítulo 7 Formas canónicas reales Introducción Sea V un espacio vectorial sobre C, f End(V y M B (f = A M(n n Sea λ = a + bi es una autovalor complejo de f de multiplicidad m Para tal autovalor complejo

Más detalles

Examen de Junio de 2011 (Común) con soluciones (Modelo )

Examen de Junio de 2011 (Común) con soluciones (Modelo ) Opción A Junio 011 común ejercicio 1 opción A ['5 puntos] Se desea construir un depósito cilíndrico cerrado de área total igual a 54 m. Determina el radio de la base y la altura del cilindro para que éste

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion.

Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion. Problemas y Ejercicios Resueltos. Tema 6: Diagonalizacion. Ejercicios 1.- Sea f End V. Demostrar que la suma de subespacios f-invariantes es f-invariante. Solución. Sean U, W dos subespacios f-invariantes

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Respuestas Guía de ejercicios N 7 parte Complemento Valores y Vectores Propios. λ 7 λ λ λ λ + 3λ. Sea v el vector propio asociado al valor propio λ 3 y v el vector propio asociado al valor propio λ. Para

Más detalles

Tema 21. Exponencial de una matriz Formas canónicas de Jordan.

Tema 21. Exponencial de una matriz Formas canónicas de Jordan. Tema 21 Exponencial de una matriz En este tema vamos a definir y calcular la exponencial de una matriz cuadrada mediante una expresión formalmente análoga al desarrollo en serie de potencias de la exponencial

Más detalles

Tema 3: Forma canónica de Jordan de una matriz.

Tema 3: Forma canónica de Jordan de una matriz. Forma canónica de Jordan de una matriz 1 Tema 3: Forma canónica de Jordan de una matriz. 1. Planteamiento del problema. Matrices semejantes. Matrices triangularizables. El problema que nos planteamos en

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por

Más detalles

Matemáticas Empresariales II. Diagonalización de Matrices

Matemáticas Empresariales II. Diagonalización de Matrices Matemáticas Empresariales II Lección 6 Diagonalización de Matrices Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 25 Introducción Sea f un endomorfismo,

Más detalles

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o

Más detalles

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización.

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización. utovalores y autovectores asociados a un endomor smo f Diagonalización Dado un endomor smo f de un espacio vectorial real V y jada una base B de V obtenemos una única matriz asociada a f respecto de la

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,

Más detalles

F 2 F 1!F 2 F 3 F 1!F 3 = = 1. b) Resuelve el sistema, si es posible, para el valor de = 0 obteniendo la matriz escalonada reducida.

F 2 F 1!F 2 F 3 F 1!F 3 = = 1. b) Resuelve el sistema, si es posible, para el valor de = 0 obteniendo la matriz escalonada reducida. Examen -5 Problema. (:5 puntos) a) Discute el siguiente sistema según los valores de x + y + z x + y + z x + y + z Resuelve el sistema, si es posible, para el valor de obteniendo la matriz escalonada reducida.

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

APLICACIONES LINEALES. DIAGONALIZACIÓN

APLICACIONES LINEALES. DIAGONALIZACIÓN I.- Sea f una transformación lineal de un espacio vectorial V de dimensión n. Sea B una base de V. Sea A la matriz asociada a f respecto de la base B. Señala, sin demostrar, cuáles de las siguientes afirmaciones

Más detalles

1. W = {(x, y, z) x + y + z =0} 2. W = {(x, y, z) x 2 + y 2 + z 2 =1} Solución:

1. W = {(x, y, z) x + y + z =0} 2. W = {(x, y, z) x 2 + y 2 + z 2 =1} Solución: ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Fundamentos Matemáticos de Ingeniería T. I. Electrónica y Eléctrica Primer Parcial (--4), primera parte. PROBLEMA A)[ puntos] Indica razonadamente cuál de los

Más detalles

Soluciones de la hoja de diagonalización MATEMÁTICAS I

Soluciones de la hoja de diagonalización MATEMÁTICAS I Soluciones de la hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y, en caso afirmativo, hallar una matriz A tal que f(x) Ax, así como los subespacios

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Álgebra Lineal. Tema 7. La forma canónica de Jordan

Álgebra Lineal. Tema 7. La forma canónica de Jordan Álgebra Lineal Tema 7 La forma canónica de Jordan Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J S ALAS, A T ORRENTE Y EJS V ILLASEÑOR Índice

Más detalles

Solución de problemas I 1

Solución de problemas I 1 Universidad Autónoma de Madrid Álgebra II. Físicas. Curso 5 6 Solución de problemas I Álgebra II Curso 5-6. Proyecciones en el producto escalar estándar Ejercicio 7.7. (a) Dada la ecuación x + y z, dar

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

Curso Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones

Curso Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones Tema 5. ÁLGEBRA Diagonalización. Curso 217-218 José Juan Carreño Carreño Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones Escuela Técnica Superior de Ingeniería

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Álgebra Lineal y Geometría I. 1 o Matemáticas

Álgebra Lineal y Geometría I. 1 o Matemáticas Álgebra Lineal y Geometría I. o Matemáticas Grupo - ( de diciembre de 27) APELLIDOS NOMBRE Instrucciones. Durante la realización del examen se podrá utilizar exclusivamente material de escritura. Ningún

Más detalles

SOLUCIONES DEL SEGUNDO PARCIAL (17/12/2013)

SOLUCIONES DEL SEGUNDO PARCIAL (17/12/2013) ÁLGEBRA LINEAL 1S1M-b SOLUCIONES DEL SEGUNDO PARCIAL 17/12/2013 1. Dada una aplicación lineal f : de manera que : Se pide, obtener su matriz con respecto a las bases canónicas. Calculamos =col 2. Calcular

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas EXÁMENES DE MATEMÁTICAS Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 5 de julio de 99. Dada la aplicación lineal: T

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A

Más detalles

Mat r i z in v e r s a

Mat r i z in v e r s a Unidad 2 Método de GaUss Mat r i z in v e r s a M U lt i pli cat i va Objetivos: Al inalizar la unidad, el alumno: Representará un sistema de m ecuaciones lineales con n incógnitas mediante una matriz

Más detalles

Problemas resueltos de subespacios vectoriales, base y dimensión. Matemáticas I curso 2012 13

Problemas resueltos de subespacios vectoriales, base y dimensión. Matemáticas I curso 2012 13 29. Calcular la dimensión, una base, unas ecuaciones implícitas y unas ecuaciones explícitas (paramétricas) de los siguientes subespacios. En qué espacio vectorial están contenidos?,,, Dato: Tenemos las

Más detalles

Forman base cuando p 0 y 1.

Forman base cuando p 0 y 1. 1 VECTORES: cuestiones y problemas Preguntas de tipo test 1. (E11). Los vectores u = (p, 0, p), v = (p, p, 1) y w = (0, p, ) forman una base de R : a) Sólo si p = 1 b) Si p 1 c) Ninguna de las anteriores,

Más detalles

2. Teorema de las multiplicidades algebraica y geométrica.

2. Teorema de las multiplicidades algebraica y geométrica. Guía. Álgebra III. Examen parcial II. Valores y vectores propios. Forma canónica de Jordan. Teoremas con demostraciones que se pueden incluir en el examen El examen puede incluir una demostración entera

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

3Soluciones a los ejercicios y problemas

3Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; ;, ) 9 7;,; ; ; π b) Alguno de ellos es entero? c) Ordénalos

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian

40 Matemáticas I. Parte II. Álgebra Lineal. I.T.I. en Electricidad. Prof: José Antonio Abia Vian 40 Matemáticas I Parte II Álgebra Lineal 41 Matemáticas I : Álgebra Lineal Tema 4 Espacios vectoriales reales 4.1 Espacios vectoriales Definición 88.- Un espacio vectorial real V es un conjunto de elementos

Más detalles

TEMA 4: Espacios y subespacios vectoriales

TEMA 4: Espacios y subespacios vectoriales TEMA 4: Espacios y subespacios vectoriales 1. Espacios vectoriales Sea K un cuerpo. Denominaremos a los elementos de K escalares. Definición 1. Un espacio vectorial sobre K es un conjunto V cuyos elementos

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2015 2016) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 6 de julio de 2016 2 Índice general 1. Álgebra 5 1.1. Año 2000............................. 5 1.2. Año 2001.............................

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles