ARITMÉTICA Y ÁLGEBRA
|
|
|
- María José Suárez Ramírez
- hace 9 años
- Vistas:
Transcripción
1 ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas, una de ellas ha de ser combinación lineal de las otras: Si aplicamos el método de Gauss resulta: que es equivalente a después de dividir la segunda fila por 8 y la tercera por - 4 Si λ 3, el número de ecuaciones (3) coincide con el número de incógnitas (3), luego se trata de un SCD (sistema compatible determinado), solución única, que al ser un sistema homogéneo, la solución es la trivial: x = 0; y = 0; z = 0. Si λ = 3, el número de ecuaciones () es menor que el número de incógnitas (3), SCI, infinitas soluciones.
2 Un sistema equivalente será: Haciendo y = k, obtenemos z = k y sustituyendo en la 1ª ecuación, x - k - 3(-k) = 0, es decir, x = 4k La solución del sistema es, por tanto,.- Halla razonadamente una matriz 3x3 que dependa de los parámetros λ y µ que no tenga ningún elemento nulo y cuyo determinante sea λ + µ. Universidad de Murcia. SOLUCIÓN: Partimos de una matriz x cuyo determinante sea λ + µ, por ejemplo, Det( M ) = λ + µ Ampliamos la matriz con una fila y una columna de manera que no se altere el valor de su determinante: (El determinante de una matriz es igual a ala suma de los productos de una fila o columna multiplicados por sus adjuntos correspondientes) Eliminamos los ceros de la 1ª fila sumándole la ª: Finalmente, eliminamos los ceros de la 1ª columna sumándole la ª:
3 (Si a una fila o columna se le suma una combinación lineal de otras filas o columnas, el determinante no varía). El determinante de esta última matriz sigue siendo λ + µ, como puede comprobarse. 3.- Considera la matriz a) Halla los valores de λ para los que la matriz A no tiene inversa. b) Tomando λ =1, resuelve el sistema, escrito en forma matricial: Andalucía, junio, 000 SOLUCIÓN: a) Si el determinante de una matriz cuadrada es igual a cero, no tiene inversa, por tanto: Desarrollando el determinante, λ + λ - λ = - λ + λ = 0 λ - λ = 0 Y dividiendo por y sacando factor común, λ (λ - 1) = 0 λ =0; λ = 1 b) Si λ = 1, el sistema dado en forma matricial queda así: que es equivalente al siguiente sistema homogéneo:
4 Lo resolvemos aplicando el método de Gauss: es decir, De la ª ecuación resulta y = z Y sustituyendo en la 1ª, x + ( z) + z = 0; x = z Solución: x = z; y = z; z: cualquier número real. 4.- Si la matriz tiene determinante n, averigua el valor del determinante de las siguientes matrices: Cantabria, junio, 000 SOLUCIÓN: Después de intercambiar la primera y la tercera fila. Entonces, Donde hemos sacado factor común a la 1ª y a la ª columna.
5 Finalmente, intercambiando la ª y la 3ª fila, se obtiene: Calculamos ahora el determinante de C: Ahora descomponemos el determinante obtenido en dos determinantes a través de los elementos de la 3ª columna: El segundo determinante obtenido vale cero por tener dos columnas iguales, y el primero lo descomponemos también en dos determinantes a través de los elementos de la 1ª columna: Ya que el segundo determinante obtenido también vale cero por tener dos columnas iguales. 5.- Con la inversa de la matriz Obtén razonadamente la matriz inversa de una matriz A, cuadrada y de orden 3, sabiendo que A +A = I, donde Comunidad Valenciana, junio 001, ejercicio A
6 SOLUCIÓN: Hallamos el determinante de la matriz dada: Det(M) = 4 1 = 8 Calculamos los adjuntos de cada uno de los elementos de dicha matriz: A 11 = ; A 1 = 4 A 1 = 3; A = La inversa se obtiene tomando la traspuesta de los adjuntos obtenidos y dividiendo por el determinante de M: Poniendo el sistema en forma matricial resulta: Multiplicando por M -1 por la izquierda es decir, La solución es x = 1; y = Para la segunda parte del problema procedemos de la siguiente forma: Si A + A = I entones, A(A + I ) = I Y multiplicando por la izquierda por A -1 obtenemos A -1 A(A + I ) = A -1 I, es decir, A + I = A -1 luego la matriz inversa de A es: A -1 = A + I
7 Dadas las matrices A = 1 x 1 x C = D = 0 1 a) Para qué valores de x la matriz A posee inversa? b) Calcula la inversa de A para x = 1 c) Qué dimensiones debe tener una matriz B para que la ecuación matricial A.B = C.D tenga sentido?. Calcula B para x = 1 Asturias, junio 004 SOLUCIÓN. a) Para que una matriz tenga inversa, su determinante tiene que ser distinto de cero. Veamos para qué valores se anula el determinante de la matriz A: 1x 0 A = 1 x = 4x x = 0 x + 4x + = 0 x = ± 1 x 0 La matriz A tiene inversa para todo x ± b) Cálculo de la inversa de A para x = 1: 1 0 A = 1 1 = 4( 1) ( 1) = A11 = = 1; A1 = = 1; A13 = = A1 = = ; A = = ; A3 = = A31 = = ; A3 = = 3; A33 = = A = es decir,
8 A = c) C es una matriz de orden 3 y D es. C.D es, por tanto, de orden 3 La ecuación matricial planteada es A.B = C.D luego A.B ha de ser también de orden 3 Como A es 3 3 B tiene que ser 3 Recordemos que para que dos matrices sean multiplicables, el números de columnas de la primera matriz tiene que coincidir con el número de filas de la segunda, es decir, X. Y = Z m n n p m p A. B = C. D A. A. B = A. C. D B = A. C. D B = = = Estudiar según el valor del parámetro λ, el sistema de ecuaciones: λx + y + z = 1 x + λ y + z = λ x + y + z = λ y resolverlo si en algún caso es compatible indeterminado (,5 puntos) Aragón, septiembre 005 SOLUCIÓN. Sea M la matriz de coeficientes y M * la matriz ampliada. El sistema es compatible cuando dichas matrices tiene el mismo rango; en caso contrario, el sistema no tiene solución. Por tanto: λ M= 1 λ 1 λ =M * λ La matriz de coeficientes la forman las tres primeras columnas. Determinante de la matriz de coeficientes:
9 λ λ 1 = λ λ + 1 = ( λ 1) Se pueden dar dos situaciones: λ = 1 y λ 1 Si λ 1 el determinante de M es distinto de cero lo que significa que el rango de la matriz de coeficientes es 3. Además rang(m * ) = 3 = número de incógnitas. S.C.D. Si λ = 1 el determinante de M vale cero Además la matriz M queda de la forma siguiente: M = y su rango vale uno * Lo mismo ocurre con la matriz ampliada: M = y su rango también vale uno Sistema compatible indeterminado ya que los rango son iguales pero menor que el número de incógnitas. El sistema queda de la forma siguiente: x + y + z = 1 Despejando x obtenemos x = 1 y z y haciendo y = α; z = β la solución del sistema queda así: x = 1 α β y = α z = β 8. Responde si las siguientes afirmaciones son verdaderas o falsas y justifica tu respuesta. a) Si A y B son dos matrices cuadradas cualesquiera, se cumple que: ( A + B) = A + B + AB b) Si A es una matriz cuadrada que cumple A = (0), entonces tiene que ser A = (0) c) Si A es una matriz cuadrada cualquiera, se cumple que: ( A + I)( A I) = A I Nota: (0) representa la matriz nula d la misma dimensión que A. Análogamente I representa la matriz identidad. CANTABRIA / JUNIO 05 SOLUCIÓN. a) Es falso, pues el producto de matrices no es conmutativo: AB BA. ( A + B) = ( A + B)( A + B) = A + B + AB + BA
10 0 0 b) También es falso. Sea, por ejemplo, una matriz distinta de cero: A = 4 0 Entonces, A =. = = c) Es cierto pues, I = I ( A + I)( A I) = A A. I + I. A I = A I ya que A. I = I. A y además 9. Halle todas las matrices A = ( a ij ), cuadradas de orden tres, tales que a1 = a3 = 0 y t A + A = 4I, siendo I la matriz identidad de orden tres y A t la matriz traspuesta de A, de la que además se sabe que su determinante vale 10. GALICIA / JUNIO 05 SOLUCIÓN. a b c La matriz A será: A = 0 d e f 0 g t Y como A + A = 4I se tiene: a b c a 0 f d e + b d 0 = f 0 g c e g a b c + f a = 4; b = 0; c + f = 0 b d e = d = 4; e = 0 c + f e g g = 4 Entonces, a = ; d = ; g = ; f = c Y la matriz A queda de la siguiente forma: 0 c A = 0 0 c 0 0 Como el determinante de la matriz vale 10, se obtiene: c 0 0 = 10; c 0 es decir, = = ±. Las matrices pedidas son: A1 = c 10 c 1 y 0 1 A =
11 10. Estudiar el sistema según los valores de m (7 puntos) y resolverlo para m = 1 ( 3 puntos). x + y = 1 my + z = 0 x + ( m + 1) y + mz = m + 1 ISLAS BALEARES / SEPTIEMBRE 05 SOLUCIÓN. Podemos aplicar el método de Gauss: m m m m + 1 m m m m m 0 0 m 1 m Pueden darse tres situaciones: Si m = 0 : La matriz de coeficientes queda de la siguiente forma: M = y en tonces rang( M ) = * * Matriz ampliada: M = ; rang( M ) = Los rangos son iguales pero su valor es menor que el numero de incógnitas. Sistema compatible indeterminado. (Infinitas soluciones) Si m = 1: La matriz de coeficientes será: M = * Matriz ampliada: M = cuyo rango es 3; El sistema es incompatible porque los rangos no son iguales. y su rango es. rang( M ) = * rang( M ) = 3 Si m 0 y m 1: El rango de la matriz de coeficientes y el de la matriz ampliada es 3. Y como coincide con el número de incógnitas, el sistema es compatible determinado. El problema también puede resolverse por determinantes.
12 1 3 1 λ 11. Se consideran las matrices A = ; B = λ donde λ es un número real. 0 a) (1.5 puntos) Encontrar los valores de λ para los que la matriz AB tiene inversa. x a b) (1 punto) Dados a y b números reales cualesquiera, puede ser el sistema A y = b z compatible determinado con A la matriz del enunciado?. ARAGÓN / JUNIO 06 SOLUCIÓN λ 1+ λ 3+ λ a) AB = λ = 1 λ 1 0 Para que AB tenga inversa es necesario que su determinante sea distinto de 0: 1+ λ 3 + λ AB = = + 1 λ 1 λ 3λ Valores que anulan el determinante: 3 ± 9 4.( ) 3± 5 λ + λ = λ = = = Para λ y λ 1 la matiz AB tiene inversa. b) x a A y = b z x 1 λ a y = b z x + y + λz = a x y z = b Como este sistema tiene menos ecuaciones que incógnitas nunca puede ser compatible determinado.
Matriz sobre K = R o C de dimensión m n
2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0
EJERCICIOS RESUELTOS DE SISTEMAS LINEALES
EJERCICIOS RESUELTOS DE SISTEMAS LINEALES 1. Dado el sistema de ecuaciones lineales: 2x + 3y 3 4x +5y 6 a) Escribir la expresión matricial del sistema. b) Discutir el sistema. c) Resolver el sistema por
Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008
Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo
TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.
TEMA 4 Ejercicios / 1 TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. 1. Tenemos un sistema homogéneo de 5 ecuaciones y 3 incógnitas: a. Es posible que sea incompatible?. Por qué? b. Es posible
Matrices, determinantes, sistemas de ecuaciones lineales.
UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDAD 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:
Sistemas de Ecuaciones Lineales
Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula
BLOQUE 1 : ÁLGEBRA. EJERCICIO 1 Resuelve la ecuación : EJERCICIO 4 Dado el sistema de ecuaciones :
EJERCICIO 1 Resuelve la ecuación : BLOQUE 1 : ÁLGEBRA = 0 EJERCICIO 2 Dado el sistema de ecuaciones : a) Discutirlo según los distintos valores de k. b) Resolverlo en los casos en que sea posible. EJERCICIO
SISTEMAS DE ECUACIONES
Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES
CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se
A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.
A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas
Tema 1. Álgebra lineal. Matrices
1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 05 de abril de 2018 1 hora y 15 minutos. NOMBRE Y APELLIDOS CALIFICACIÓN 1. Dadas las matrices A ( 2 1 1 2 ), B ( 0 1 ) e I la matriz identidad de
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 6 de julio de 2016 2 Índice general 1. Álgebra 5 1.1. Año 2000............................. 5 1.2. Año 2001.............................
ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE A 2 1 0
ÁLGEBRA (Selectividad 017) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE EBAU EvAU PEBAU O COMO SE LLAME LA SELECTIVIDAD DE 017 1 Andalucía, junio 17 0 x Ejercicio 3- Considera las matrices
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales
Ejercicio 3 de la Opción A del modelo 1 de 2008.
Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1
P. A. U. LAS PALMAS 2005
P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica
Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.
Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
Matrices, Determinantes y Sistemas de ecuaciones lineales
Tema 1 Matrices, Determinantes y Sistemas de ecuaciones lineales 1.1. Matrices Definición: Una MATRIZ es un conjunto de números reales dispuestos en forma de rectángulo, que usualmente se delimitan por
Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente
Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.
Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn
MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.
1 MATRICES Una matriz es una tabla ordenada de escalares a ij de la forma La matriz anterior se denota también por (a ij ), i =1,..., m, j =1,..., n, o simplemente por (a ij ). Los términos horizontales
BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.
BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21
de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).
INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015
ÁLGEBRA (Selectividad 015) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 015 1 Aragón, junio 15 1 (3 puntos) a) (1,5 puntos) Considera la matriz y los vectores siguientes:
Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3
1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales 1 Definiciones Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de expresiones de la forma: a 11 x 1 + a 12 x 2 + + a 1n x n = a 21 x 1 + a 22 x 2 + +
DETERMINANTES. Página 77 REFLEXIONA Y RESUELVE. Determinantes de orden 2
DETERMINANTES Página 77 REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 0x + 6y
TEST DE DETERMINANTES
Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B
Tema 5: Sistemas de Ecuaciones Lineales
Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a
EJERCICIOS DE DETERMINANTES
EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla
Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO ) D = ( 4 2
EXAMEN DE MATEMATICAS II 1ª EVALUACIÓN Apellidos: Nombre: Curso: 2º Grupo: A Día: 4-X-2015 CURSO 2015-16 Opción A 1.- Considera las matrices A = ( 1 2 2 1 ), B = ( 2 1 0) y C = ( 1 5 0 ) a) [1,5 puntos]
SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:
TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a
solucionario matemáticas II
solucionario matemáticas II UNIDADES 8-4 bachillerato 8 Determinantes 4 9 Sistemas de ecuaciones lineales 46 Fin bloque II 0 Vectores 8 Rectas planos en el espacio 68 Propiedades métricas 08 Fin bloque
DETERMINANTES UNIDAD 3. Página 76
UNIDAD 3 DETERMINANTE Página 76 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes: 2x + 3y 29 5x 3y 8 4x + y
Matrices, determinantes y sistemas de ecuaciones lineales
Capítulo 4 Matrices, determinantes y sistemas de ecuaciones lineales DEFINICIÓN DE MATRIZ DE NÚMEROS REALES Una matriz de números reales de tamaño m n es un conjunto ordenado por filas y columnas de números
SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA
MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método
MATRICES DETERMINANTES
MATRICES Y DETERMINANTES INTRODUCCIÓN, MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva,
Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO ) D = ( 4 2
EXAMEN DE MATEMATICAS II 1ª ENSAYO (ÁLGEBRA) Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO 2016-17 Opción A 1.- Considera las matrices A = ( 1 2 1 0 0 2 1 ), B = ( 2 1 0) y C = ( 1 0 0 1 5 0 ) 3 2 1 a)
Unidad 2 Determinantes
Unidad Determinantes 4 SOLUCIONES. Las soluciones son:. Aplicando la regla de Sarrus se obtiene: 3. Queda del siguiente modo: 4. Decimos que: a) El término a5 a5 a44 a3 a 3 es el mismo que a3 a5 a3 a44
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Reserva, Ejercicio 3, Opción A Reserva, Ejercicio 4, Opción A Reserva 3, Ejercicio 3, Opción A Reserva
FUNDAMENTOS MATEMÁTICOS. Tema 6 MATRICES Y DETERMINANTES
FUNDAMENTOS MATEMÁTICOS Tema 6 MATRICES Y DETERMINANTES 6.1 Definición de matriz de números. Una matriz orden (m n) es un conjunto de m n números ordenados en una tabla: en donde podemos apreciar horizontalmente
cuadrada de 3 filas y tres columnas cuyo determinante vale 2.
PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos
Ejemplo 1. Ejemplo introductorio
. -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 206 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva
Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5
DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno
- sen(x) cos(x) cos(x) sen(x)
EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 7-X-4 CURSO 4- Opción A.- a) [ punto] Si A y B son dos matrices cuadradas y del mismo orden, es cierta en general la relación
Matrices, determinantes y sistemas de ecuaciones lineales
Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente
Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales
Grado en Ingeniería agrícola y del medio rural Tema 2 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2017 Licencia Creative Commons 4.0 Internacional J.
Tema 2. Sistemas de ecuaciones lineales
Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema
Sistemas lineales con parámetros
4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción A Reserva
Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...
INTRO. MATRICES Y DETERMINANTES Prof. Gustavo Sosa Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas
Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos
Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los
TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.
TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A
Sistem as de ecuaciones lineales
Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a
MATEMÁTICAS PARA ECONOMISTAS I MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
MATEMÁTICAS PARA ECONOMISTAS I MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES 1.- Dadas las siguientes matrices Efectúe si es posible : a) A + B b) B A c) B 2.- Dadas las siguientes matrices Efectúe
BLOQUE 1: ÁLGEBRA. JUN05, P1A Calcular los valores x 1, x 2, x 3, x 4, y 1, y 2, y 3, y 4 que satisfacen las siguientes ecuaciones: 2AX 3AY B AX AY C
IES nº ASPE ENRIQUE CANTÓ ABAD EJER ALGEBRA SELECTIVIDAD MAT II Curso 11/1 BLOQUE 1: ÁLGEBRA JUN05, P1A Calcular los valores x 1, x, x 3, x 4, y 1, y, y 3, y 4 que satisfacen las siguientes ecuaciones:
Teoría Tema 8 Propiedades de los determinantes
página 1/6 Teoría Tema 8 Propiedades de los determinantes Índice de contenido Propiedades...2 página 2/6 Propiedades 1. El determinante de una matriz coincide con el determinante de su traspuesta. A=A
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales. Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales de la forma:
Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Sistemas de Ecuaciones Lineales 1) SISTEMAS DE ECUACIONES LINEALES Un sistema de ecuaciones lineales es un conjunto de ecuaciones
ACTIVIDADES SELECTIVIDAD MATRICES
ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden
Lección 1. Algoritmos y conceptos básicos.
Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas
PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas
PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DEL COLEGIO DE ÁLGEBRA Y GEOMETRÍA DE MATEMÁTICAS II CURSO
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DEL COLEGIO DE ÁLGEBRA Y GEOMETRÍA DE MATEMÁTICAS II CURSO 013-014 1 0 Ejercicio 1º.- Dada la matriz: A 1 1 a) (1,5 puntos) Determina los valores de λ para los
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II
Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 7 de abril de 08 hora y 5 minutos. NOMBRE Y APELLIDOS CALIFICACIÓN. Se considera el sistema lineal de ecuaciones, dependiente del parámetro real
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS
1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes
Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que
MATRICES INVERTIBLES Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que AB = BA = I siendo I la matriz identidad. Denominamos a la matriz B la inversa de A
SISTEMAS DE ECUACIONES LINEALES
1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables
Tema 1: Matrices y Determinantes
Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz
Tema 5. Matrices y Determinantes
Tema 5. Matrices y Determinantes 1. Definiciones 2. Operaciones Propiedades 3. Determinantes Orden 2 Orden 3: Regla de Sarrus Orden mayor de 3 Propiedades 4. Matriz inversa Ecuaciones matriciales 5. Rango
Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se
ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.
ÁLGEBRA DE MATRICES Página 47 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción B Reserva
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2
Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B =
S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 8 - IV 4 CURSO 03-4 a) Duración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
Tema 1: MATRICES. OPERACIONES CON MATRICES
Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos
JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.
Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones
