Controlabilidad y observabilidad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Controlabilidad y observabilidad"

Transcripción

1 Controlabilidad p. 1/16 Controlabilidad y observabilidad En las próximas clases discutiremos dos conceptos fundamentales de la teoría de sistemas: controlabilidad y observabilidad. Esos dos conceptos describen la interacción de un sistema entre el mundo externo (entradas y salidas) y las variables internas (estados). Informalmente, la controlabilidad es la propiedad que indica si el comportamiento de un sistema se puede controlar actuando sobre sus entradas. La observabilidad es la propiedad que indica si el comportamiento interno de un sistema puede detectarse desde sus salidas. Empezaremos considerando la controlabilidad de varios sistemas.

2 Controlabilidad p. 2/16 Controlabilidad Considere el sistema LTI representado por la ecuación de estados de n estados, q entradas ẋ(t) = Ax(t) + Bu(t); (1) donde A R n n y B R n q. La controlabilidad solo relaciona entradas y estados, así la ecuación de salida y(t) = Cx(t) + Du(t) es irrelevante. Controlabilidad: La ecuación de estado (1) o el par (A; B) se dice controlable si para todo estado inicial x() = x y todo estado final x 1, hay una entrada que transfiere x a x 1 en tiempo finito. En otro caso, (1) o (A; B) se dice no controlable Esta definición solo requiere que la entrada sea capaz de llevar el estado a cualquier lugar en el espacio de estados en tiempo finito sin importar qué trayectoria siga el estado.

3 Controlabilidad p. 3/16 Controlabilidad Ejemplo (Sistema no controlable). Considere el sistema eléctrico de la izquierda en la figura de abajo. Es un sistema de primer orden con variable de estado x, el voltaje en el capacitor. Si el capacitor no tiene carga inicial, x() =, entonces x(t) = t >, sin imporat la entrada aplicada. La entrada no tiene efecto sobre el voltaje en el capacitor. Este sistema, o más precisamente, la ecuación de estado que lo describe no es controlable. El sistema a la derecha tiene dos variables de estado. La entrada puede transferir x 1 o x 2 a cualquier valor deseado, pero no importa qué entrada se aplique, x 1 (t) siempre será igual a x 2 (t). Este sistema tampoco es controlable. u + 1Ω + x 1F 1Ω + y u + 1F + + 1F x 1 x 2 1Ω 1Ω 1Ω 1Ω

4 Controlabilidad p. 4/16 Prueba de controlabilidad Teorema (Prueba de controlabilidad). Las siguientes declaraciones son equivalentes. 1. El par n dimensional (A; B) es controlable. 2. La matriz de controlabilidad C = [ B AB A 2 B... A n 1 B ], tiene rango n (rango fila completo). 3. La matriz n n, W c (t) = no es singular t >. t e Aτ BB T e AT τ dτ

5 Controlabilidad p. 5/16 Prueba de controlabilidad Ejemplo. La ecuación de espacio de estados linealizada del sistema de péndulo invertido a la derecha está dada por, ẏ ÿ θ = θ u u y M θ l m mg La matriz de controlabilidad es C = [ B AB A 2 B A 3 B ] = la cual tiene rango fila completo, luego el sistema es controlable. Si θ se desvía un poco de, sabemos que existe un control que lo devolverá al equilibrio en tiempo finito.

6 Controlabilidad p. 6/16 Controlabilidad & equivalencia algebraica La controlabilidad es una propiedad de un sistema que es invariante respecto a transformaciones de equivalencia algebraicas (cambio de coordenadas). Considere el par (A; B) con C = [ B AB... A n 1 B ] y un par algebraicamente equivalente (Ā; B), donde Ā = PAP 1, B = P B, y P es una matriz no singular. Entonces la matriz de controlabilidad del par (Ā; B) es C = [ B BĀ... Ā n 1 B] = [ PB PAP 1 PB... PA n 1 P 1 PB ] = P [ B AB... A n 1 B ] = PC Ya que P es no singular, rango(c) = rango( C)

7 Gramiano de controlabilidad La matriz W c (t) utilizada para chequear la controlabilidad de (A; B) se puede usar para construir una señal de control de lazo abierto u(t) que lleve al estado x desde cualquier x a cualquier x 1 en tiempo finito. W c (t) = Tal ley de control está dada por: t e Aτ BB T e AT τ dτ u(t) = B T e AT (t 1 t) W 1 c (t 1 )(e At 1 x x 1 ) Esta ley de control usa la menor cantidad de energía para transferir x desde x a x 1 en tiempo t 1. Esto significa que cualquier otro control ū(t) que realice la misma transferencia, t1 ū 2 dτ t1 u 2 dτ Por ejemplo, si x =, la mínima energía de control es, t1 u 2 dτ = W 1 2 c (t 1 )x 1 2 Controlabilidad p. 7/16

8 Controlabilidad p. 8/16 Gramiano de controlabilidad Si la matriz A is Hurwitz (todos sus autovalores tiene parte real negativa), entonces W c (t) converge para t, y se denota simplemente como W c, W c = e Aτ BB T e AT τ dτ; y se denomina Gramiano de controlabilidad de (A; B). Si deseamos llevar el estado x desde a x 1 en tiempo infinito, (t 1 ), se encuentra que la mínima energía de control requerida debería ser, u 2 dτ = W 1 2 c x 1 2 Entre más cercano a cero sea cualquier autovalor de W c, más cercano estará W c de la singularidad, y más grande será la energía mínima requerida para llevar el estado hasta x 1.

9 Controlabilidad p. 9/16 Gramiano de controlabilidad Para el caso de tiempo infinito, no se requiere resolver la integral de tiempo infinito para calcular W c. Si (A; B) es controlable, (C tiene rango fila completo), W c es la única solución de la matriz lineal de Lyapunov, AW c + W c A T = BB T la cual puede resolverse con MATLAB usando Wc = lyap(a,b*b ), o usando la función Wc = gram(sys, c ).

10 Controlabilidad p. 1/16 Controlabilidad y muestreo Como se dijo, la mayoría de los sistemas de control se implementan en forma digital, para lo cual es necesario un modelo de tiempo discreto del sistema. u[k] {A d, B d, C, D} y[k] ZOH {A, B, C, D} T T Antes hemos visto como obtener un modelo de tiempo discreto a partir de uno en tiempo continuo que es exacto en los instantes de muestreo. ẋ = Ax + Bu y = Cx + Du x[k + 1] = A dx[k] + B d u[k] y[k] = Cx[k] + Du[k] Donde A d = e AT y B d = T eaτ Bdτ. La pregunta es: Si el sistema de tiempo continuo es controlable, el sistema de tiempo discreto siempre es controlable?.

11 Controlabilidad p. 11/16 Controlabilidad y muestreo La controlabilidad del sistema discretizado depende del período de muestreo T y los autovalores de la planta de tiempo continuo. La controlabilidad se puede perder después del muestreo. Teorema (Muestreo no patológico). Si el par (A; B) es controlable, entonces el par discretizado (A d ; B d ) es controlable con periodo de muestreo T si para cualquier dos autovalores λ i ; λ j de A tales que Re[λ i λ j ] =, la condición de muestreo no patológico Im[λ i λ j ] 2πm T para m = 1, 2,... se satisfaga. El teorema da una condición necesaria que preserva la controlabilidad después del muestreo. Esta condición también es suficiente para sistemas de una sola entrada.

12 Controlabilidad p. 12/16 Controlabilidad y muestreo Ejemplo (Muestreo patológico). Considere el sistema de tiempo continuo ẋ(t) = [ ] 1 x(t) + 1 [ ] u(t) 1 Su discretización exacta con período de muestreo T es x[k + 1] = [ ] cos T sin T x[k] + sin T cos T [ 1 cos T sin T ] u[k] Note que si T = mπ, con m = 1; 2;..., este sistema se hace no controlable, i.e., x[k + 1] = [ ] ( 1) m ( 1) m x[k] + [ ] 1 ( 1) m u[k]

13 Controlabilidad p. 13/16 Controlabilidad y muestreo Un par de observaciones finales acerca del muestreo y la controlabilidad: La condición de muestreo no patológico solo aplica a sistemas con autovalores complejos; un sistema discretizado con solo autovalores reales es controlable para todo T > si su contraparte de tiempo continuo lo es. La condición de muestreo no patológico solo es suficiente para un sistema MIMO; si el muestreo es patológico, la controlabilidad se puede perder después del muestreo.

14 Controlabilidad p. 14/16 Ejemplos de controlabilidad x 1 u y x 2 En el sistema hidráulico de la izquierda es obvio que la entrada no puede afectar el nivel x 2, así que intuitivamente es evidente que este sistema de 2 tanques no es controlable. Un modelo linealizado de este sistema con parámetros unitarios da, ẋ(t) = [ ] 1 x(t) + y(t) = [ 1 ] x(t) La matriz de controlabilidad es C = [B AB] = completo, luego el sistema no es controlable. [ ] 1 u(t) [ ] 1 1 la cual no es de rango

15 Controlabilidad p. 15/16 Ejemplos de controlabilidad Example. u x x x La controlabilidad del sistema hidráulico de la izquierda no es tan obvia, aunque podemos ver que x 1 (t) y x 3 (t) no se pueden afectar independientemente con u(t). y El modelo linealizado en este caso es, x(t) = x(t) y(t) = [ 1 ] x(t) 1 u(t) 1 4 La matriz de controlabilidad es C = [B AB A 2 B] = la cual tiene 1 4 rango 2, mostrando que el sistema no es controlable.

16 Controlabilidad p. 16/16 Ejemplos de controlabilidad x 1 u x 2 x 3 Ahora en el sistema previo suponga que la entrada se aplica en el primer tanque, como se muestra en la figura. y En este caso el modelo linealizado es el mismo de antes, excepto que la matriz B ahora es diferente. x(t) = y(t) = [ 1 ] x(t) x(t) + 1 u(t) Ahora la matriz de controlabilidad es C = [B AB A 2 B] = tiene rango 3, mostrando que el sistema es controlable la cual 1

Descomposiciones Canónicas

Descomposiciones Canónicas Observabilidad p. 1/12 Descomposiciones Canónicas Las descomposiciones canónicas de las ecuaciones de estado permiten establecer la relación entre Controlabilidad, Observabilidad, y una matriz de transferencia

Más detalles

Tema 9. Espacio de Estados : Representación y propiedades importantes

Tema 9. Espacio de Estados : Representación y propiedades importantes Ingeniería de Control Tema 9. Espacio de Estados : Representación y propiedades importantes Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Esquema del tema 9.1. Representación de sistemas discretos en

Más detalles

Controlabilidad completa del estado para sistemas en tiempo continuo

Controlabilidad completa del estado para sistemas en tiempo continuo Capítulo 11: CONTROLABILIDAD Y OBSERVABILIDAD Se dice que un sistema es controlable en el instante t0 si es posible llevarlo de cualquier estado inicial x(t0) a cualquier otro estado, empleando un vector

Más detalles

Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Dr. Rodolfo Salinas abril 2007 Control Moderno N1 abril 2007 Dr. Rodolfo Salinas Modelo Ecuación

Más detalles

Controlabilidad, Observabilidad y Detactabilidad

Controlabilidad, Observabilidad y Detactabilidad Controlabilidad, Observabilidad y Detactabilidad Controlabilidad: Definición básica Considere el siguiente sistema lineal e invariante en el tiempo Controlabilidad: diremos que el par (A,B) es controlable

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada CONTROL MODERNO Y ÓPTIMO (MT 227C) Clase 5-2 Elizabeth Villota Cerna Semestre 29 II -

Más detalles

Control en el Espacio de Estado 3. Controlabilidad. por Pascual Campoy Universidad Politécnica Madrid

Control en el Espacio de Estado 3. Controlabilidad. por Pascual Campoy Universidad Politécnica Madrid Control en el Espacio de Estado 3. Controlabilidad por Pascual Campoy pascual.campoy@upm.es Universidad Politécnica Madrid U.P.M.-DISAM P. Campoy Control en el Espacio de Estado 1 Controlabilidad Definiciones

Más detalles

Controlabilidad Observabilidad Principio de Dualidad Descomposición Canónica o de de Kalman Realizaciones Balanceadas. Fernando di Sciascio (2016)

Controlabilidad Observabilidad Principio de Dualidad Descomposición Canónica o de de Kalman Realizaciones Balanceadas. Fernando di Sciascio (2016) Controlabilidad Observabilidad Principio de Dualidad Descomposición Canónica o de de Kalman Realizaciones Balanceadas Fernando di Sciascio (2016) CONTROLABILIDAD Fernando di Sciascio (2016) Controlabilidad

Más detalles

Control Moderno. Ene.-Jun Diseño de controlador con referencia a la entrada, servosistemas. Dr. Rodolfo Salinas. mayo 2007

Control Moderno. Ene.-Jun Diseño de controlador con referencia a la entrada, servosistemas. Dr. Rodolfo Salinas. mayo 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Diseño de controlador con referencia a la entrada, servosistemas Dr. Rodolfo Salinas mayo 2007

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

1. SISTEMAS DE ECUACIONES DIFERENCIALES

1. SISTEMAS DE ECUACIONES DIFERENCIALES 1 1 SISTEMAS DE ECUACIONES DIFERENCIALES 11 SISTEMAS LINEALES DE PRIMER ORDEN Un sistema de ecuaciones diferenciales del tipo dx 1 dt a 11 tx 1 + a 1n tx n + f 1 t dx n dt a n1 tx 1 + a nn tx n + f n t

Más detalles

1. Problema clásico de EDO

1. Problema clásico de EDO FACULTAD CS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA57C Control Óptimo Semestre 27-2 Profesor: Rafael Correa Auxiliar: Oscar Peredo Clase Auxiliar #1 31 de julio de 27 1 Problema clásico de EDO Problema

Más detalles

1 Control Óptimo. 1.1 Introducción Problema típico de control óptimo

1 Control Óptimo. 1.1 Introducción Problema típico de control óptimo 1 Control Óptimo 1.1 Introducción El control óptimo es una rama del control moderno que se relaciona con el diseño de controladores para sistemas dinámicos tal que se minimice una función de medición que

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

Introducción al control óptimo

Introducción al control óptimo Realización p. 1/33 Introducción al control óptimo El método de diseño por realimentación de estados y observador, no obstante ser una herramienta fundamental en el control de sistemas en E.E., no siempre

Más detalles

Estabilidad entrada-salida LTI

Estabilidad entrada-salida LTI Estabilidad p. 1/24 Estabilidad entrada-salida LTI En un sistema inestable cualquier perturbación, por pequeña que sea, llevará a estados y/o salidas a crecer sin límite o hasta que el sistema se queme,

Más detalles

CAPÍTULO. La derivada. espacio recorrido tiempo empleado

CAPÍTULO. La derivada. espacio recorrido tiempo empleado 1 CAPÍTULO 5 La derivada 5.3 Velocidad instantánea 1 Si un móvil recorre 150 km en 2 oras, su velocidad promedio es v v media def espacio recorrido tiempo empleado 150 km 2 75 km/ : Pero no conocemos la

Más detalles

Parte I. Diseño utilizando Variables de Estado

Parte I. Diseño utilizando Variables de Estado Parte I. Diseño utilizando Variables de Estado El control de un proceso representado a través de variables de estado nos proporciona la ventaja de que se tendrán a todas las variables del proceso cumpliendo

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

CONTROL POR REALIMENTACIÓN DE ESTADOS

CONTROL POR REALIMENTACIÓN DE ESTADOS CONTROL POR REALIMENTACIÓN DE ESTADOS Fernando di Sciascio (2016) Control por Realimentación de Estados ì ï xt () = Axt () + But () í ï yt () = Cxt () ïî El par (A,B) es controlable. Y() s -1 Gol() s =

Más detalles

Control Moderno. Ene.-Jun Diseño de controlador por retroalimentación de estado. Dr. Rodolfo Salinas. mayo 2007

Control Moderno. Ene.-Jun Diseño de controlador por retroalimentación de estado. Dr. Rodolfo Salinas. mayo 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Diseño de controlador por retroalimentación de estado Dr. Rodolfo Salinas mayo 2007 Control

Más detalles

{ẋ t =Ax t Bu t. Modelos en el espacio de estados. y t =Cx t Du t. Objetivos específicos. Materiales y equipo. Introducción Teórica

{ẋ t =Ax t Bu t. Modelos en el espacio de estados. y t =Cx t Du t. Objetivos específicos. Materiales y equipo. Introducción Teórica 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Control Digital Lugar de Ejecución: Aula 3.24 Instrumentación y Control Modelos en el espacio de estados Objetivos específicos Crear modelos en el

Más detalles

Control Moderno. Ene.-Jun Observabilidad y Observadores de Estado. Dr. Rodolfo Salinas. mayo 2007

Control Moderno. Ene.-Jun Observabilidad y Observadores de Estado. Dr. Rodolfo Salinas. mayo 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Observabilidad y Observadores de Estado Dr. Rodolfo Salinas mayo 2007 Control Moderno N1 mayo

Más detalles

1. Análisis de Sistemas Discretos

1. Análisis de Sistemas Discretos . Análisis de Sistemas Discretos. Análisis de Sistemas Discretos.. Introducción.. Estabilidad... Estabilidad de Sistemas Lineales 3... Estabilidad de Sistemas con Entrada y Salida Acotadas(BIBO) 4..3.

Más detalles

Ecuación de la Recta

Ecuación de la Recta PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto

Más detalles

2.1 Descripción en espacio de estado de sistemas dinámicos

2.1 Descripción en espacio de estado de sistemas dinámicos 2 Análisis de sistemas lineales 2.1 Descripción en espacio de estado de sistemas dinámicos El objetivo de este capítulo es formular una teoría general de describir los sistemas dinámicos en funcion de

Más detalles

SISTEMAS DE CONTROL AVANZADO

SISTEMAS DE CONTROL AVANZADO SISTEMAS DE CONTROL AVANZADO LUIS EDO GARCÍA JAIMES POLITÉCNICO COLOMBIANO J.I.C PRIMERA PARTE ANÁLISIS DE SISTEMAS DE CONTROL EN EL ESPACIO DE ESTADO Este método tiene como objetivo la descripción de

Más detalles

Controlabilidad y observabilidad

Controlabilidad y observabilidad Lección 5 Controlabilidad y observabilidad 1 Eventos alcanzables y controlables Σ = (T, U, U, X, Y, ψ, η) un sistema de control arbitrario T X= Espacio de eventos (t, x) T X= el estado del sistema en el

Más detalles

Matrices escalonadas y escalonadas reducidas

Matrices escalonadas y escalonadas reducidas Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver

Más detalles

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES)

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES) VALORES PROPIOS (AUTOVALORES) Y VECTORES PROPIOS (AUTOVECTORES) Autovalores y Autovectores Los vectores propios o autovectores de una matriz A son todos los vectores x i 0, a los que la transformación

Más detalles

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES) Fernando di Sciascio (2017)

VALORES PROPIOS (AUTOVALORES) VECTORES PROPIOS (AUTOVECTORES) Fernando di Sciascio (2017) VALORES PROPIOS (AUTOVALORES) Y VECTORES PROPIOS (AUTOVECTORES) Fernando di Sciascio (2017) Autovalores y Autovectores Los vectores propios o autovectores de una matriz A son todos los vectores x i ¹0,

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

Muestreo de sistemas continuos

Muestreo de sistemas continuos Muestreo de sistemas continuos Dr. Guillermo Valencia-Palomo gvalencia@ith.mx Instituto Tecnológico de Hermosillo. División de estudios de posgrado e investigación. Septiembre, 2. Introducción Señal muestreada

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Es evidente la continuidad en En el punto, se tiene:

Es evidente la continuidad en En el punto, se tiene: Tema 3 Continuidad Ejercicios Resueltos Ejercicio 1 Estudia la continuidad de la función La función puede expresarse como Para representarla basta considerar dos arcos de parábola: Es evidente la continuidad

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

Comportamiento dinámico: Estabilidad

Comportamiento dinámico: Estabilidad Lección 5 Comportamiento dinámico: Estabilidad Estabilidad Dos tipos de estabilidad: ẋ(t) = f(t, x(t), u(t)) Estabilidad interna: ẋ(t) = f(t, x(t)) Estabilidad externa o Estabilidad Entrada-Salida : {

Más detalles

TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO

TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO TEORÍA DE CONTROL MODELO DE ESTADO DISCRETO Moelo e estao. De la misma forma que se planteó para sistemas continuos, existe la posibilia e moelar un sistema iscreto meiante un moelo e estaos. El sistema

Más detalles

Examen de Junio de 2011 (Común) con soluciones (Modelo )

Examen de Junio de 2011 (Común) con soluciones (Modelo ) Opción A Junio 011 común ejercicio 1 opción A ['5 puntos] Se desea construir un depósito cilíndrico cerrado de área total igual a 54 m. Determina el radio de la base y la altura del cilindro para que éste

Más detalles

Sumario 1. Frecuencia una señal periódica

Sumario 1. Frecuencia una señal periódica LOGO REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ Departamento de Ingeniería Electrónica Tema 3 Técnicas de Modulación

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo

Más detalles

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 3. Normas de Señales y Sistemas. Normas H 2,H y su cálculo.

Pontificia Universidad Católica del Perú ICA624: Control Robusto. 3. Normas de Señales y Sistemas. Normas H 2,H y su cálculo. Pontificia Universidad Católica del Perú ICA624: Control Robusto 3. Señales y Sistemas Normas,H y su cálculo. Hanz Richter, PhD Profesor Visitante Cleveland State University Mechanical Engineering Department

Más detalles

Escola Tècnica Superior d Enginyers de Camins, Canals i Ports AMPLIACIÓ DE MATEMÀTIQUES Q2 ENGINYERIA CAMINS. 8 de Maig de 2009. (t) = ax(t) + by(t),

Escola Tècnica Superior d Enginyers de Camins, Canals i Ports AMPLIACIÓ DE MATEMÀTIQUES Q2 ENGINYERIA CAMINS. 8 de Maig de 2009. (t) = ax(t) + by(t), Escola Tècnica Superior d Enginyers de Camins, Canals i Ports AMPLIACIÓ DE MATEMÀTIQUES Q ENGINYERIA CAMINS 8 de Maig de 9 Problema. Dados a, b R determinar todas las funciones x, y, z C (R) que satisfacen

Más detalles

Observadores del estado

Observadores del estado Observadores del estado Introducción Definición Dinámica del sistema con observador monovariables multivariables U.P.M.-DISAM P. Campoy Control en el espacio de estado 1 Introducción Concepto: el observador

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios 015 Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES Parte A: determinantes. A.1- Definición. Por simplificar, consideraremos que a cada matriz cuadrada se le asocia un número llamado determinante que se

Más detalles

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue: Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

1 Aplicaciones lineales

1 Aplicaciones lineales UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Aplicaciones lineales y diagonalización. El objetivo principal de este tema será la obtención de una matriz diagonal

Más detalles

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada

Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada Universidad Nacional de Ingeniería - Facultad de Ingeniería Mecánica Departamento Académico de Ingeniería Aplicada CONTROL MODERNO Y ÓPTIMO (MT 227C) Clase5-2 Elizabeth Villota Cerna Semestre 2I - UNI

Más detalles

11 REPRESENTACIÓN EN EL ESPACIO DE ESTADO. 1.3 SOLUCIÓN DE ECUACIONES DE ESTADO EN TIEMPO

11 REPRESENTACIÓN EN EL ESPACIO DE ESTADO. 1.3 SOLUCIÓN DE ECUACIONES DE ESTADO EN TIEMPO Control Avanzado. Luis Edo García Jaimes 1 TABLA DE CONTENIDO 1. ANÁLISIS DE SISTEMAS DE CONTROL EN EL ESPACIO DE 5 ESTADO 1.1 FORMAS CANÓNICAS PARA ECUACIONES EN EL ESPACIO DE ESTADO EN TIEMPO DISCRETO

Más detalles

SOLUCIONARIO PROBLEMAS REALIMENTACION DE ESTADOS

SOLUCIONARIO PROBLEMAS REALIMENTACION DE ESTADOS SOLUCIONARIO PROBLEMAS REALIMENTACION DE ESTADOS P1: Sea un servo descrito por la función de transferencia de estados digital. Deseamos diseñar un control por realimentación a) Escriba las ecuaciones de

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

Leyes del movimiento de Newton

Leyes del movimiento de Newton Leyes del movimiento de Newton Leyes del movimiento de Newton Estudiaremos las leyes del movimiento de Newton. Estas son principios fundamentales de la física Qué es una fuerza Intuitivamente, consideramos

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo.

Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Introducción. En este documento se describe como el proceso de convolución aparece en forma natural cuando se trata

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos

Más detalles

[0.5 p.] b) Sea x(t) la solución del PVI formado por la EDO anterior y las condiciones

[0.5 p.] b) Sea x(t) la solución del PVI formado por la EDO anterior y las condiciones Problema 1 [2 puntos]. Es un problema estándar puramente computacional. [1.5 p.] a) Resolver la EDO lineal no homogénea a coeficientes constantes x 7x + 16x 12x = (4 + 18t 12t 2 )e 2t. Indicación 1: e

Más detalles

Síntesis de controladores discretos

Síntesis de controladores discretos EJERCICIOS SÍNTESIS DE CONTROLADORES DISCRETOS EJERCICIO 1 COMIENZO Siguiente:= Lectura_reloj; Periodo:= 0.1; BUCLE Referencia:= input_adc(1); Posicion:= input_adc(2); Velocidad:= input_adc(3); Accion:=

Más detalles

Matrices y sistemas de ecuaciones lineales

Matrices y sistemas de ecuaciones lineales Matrices y sistemas de ecuaciones lineales Problemas para examen Antes de resolver un problema en el caso general, se recomienda considerar casos particulares (por ejemplo, n = 4 y n = 50). En el caso

Más detalles

1.4 SISTEMAS HOMOGÉNEOS DE ECUACIONES. 36 CAPÍTULO 1 Sistemas de ecuaciones lineales y matrices

1.4 SISTEMAS HOMOGÉNEOS DE ECUACIONES. 36 CAPÍTULO 1 Sistemas de ecuaciones lineales y matrices 36 CAPÍTULO Sistemas de ecuaciones lineales y matrices Escriba, en un comentario, la ecuación del polinomio cúbico que se ajusta a los cuatro puntos. Sea x el vector columna que contiene las coordenadas

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES EJERCICIOS RESUELTOS DE SISTEMAS LINEALES 1. Dado el sistema de ecuaciones lineales: 2x + 3y 3 4x +5y 6 a) Escribir la expresión matricial del sistema. b) Discutir el sistema. c) Resolver el sistema por

Más detalles

Estimación de estados

Estimación de estados Observadores p. 1/37 Estimación de estados La realimentación de estados requiere medir los estados, pero normalmente, no se tiene acceso a todos los estados. Entonces cómo implementar la realimentación

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Este tema resulta fundamental en la mayoría de las disciplinas, ya que son muchos los problemas científicos y de la vida cotidiana que requieren resolver simultáneamente

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula

Más detalles

Solución de la Ecuación de Estado y Realizaciones

Solución de la Ecuación de Estado y Realizaciones Capítulo 4 Solución de la Ecuación de Estado y Realizaciones 4.. Introducción Vimos que los sistemas lineales pueden representarse mediante integrales de convolución y, si son de dimensión finita (a parámetros

Más detalles

Ecuación algebraica de Riccati

Ecuación algebraica de Riccati Ecuación algebraica de Riccati Definiciones básicas La ecuación de Riccati es a esta se le asocia una matriz de Hamilton de dimensión Definiciones básicas Lema: El espectro s(h) del conjunto de eigenvalores

Más detalles

CONTROL AVANZADO I TRABAJO PRACTICO 2: REALIMENTACION DE ESTADOS

CONTROL AVANZADO I TRABAJO PRACTICO 2: REALIMENTACION DE ESTADOS DEPARTAMENTO DE ELECTRONICA FACULTAD DE CIENCIAS EACTAS, INGENIERIA Y AGRIMENSURA UNIVERSIDAD NACIONAL DE ROSARIO CONTROL AVANZADO I TRABAJO PRACTICO 2: REALIMENTACION DE ESTADOS Marzo de 211 1. INTRODUCCION

Más detalles

2 MODELO INTERNO Y MODELO EXTERNO DE UN SISTEMA DE CONTROL

2 MODELO INTERNO Y MODELO EXTERNO DE UN SISTEMA DE CONTROL 2 MODELO INTERNO Y MODELO EXTERNO DE UN SISTEMA DE CONTROL 2.1 El modelo interno: ecuaciones de estado en sistemas continuos Entre las formas de modelar un sistema de forma matemática podemos encontrar

Más detalles

El Teorema Pi y la modelación

El Teorema Pi y la modelación El Teorema Pi y la modelación Luis Quintanar Medina Instituto Superior de Matemática (INSUMA) Aguascalientes, Ags. Magnitudes, unidades y dimensiones Para describir los fenómenos que nos rodean es necesario

Más detalles

Ejercicios resueltos del capítulo 1

Ejercicios resueltos del capítulo 1 Ejercicios resueltos del capítulo Ejercicios impares resueltos..b Resolver por el método de Gauss el sistema x +x x +x 4 +x = x x +x 4 = x +x +x = x +x x 4 = F, ( ) F 4, () F, ( ) F, () 8 6 8 6 8 7 4 Como

Más detalles

2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso

2. Álgebra matricial. Inversa de una matriz O B 1 O B 1. Depto. de Álgebra, curso Depto de Álgebra, curso 2017-2018 2 Álgebra matricial Inversa de una matriz Ejercicio 21 Calcule la matriz inversa de cada una de las matrices siguientes: a 2 1 1 3 2 1 h e, b 2 1 1 5 2 3 2 0 1 1 2 1 1

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

Tema 1. Álgebra lineal. Matrices

Tema 1. Álgebra lineal. Matrices 1 Tema 1. Álgebra lineal. Matrices 0.1 Introducción Los sistemas de ecuaciones lineales aparecen en un gran número de situaciones. Son conocidos los métodos de resolución de los mismos cuando tienen dos

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

Tema 5. La Transformada Z. Indice:

Tema 5. La Transformada Z. Indice: Indice: La Transformada Z Convergencia de la Transformada Z Propiedades de La Transformada Z La Transformada Z inversa Método de la División Directa Método de Descomposición en Fracciones Parciales. Prof.

Más detalles

Luego, en el punto crítico

Luego, en el punto crítico Matemáticas Grado en Química Ejercicios propuestos Tema 5 Problema 1. Obtenga y clasique los puntos críticos de las siguientes funciones: a fx, y = x +y, b fx, y = x y, c fx, y = x 3 + y. Solución del

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 Problemas resueltos Problema 4: Considere el sistema de ecuaciones x y = 3 (x 2) 2 +y = 1 Problemas resueltos

Más detalles

Solución de Sistemas Dinámicos

Solución de Sistemas Dinámicos Sistemas Dinámicos Solución de Sistemas Dinámicos M.Sc. I.M. Manuel F. Mejía De Alba Maestría en Modelado y Simulación Universidad Central y Universidad Jorge Tadeo Lozano Agosto de 2014 1/14 Contenido

Más detalles

Universidad Nacional de La Plata Facultad de Ingeniería Departamento de Electrotecnia Cátedra de Control Moderno. Cayley-Hamilton

Universidad Nacional de La Plata Facultad de Ingeniería Departamento de Electrotecnia Cátedra de Control Moderno. Cayley-Hamilton Universidad Nacional de La Plata Facultad de Ingeniería Departamento de Electrotecnia Cátedra de Control Moderno Cayley-Hamilton Año 26 1. Introducción A continuación se presentan unos pocos y simples

Más detalles

Líneas y Planos en el Espacio

Líneas y Planos en el Espacio Líneas y Planos en el Espacio Departamento de Matemáticas, CCIR/ITESM de enero de Índice..Introducción.................................................Ecuación paramétrica de la recta.....................................ecuación

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Ingeniería de Control I Tema 2. Transformadas

Ingeniería de Control I Tema 2. Transformadas Ingeniería de Control I Tema 2 Transformadas 1 1. Transformadas. Transformación de dominios: 1. Objetivo de la transformación de dominios 2. Representación de señales 3. Series de Fourier 4. Transformada

Más detalles

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n )

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n ) El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : n = {(x 1,x,, x n ) / x 1,x,, x n } A cada uno de los números reales x 1,x,, x n que conforman la

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles