Comparadores electrónicos
|
|
|
- Luis Soler Ferreyra
- hace 10 años
- Vistas:
Transcripción
1 Comparadores electrónicos. Introduión En este capítulo se estudian los circuitos comparadores electrónicos con énfasis en los comparadores regenerativos y en los comparadores monolíticos, amplificadores operacionales con propósito específico de comparación. En efecto, los AOs pueden actuar como comparadores cuando su ganancia en lazo abierto sea muy elevada y su velocidad (S) alta. La función del comparador consiste en cotejar dos tensiones, obteniéndose como resultados dos posibles situaciones, correspondientes a los niveles alto o bajo. Ya vimos en el capítulo que en lazo abierto, el AO de propósito general se comporta como detector de nivel y las tensiones alta y baja de salida corresponden a las de saturación del componente. Precisamente es ésta la tercera limitación crítica a la hora de decidirse por un AO de propósito general en una aplicación de comparación, ya que los niveles de salida pueden no ser adecuados a la aplicación, como por ejemplo para direional una lógica TTL. El concepto de salida en colector abierto soluciona este problema. El capítulo comienza estudiando las limitaciones en lazo abierto y luego se ven las mejoras introducidas por la realimentación positiva y la salida en colector abierto.. Efectos del ruido sobre los circuitos comparadores La Fig. muestra el efecto de superponer una señal cuadrada a una sinusoidal en un comparador no inversor basado en AO de propósito general. En general el ruido es un proceso aleatorio, y la figura debe considerarse con fines didácticos.. ealimentación positiva La realimentación negativa fuerza a un circuito a operar en la región lineal, y en nuestro caso, con lo AOs considerábamos nula o casi nula la tensión diferencial de entrada al componente. Por el contrario, la realimentación positiva fuerza la saturación, y en consecuencia el desequilibrio entre las tensiones presentes en las entradas inversora y no inversora del AO. JJGD-UCA
2 Circuitos Analógicos Aplicados. Juan José González de la osa Fig.. Falsos cruces por cero provocados por una señal de ruido en un comparador no inversor basado en AO de propósito general. Esta situación no es deseable en un comparador. Los circuitos que incorporan la realimentación positiva se denominan comparadores regenerativos o disparadores de Schmitt, en honor al investigador que los implantó. A continuación empiezan los ejemplos.. Detector de cruce por cero con histéresis Por ahora se consideran AOs de propósito general. El primer circuito se muestra en la figura. Se trata de un comparador inversor (entrada por la terminal inversora) regenerativo (posee realimentación negativa). i - - o 00 Ω 0 Ω Fig.. Comparador regenerativo inversor basado en AO de propósito general. Suelen tomarse siempre, múltiplos. Para obtener la característica de transferencia se procede a partir de las dos posibles situaciones de la salida. Siempre se cumple, mediante un sencillo divisor de tensión: o JJGD-UCA
3 Comparadores electrónicos Esta es la muestra de la salida que se introduce en la entrada del circuito (entrada no inversora en este caso). o o L d i i > 0 Al crecer i provoca la conmutación en el punto de conmutación superior para el cual d 0 L d i L i < 0 Al disminuir i provoca la conmutación en el punto de comunicación inferior para el cual d 0 La característica estática se muestra en la Fig. y la evolución en el tiempo para entrada triangular contaminada con ruido en la Fig.. o CT i Fig.. Característica estática del circuito de la Fig.. En general de un comparador inversor con histéresis Fig.. Inmunidad frente al ruido de un comparador inversor con histéresis. El circuito exhibe histéresis porque al pasar de un estado a otro (alto a bajo por ejemplo) lo hace por un camino distinto del de regreso. La histéresis es habitual en cualquier circuito o sistema. Es una de las características estáticas más comunes de los circuitos electrónicos empleados en acondicionamiento y medida. JJGD-UCA
4 Circuitos Analógicos Aplicados. Juan José González de la osa Los puntos de conmutación son: L En este caso hay simetría y las conmutaciones se producen en: 0 0,09, Se aprovecha este primer ejercicio para definir la tensión de histéresis y el voltaje central. Estos dos parámetros suelen ser el objeto de un diseño. CT El primero de ellos da una ideal de la inmunidad al ruido (, aprox.). En nuestro caso es excesivo. Suele ser del orden de decenas de milivoltios como mucho. Téngase en cuenta que ahora las conmutaciones no se producen donde estaban previstas (en la tensión central). Un circuito con ancho de histéresis grande se emplea en lazos de realimentación no lineal en generadores de ondas cuadradas y triangulares..5 Detectores de nivel de voltaje con histéresis.5. Introduión Se generaliza el caso anterior para voltaje central distinto de cero en general. Los problemas se plantean a partir de la característica estática que será o no inversora dependiendo del terminal por donde se introduzca la entrada..5. Detector no inversor de nivel de voltaje con histéresis o om EF - i o - CT - om Fig. 5. Comparador regenerativo no inversor y su característica estática. 0 i JJGD-UCA
5 Comparadores electrónicos Para este circuito se cumple: om om EF EF om om EF EF om CT EF.5. Detector inversor de nivel de voltaje con histéresis o om i - o 0 CT i EF - Fig. 6. Comparador regenerativo inversor. - om Para este circuito los puntos de su característica estática son: CT om om om.6 egulación independiente del voltaje central y del voltaje de histéresis La figura 7 representa el circuito con ajustes independientes. Se trata de un comparador no inversor y el diseño se realiza para puntos de conmutación positivos. EF EF EF JJGD-UCA 5
6 Circuitos Analógicos Aplicados. Juan José González de la osa Ajuste del ancho de histéresis a - i AO7 o Ajuste del voltaje central b - ref Fig. 7. Detector con umbrales y punto central independientes. Del análisis del circuito se obtienen los puntos de conmutación: En consecuencia: a sat b ref ref b a sat sat ref CT > 0 a b Por tanto, se demuestra la independencia de la tensión de histéresis y de la tensión central..7 Limitaciones de los AOs de propósito general como comparadores Se enumeran las limitaciones y se expone la situación de medida del tiempo de respuesta de los comparadores monolíticos..7. Limitaciones Son las siguientes: Bajo Slew-ate como consecuencia de emplear AOs sin compensación interna. No se puede modificar los niveles lógicos de salida (TTL, CMOS, etc.). Como consecuencia se emplean comparadores comerciales de propósito específico. En ellos se mide el tiempo de respuesta como sigue..7. Medida del tiempo de respuesta A partir de una señal de excitación overdriver se estudia la evolución de la salida. La señal de excitación se muestra en la figura 8; consiste en una señal que después de valer 00 m toma un pequeño valor de unos 5 m. La finalidad es medir el tiempo de 6 JJGD-UCA
7 Comparadores electrónicos respuesta o retardo de propagación. Esto permite comparar unos comparadores con otros. v i Sobre excitación 5 m t -00 m La figura 9 muestra la situación de medida. Fig. 8. Señal de excitación para medir el tiempo de respuesta. Fig. 9. Situación de media del retardo de propagación. La figura 0 muestra situaciones de sobre-excitación de un comparador comercial: Fig. 0. Sobre excitación en el LM. Dependiendo de la magnitud del sobreimpulso así es el tiempo de respuesta. Cuanto mayor sea el primero menor es el segundo. La tabla refleja esta situación, en una comparativa de diversos modelos entre sí y con un AO de propósito genérico: JJGD-UCA 7
8 Circuitos Analógicos Aplicados. Juan José González de la osa Comparador Tiempo (ns) sobre impulso de 5 m Tiempo(ns) para sobre impulso de 0 m >0.000 >0.000 Tabla. Comparación de varios modelos comparadores comerciales y para el AO 0..8 Comparador LM Se detalla este circuito integrado..8. Características o rasgos principales Son las siguientes: Ganancia de tensión: Tensión de offset: os m. Corriente de polarización: I BIAS 50 na. Tiempo de respuesta: t PD 00 ns. Tensión de alimentación máxima: S ±5. Margen de entrada en modo común: ICM de,5 a. Máxima tensión diferencial de entrada: ID ±0. Consumo de potencia: P D 5 mw. Fan-out (cargabilidad máxima de salida)0 U.L. (unidades lógicas)..8. Esquema interno Se muestra en la figura. Fig.. Esquema interno del LM. A diferencia del esquema interno del 7, se observa que la salida está en colector abierto. 8 JJGD-UCA
9 Comparadores electrónicos Según esta figura se deduce que: Si > - entonces Q5: OFF-COTE. Si < - entonces Q5: ON-SAT. Esta es la clave del funcionamiento de un comparador de propósito específico desde la perspectiva de adaptación de niveles lógicos. La caída en el emisor de Q5 se desprecia..8. Terminales de salida Se estudian dos posibilidades simétricas de medir la salida..8.. Salida por colector La situación se muestra en la figura y se dan las dos situaciones de la figura. Fig.. Situación de salida por colector del. Fig.. Casos presentados en la salida por colector de. El transistor de salida funciona como un interruptor electrónico..8.. Salida por emisor La situación se muestra en la figura. JJGD-UCA 9
10 Circuitos Analógicos Aplicados. Juan José González de la osa Fig.. Situación de salida por emisor del. La figura 5 establece una comparativa de las dos salidas, en la que se aprecia su naturaleza simétrica..8. Terminal Strobe Fig. 5. Casos presentados en la salida por emisor de. Este es el terminal de habilitación. La salida cambia al estado de alta impedancia (se mantiene en estado alto), y es independiente de la entrada. Con el interruptor de habilitación abierto, el integrado opera en forma normal. En la práctica se suele conectar a tierra a través de una resistencia de 0 Ω, cuando se quiere hacer independiente la entrada de la salida..8.5 Terminal latch Es el terminal de cerrojo. El integrado funciona como u elemento de memoria. La salida se mantiene con el valor de la comparación anterior. 0 JJGD-UCA
11 Comparadores electrónicos.9 Comparativa de comparadores comerciales La situación comparativa se muestra en la tabla. Tabla. Situación comparativa de diversos comparadores comerciales..0 Aplicaciones.0. Detectores de nivel basados en el LM o en comparadores comerciales El ejercicio se muestra en la figura 6. o - 5 o i Fig. 6. Schmitt trigger no inversor basado en comparador comercial y su característica estática. 5 debe siempre verificar: 5 <<. Comencemos el análisis. La salida sólo puede tomar dos valores, la alimentación y cero (niveles alto y bajo, respectivamente). Siempre se cumple: L 0 CT i o i JJGD-UCA
12 Circuitos Analógicos Aplicados. Juan José González de la osa JJGD-UCA Punto de conmutación superior: { L 0 Punto de conmutación inferior: { Tensión de histéresis: Tensión central: CT Todo puede verse según las relaciones que han de verificar las resistencias. De la tensión de histéresis se obtiene: Y llevando esta relación al punto de conmutación superior se obtiene la segunda relación entre las resistencias del circuito: A partir de aquí: Finalmente, después de ordenar queda:
13 Comparadores electrónicos.0. Detectores de ventana Todo se muestra en la figura 7. Se diseña este circuito para monitorizar tensiones de entrada. 5 o o i i Fig. 7. Detector de ventana y característica estática..0. Control de procesos Los comparadores se utilizan para el control todo-nada (ON-OFF). Una situación básica se muestra en la figura 8, en la que se aprecia que la salida del comparador actúa sobre un actuador (como por ejemplo una bobina conectada al colector de un transistor bipolar). La actuación sobre el proceso está monitorizada por un sensor que provoca las transiciones del comparador según la necesidad. Actuador Proceso Sensor Fig. 8. Esquema de un control todo-nada basado en comprador o inversor. eferencias Coughlin,. F. y Driscoll, F.F., Amplificadores operacionales y circuitos integrados lineales, ª edición, Prentice-all hispanoamericana. México, 99. González de la osa, J.J., Circuitos Electrónicos con Amplificadores Operacionales. Problemas, fundamentos teóricos y técnicas de identificación y análisis. Marcombo, Boixareu Editores, Barcelona, 00. Mali, N.. Electronic circuit: analysis, simulation and design, Prentice all international editions, 995. JJGD-UCA
14 Circuitos Analógicos Aplicados. Juan José González de la osa Millman, J. Microelectrónica. Circuitos y sistemas analógicos y digitales, 5ª edición, editorial hispano europea, Barcelona, 989. JJGD-UCA
Comparadores de tensión
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica ELECTRÓNICA II NOTAS DE CLASE Comparadores de tensión OBJETIVOS - CONOCIMIENTOS
solecméxico Circuitos de disparo 1 CIRCUITOS DE DISPARO SCHMITT - TRIGER
solecméxico Circuitos de disparo 1 CIRCUITOS DE DISPARO SCHMITT - TRIGER Cuando la señal de entrada se encuentra contaminada con ruido, la conmutación de un circuito digital o analógico ya no se efectúa
El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple.
Comparador simple El amplificador operacional en bucle abierto (sin realimentar) se comporta como un comparador analógico simple. Vo +Vcc Vi-Vref El comparador analógico se denomina también ADC de un bit.
Fig 4-7 Curva característica de un inversor real
Clase 15: Criterios de Comparación de Familias Lógicas. Características del Inversor Real Cuando comenzamos a trabajar con un inversor real comienzan a aparecer algunos inconvenientes que no teníamos en
FAMILIAS LÓGICAS. ECL,MOS, CMOS, BICMOS.
FAMILIAS LÓGICAS. ECL,MOS, CMOS, BICMOS. 1. Lógica de emisores acoplados: Amplificador diferencial El circuito posee dos entradas v 1 y v 2 y dos salidas v O 1 y v O 2. Dada la simetría del circuito, al
EL TRANSISTOR COMO CONMUTADOR INTRODUCCIÓN
EL TRANSISTOR OMO ONMUTADOR INTRODUIÓN 1.- EL INTERRUPTOR A TRANSISTOR Un circuito básico a transistor como el ilustrado en la Figura 1 a), conforma un circuito inversor; es decir que su salida es de bajo
Tema 07: Acondicionamiento
Tema 07: Acondicionamiento Solicitado: Ejercicios 02: Simulación de circuitos amplificadores Ejercicios 03 Acondicionamiento Lineal M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com [email protected]
M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, 1999. Capítulos 6, 15 y 16. Introducción a la Electrónica
AMPLIFICADOR OPERACIONAL M. H. Rashid, Microelectronics Circuits - Analysis and Design, PWS Publishing, 1999. Capítulos 6, 15 y 16. Introducción Amplificador Operacional ideal. Modelo Diferentes tipos
OSCILADOR DE RELAJACIÓN
Electrónica II. Guía 7 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). OSCILADOR DE RELAJACIÓN Objetivos específicos
Práctica 2. Circuitos comparadores
Laboratorio ntegrado de ngeniería ndustrial Práctica 2 Práctica 2. Circuitos comparadores. Objetivos Conocer el funcionamiento de circuitos comparadores empleando Amplificadores Operacionales. Conocer
Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems BIPOLARES. Fundamentos de Ingeniería Eléctrica
Máster en Mecatrónica U4M Master in Mechatronic and MicroMechatronic Systems IOLARS Fundamentos de Ingeniería léctrica Contenidos Funcionamiento Tipos de transistores Curvas características Resolución
CONTROL DE TEMPERATURA
CONTROL DE TEMPERATURA 1.- OBJETIVO.- El objetivo de este trabajo es controlar la temperatura de un sistema ( Puede ser una habitación), usando un control por Histeresis. 2.- INTRODUCCION.- Como podríamos
LABORATORIO DE INTERFACES
Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Ingeniería Electrónica con orientación en Sistemas Digitales LABORATORIO DE INTERFACES PRÁCTICO Nº 9 Sensores de efecto
Unidad Orientativa (Electrónica) Amplificadores Operacionales
Unidad Orientativa (Electrónica) 1 Amplificadores Operacionales Índice Temático 2 1. Que son los amplificadores operacionales? 2. Conociendo a los Amp. Op. 3. Parámetros Principales. 4. Circuitos Básicos
Tutorial de Electrónica
Tutorial de Electrónica Introducción Conseguir que la tensión de un circuito en la salida sea fija es uno de los objetivos más importantes para que un circuito funcione correctamente. Para lograrlo, se
PROBLEMA. Diseño de un DIMMER.
PROBLEMA Diseño de un DIMMER. Solución, como las especificaciones vistas en clase fueron muy claras el DIMMER controlara la velocidad de los disparos que se harán en la compuerta de el tiristor, es decir
OBJETIVOS DE LA ASIGNATURA
DATOS GENERALES Asignatura Curso académico Titulación/Especialidad CIRCUITOS ANALÓGICOS APLICADOS 2002-2003-Definitivo INGENIERO TECNICO INDUSTRIAL EN ELECTRONICA INDUSTRIAL Departamento Ingeniería de
Amplificadores Operacionales
José Luis Rodríguez, Ph.D., Agosto del 2004 1 Amplificadores Operacionales Un Amplificador Operacional (AO) es un amplificador modular de multietapas con una entrada diferencial que se aproxima mucho en
Tutorial de Electrónica
Tutorial de Electrónica La función amplificadora consiste en elevar el nivel de una señal eléctrica que contiene una determinada información. Esta señal en forma de una tensión y una corriente es aplicada
Esta fuente se encarga de convertir una tensión de ca a una tensión de cd proporcionando la corriente necesaria para la carga.
Página 1 de 9 REGULADOR DE VOLTAJE DE cc La mayor parte de los circuitos electrónicos requieren voltajes de cd para operar. Una forma de proporcionar este voltaje es mediante baterías en donde se requieren
MODULO Nº12 TRANSISTORES MOSFET
MODULO Nº12 TRANSISTORES MOSFET UNIDAD: CONVERTIDORES CC - CC TEMAS: Transistores MOSFET. Parámetros del Transistor MOSFET. Conmutación de Transistores MOSFET. OBJETIVOS: Comprender el funcionamiento del
Nociones básicas sobre adquisición de señales
Electrónica ENTREGA 1 Nociones básicas sobre adquisición de señales Elaborado por Juan Antonio Rubia Mena Introducción Con este documento pretendemos dar unas nociones básicas sobre las técnicas de medida
Regulador PID con convertidores de frecuencia DF5, DV5, DF6, DV6. Página 1 de 10 A Regulador PID
A Página 1 de 10 A Regulador PID INDICE 1. Regulador PID 3 2. Componente proporcional : P 4 3. Componente integral : I 4 4. Componente derivativa : D 4 5. Control PID 4 6. Configuración de parámetros del
Amplificadores Operacionales (I)
Amplificadores Operacionales (I) Concepto general de amplificador operacional: Amplificador diferencial con una ganancia de tensión elevada, acoplo directo y diseñado para facilitar la inclusión de una
Comparadores. Comparadores
Comparadores Comparadores La utilización del OpAmp como comparador es una de las funciones más importantes del dispositivo en instrumentación Electrónica Los comparadores son dispositivos que se saturan
Unidad temática 4 Tema 2 OSCILADORES NO SINUSOIDALES
Unidad temática 4 Tema OSCILADOES NO SINUSOIDALES APUNTE TEÓICO Profesor: Ing. Aníbal Laquidara. J.T.P.: Ing. Isidoro Pablo Perez. Ay. Diplomado: Ing. Carlos Díaz. Ay. Diplomado: Ing. Alejandro Giordana
UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES
UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- Amplificadores operacionales Amplificador de alta ganancia, que tiene una impedancia de entrada muy alta (por lo general mega-ohms) y una impedancia
1 Acondicionamiento de termopares
1 Acondicionamiento de termopares El siguiente circuito es un amplificador para termopares. La unión de referencia está a temperatura ambiente (T A comprendida entre 5 C y 40 C) y se compensa mediante
Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica 1. 2.1. Introducción
Práctica Amplificadores de RF. Objetivo En primer lugar, en esta práctica montaremos un amplificador de banda ancha mediante una etapa emisor común y mediante una etapa cascodo, con el findeestudiar la
TEMA 9 Comparadores de tensión
Tema 9 TEMA 9 Comparadores de tensión 9.1.- Introducción: El OA como comparador Los comparadores son circuitos no lineales que, como su nombre indica, sirven para comparar dos señales (una de las cuales
CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION
CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora
PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Transistores C.C.)
PROLEMAS E ELECTRÓNCA ANALÓGCA (Transistores C.C.) Escuela Politécnica Superior Profesor. arío García Rodríguez ..- En el circuito de la figura si α. 98 y E.7 oltios, calcular el valor de la resistencia
Práctica 3: Amplificador operacional II: Regulador lineal realizado con un operacional
Práctica 3: Amplificador operacional II: Regulador lineal realizado con un operacional 1. Introducción. En esta práctica se diseña un regulador de tensión de tipo serie y se realiza el montaje correspondiente
1. Analizar la topología, ventajas y desventajas de los distintos tipos de amplificadores: a. Clase A, B, D y G
AMPLIFICADOR DE AUDIO DE POTENCIA 1. Analizar la topología, ventajas y desventajas de los distintos tipos de amplificadores: a. Clase A, B, D y G 2. Definir y analizar las principales especificaciones
Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR
Tema 7 EL AMPLIFICADOR OPERACIONAL Y EL COMPARADOR Tema 7: Introducción Qué es un amplificador operacional? Un amplificador operacional ideal es un amplificador diferencial con ganancia infinita e impedancia
Circuitos no lineales con amplificador operacional Guía 8 1/7
1/7 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 8 Circuitos no lineales con amplificador operacional Problemas básicos 1. El comparador de la figura 1 tiene una ganancia a lazo abierto de 110 db. Cuánto
INTRODUCCION A PRÁCTICAS DE AMPLIFICADORES CON TRANSISTOR BIPOLAR, DISEÑADOS CON PARAMETROS HIBRIDOS
INTRODUCCION A PRÁCTICAS DE AMPLIFICADORES CON TRANSISTOR BIPOLAR, DISEÑADOS CON PARAMETROS HIBRIDOS OBJETIVO: El objetivo de estas practicas es diseñar amplificadores en emisor común y base común aplicando
MODULO Nº6 TIRISTORES UNIDIRECCIONALES
MODULO Nº6 TIRISTORES UNIDIRECCIONLES UNIDD: CONVERTIDORES C - CC TEMS: Tiristores. Rectificador Controlado de Silicio. Parámetros del SCR. Circuitos de Encendido y pagado del SCR. Controlador de Ángulo
ELECTRONICA DE POTENCIA
ELECTRONICA DE POTENCIA Compilación y armado: Sergio Pellizza Dto. Apoyatura Académica I.S.E.S. Los tiristores son una familia de dispositivos semiconductores de cuatro capas (pnpn), que se utilizan para
PROBLEMAS. EL AMPLIFICADOR OPERACIONAL. 1. El circuito de la figura(1) muestra un Amplificador Operacional ideal salvo que tiene una ganancia finita A. Unas medidas indican que vo=3.5v cuando vi=3.5v.
CONTROLADORES SISTEMAS DE CONTROL. Introducción. Acciones básicas de control
SISTEMAS DE CONTROL CONTROLADORES Introducción Un controlador es un dispositivo capaz de corregir desviaciones producidas en la variable de salida de un sistema, como consecuencia de perturbaciones internas
Componentes: RESISTENCIAS FIJAS
ELECTRÓNICA ELECTRÓNICA Componentes: RESISTENCIAS FIJAS Componentes: RESISTENCIAS VARIABLES Componentes: RESISTENCIAS DEPENDIENTES Componentes: RESISTENCIAS DEPENDIENTES Componentes: CONDENSADORES Componentes:
11615 - DM 1 - Diseño Microelectrónico I
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos: 2015 710 - EEL - Departamento de Ingeniería Electrónica INGENIERÍA ELECTRÓNICA (Plan 1992). (Unidad docente Obligatoria) MÁSTER UNIVERSITARIO
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139
DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 019 TRABAJO DE LECTURA.101 Práctica introductoria de electrónica analógica Práctica En
Comparador de tensión. Diseño y construcción de un circuito Schmitt Trigger con histéresis. TECSOL24H.
2012 Comparador de tensión. Diseño y construcción de un circuito Schmitt Trigger con histéresis. TECSOL24H. 0 Contenido 1 MEMÓRIA... 1 1.1 OBJETIVO... 1 2 DISEÑO... 1 2.1 SCHMITT TRIGGER CON HISTERESIS...
CAPITULO 4. Inversores para control de velocidad de motores de
CAPITULO 4. Inversores para control de velocidad de motores de inducción mediante relación v/f. 4.1 Introducción. La frecuencia de salida de un inversor estático está determinada por la velocidad de conmutación
Y ACONDICIONADORES TEMA 2 CARACTERÍSTICAS DE ENTRADA Y SALIDA
SENSORES Y ACONDICIONADORES TEMA 2 CARACTERÍSTICAS DE ENTRADA Y SALIDA Profesores: Enrique Mandado Pérez Antonio Murillo Roldan Camilo Quintáns Graña Tema 2-1 SENSOR IDEAL Y REAL Sensor ideal Elemento
EL AMPLIFICADOR OPERACIONAL
EL AMPLIFICADOR OPERACIONAL La microelectrónica ha pasado a ser una industria próspera que interviene cada día más en la tecnología y en la economía. La microelectrónica está basada en el desarrollo de
AMPLIFICACION EN POTENCIA. Figura 1. Estructura Básica de un Convertidor DC/AC.
INTRODUCCION: Los convertidores DC/AC conocidos también como inversores, son dispositivos electrónicos que permiten convertir energía eléctrica DC en alterna AC. En el desarrollo de esta sesión de laboratorio,
TEMA 5 TRANSISTORES DE EFECTO DE CAMPO
TEMA 5 TRANSISTORES DE EFECTO DE CAMPO TTEEMAA 55: :: TTrraanss issttoorreess i dee eeffeeccttoo dee ccaamppoo 11 1) Cuál de los siguientes dispositivos no es un transistor de efecto de campo? a) MOSFET
TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.
TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros
GUÍA 7: AMPLIFICADORES OPERACIONALES
3º Electrónica ogelio Ortega B GUÍA 7: AMPLIFICADOES OPEACIONALES El término de ampliicador operacional (operational ampliier o OA o op -amp) ue asignado alrededor de 940 para designar una clase de ampliicadores
El TDA 1024 es un circuito integrado que se desarrolla una serie de funciones que se describen a continuación:
EL TRIAC CONTROLADO POR UN CIRCUITO El TDA 1024 es un circuito integrado que se desarrolla una serie de funciones que se describen a continuación: Una fuente de c.c. a partir de la tensión de red con limitador
Otras Familias Lógicas.
Electrónica Digital II Otras Familias Lógicas. Elaborado Por: Luis Alfredo Cruz Chávez. Prof.: Carlos Alberto Ortega Grupo 3T2 - EO Familias lógicas. Una familia lógica de dispositivos circuitos integrados
Práctica 6: Amplificador operacional inversor y no inversor.
NOMBRE: NOMBRE: GRUPO: PUESTO: Práctica 6: Amplificador operacional inversor y no inversor. Introducción al amplificador operacional inversor y no inversor 47K (R ) 100K (R ) V E 4K7 (R 1 ) 3 - + +15 7
TEMA 5. MICROELECTRÓNICA ANALÓGICA INTEGRADA
TEMA 5. MCOEECTÓCA AAÓGCA TEGADA 5.. esistencias activas En el capítulo tercero se puso de manifiesto la dificultad que conlleva la realización de resistencias pasivas de elevado valor con tecnología CMOS,
Videos didácticos para el aprendizaje de PSPICE
Videos didácticos para el aprendizaje de PSPICE 1.- Introducción Al ritmo que se ha generalizado el uso de PSPICE en la enseñanza universitaria, también se han desarrollado recursos didácticos para favorecer
MONOCANAL COMPLEMENTARIA SATURADAS NO SATURADAS
)$0,/,$6/Ï*,&$6 UNIPOLARES BIPOLARES MONOCANAL COMPLEMENTARIA SATURADAS NO SATURADAS 3026 1026 &026 275$6 677/ 275$6 77/ +77/ /377/ 275$6 /677/ %,%/,2*5$)Ë$ CIRCUITOS ELECTRÓNICOS (TOMO 4) MUÑOZ MERINO,
Universidad Nacional de Piura APLICACIONES DE LOS AMPLIFICADORES OPERACIONALES: 1. MEDICION DE LA CORRIENTE DE UN FOTOREDUCTOR:
APLICACIONES DE LOS AMPLIFICADORES OPERACIONALES: 1. MEDICION DE LA CORRIENTE DE UN FOTOREDUCTOR: Con el interruptor en la posición 1, en la figura de abajo, una celda fotoconductora, algunas veces denominada
LÓGICA CON DIODOS. Los primeros circuitos Lógicos se construyeron usando Diodos, pero no eran integrados. El funcionamiento era el siguiente: V CC
LÓGICA CON DIODOS Los primeros circuitos Lógicos se construyeron usando Diodos, pero no eran integrados. El funcionamiento era el siguiente: Si = V(0) D ON Entonces = V γ + V(0) R 1 Si = V(1) D OFF Entonces
UNIDAD 1 RESUMEN DE CONCEPTOS BÁSICOS. UNIDAD 2 TEORÍA DE LOS SEMICONDUCTORES
UNIDAD 1 RESUMEN DE CONCEPTOS BÁSICOS. 1. CONCEPTO DE ELECTRONICA Y TEORÍA ELECTRÓNICA. 2. LA TEORIA DE LOS SEMICONDUCTORES. 3. COMPONENTES ELECTRÓNICOS. 4. AMPLIFICADORES OPERACIONALES 5. OSCILADORES.
El transistor como elemento de circuito.
El transistor como elemento de circuito. 1.1) Características funcionales del transistor bipolar. El transistor bipolar (conocido universalmente con la simple denominación de transistor) es un elemento
CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN
CAPÍTULO 1 COMPONENTES SEMICONDUCTORES: EL DIODO 1.1 INTRODUCCIÓN E n el capítulo 5 del tomo III se presentó una visión general de los componentes semiconductores básicos más frecuentes en electrónica,
Tema 2: EL TRANSISTOR BIPOLAR
Tema 2: EL TANSISTO IPOLA 2.1 Introducción 2.2 El transistor en régimen estático Expresiones simplificadas en las regiones de funcionamiento urvas características del transistor (configuración en E). 2.3
ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ
ELECTRÓNICA DIGITAL DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ IES TRINIDAD ARROYO DPTO. DE ELECTRÓNICA ÍNDICE ÍNDICE... 1 1. LIMITACIONES DE LOS CONTADORES ASÍNCRONOS... 2 2. CONTADORES SÍNCRONOS...
PRÁCTICA 4. OSCILOSCOPIO DIGITAL HM 408: TIEMPO DE REBOTE DE UN RELÉ. MODULACIÓN EN FRECUENCIA II.
PRÁCTICA 4. OSCILOSCOPIO DIGITAL HM 408: TIEMPO DE REBOTE DE UN RELÉ. MODULACIÓN EN FRECUENCIA II. 4.1.- Objetivos. Capturas de eventos en el dominio del tiempo, modo Y-t, y en el modo X-Y. Visualización
APLICACIONES CON OPTOS
APLICACIONES CON OPTOS Los modos básicos de operación de los optoacopladores son: por pulsos y lineal, en pulsos el LED sé switchea on-off (figura 4). En el modo lineal, la entrada es polarizada por una
CONTROL AUTOMATICO DE TEMPERATURA
CONTROL AUTOMATICO DE TEMPERATURA Oscar Montoya y Alberto Franco En este artículo presentamos un circuito de control automático de temperatura, el cual, como es obvio, permite controlar la temperatura
4.2 Acción de Control.
CAPÍTULO IV. PRUEBAS Y RESULTADOS. 4.1 Introducción. En este capítulo se exponen los resultados obtenidos después de efectuar las pruebas sobre el programa Control de Movimiento Empleando LabVIEW, que
Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000
Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática 6.002 Circuitos electrónicos Otoño 2000 Tarea para casa 11 Boletín F00-057 Fecha de entrega: 6/12/00 Introducción
TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA
3º ESO Tecnologías Tema Electrónica página 1 de 11 TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA Índice de contenido 1 Electrónica...2 2 Pilas en los circuitos electrónicos...2 3 DIODO...2 4 LED (diodo emisor de
Ángel Hernández Mejías ([email protected]) 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1
1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1 Índice Índice... Pág. 2 Breve descripción de la práctica... Pág. 3 Enumeración de recursos comunes... Pág. 3 Desarrollo
Tema 1E Amplificadores Operacionales COMPARADORES. Prof. A. Roldán Aranda 1º Ing. Informática
Tema E Amplificadores Operacionales COMPAADOES Prof. A. oldán Aranda º Ing. Informática Características del A.O. real I Tensiones de entrada limitadas por la alimentación CC La tensión de las entradas
DISEÑO CON AMPLIFICADORES OPERACIONALES
1 DISEÑO CON AMPLIFICADORES OPERACIONALES Introducción Muchos de los circuitos con amplificadores operacionales que efectúan operaciones matemáticas se usan con tal frecuencia que se les ha asignado su
Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2
GUIA DE LABORATORIO Nº2 Universidad Nacional de Misiones MÉTODOS CLÁSICOS PARA MODELACIÓN DE SISTEMAS 1. Objetivo de la práctica. Modelación a través de la Respuesta en frecuencia Este laboratorio tiene
Atenuación = 10 log 10 db 1.10. Amplificación = 10 log 10
cable es más largo, se insertan uno o más amplificadores, también llamados repetidores a intervalos a lo largo del cable a fin de restablecer la señal recibida a su nivel original. La atenuación de la
Nombre de la asignatura: Amplificadores Operacionales. Créditos: 4 2-6. Aportación al perfil:
Nombre de la asignatura: Amplificadores Operacionales Créditos: 4 2-6 Aportación al perfil: Diseñar, analizar y construir equipos y/o sistemas electrónicos para la solución de problemas en el entorno profesional,
2 El Ampli cador Operacional Ideal
El Ampli cador Operacional Ideal J.I.Huircan Uniersidad de La Frontera January 4, 202 Abstract El Ampli cador Operacional Ideal es un ampli cador de oltaje de alta ganancia, controlado por oltaje, que
Diseño electrónico de relés de protección para minicentrales hidroeléctricas
Luminotecnia ENTREGA 1 Diseño electrónico de relés de protección para minicentrales hidroeléctricas Elaborado por: Ing. Avid Román González (IEEE) Sabiendo que en la región del Cusco (Perú) existen muchas
CAPÍTULO 7 7. CONCLUSIONES
CAPÍTULO 7 7. CONCLUSIONES 7.1. INTRODUCCIÓN 7.2. CONCLUSIONES PARTICULARES 7.3. CONCLUSIONES GENERALES 7.4. APORTACIONES DEL TRABAJO DE TESIS 7.5. PROPUESTA DE TRABAJOS FUTUROS 197 CAPÍTULO 7 7. Conclusiones
Diseño de Circuitos Integrados Analógicos II. Diseño de Circuitos Integrados Analógicos II
Diseño de Circuitos Integrados Analógicos II Tema 8: Comparadores y multiplicadores 81 8. Multiplicadores 1 Diseño de Circuitos Integrados Analógicos II Tema 8: Comparadores y multiplicadores 81 8. Multiplicadores
Circuito RC, Respuesta a la frecuencia.
Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un
PRÁCTICAS DE ELECTRÓNICA TECNOLOGÍA 4º - Ejemplos -
Página 1 de 5 Estas hojas pueden servir de ejemplo en cuanto a lo que se espera de unos informes adecuados de las prácticas de tecnología de 4º ESO. La idea principal es que cualquier persona (aunque no
Diagrama y Nomenclatura del sistema de lazo cerrado
Diagrama y Nomenclatura del sistema de lazo cerrado En la figura 1 se muestra un diagrama de bloques general más detallado, el cual describe de forma adecuada a la mayoría de los sistemas de lazo cerrado.
Laboratorio 6: Control de temperatura on/off
Electrónica y Automatización Año 5 Laboratorio 6: Control de temperatura on/off En este laboratorio se analizará un circuito de control de temperatura basado en el sensor de temperatura integrado LM5.
Circuitos Electrónicos. Septiembre 2005/2006. Problema 1º parcial
Circuitos Electrónicos. Septiembre 2005/2006. Problema 1º parcial Se pretende realizar el circuito lógico interno de una máquina tragaperras de tres ruletas. El sistema completo tiene un esquema como el
PRÁCTICA 5. OSCILOSCOPIOS CON DOBLE BASE DE TIEMPO. OSCILOSCOPIO HM 1004 (III). MULTIVIBRADOR ASTABLE INTEGRADO.
PRÁCTICA 5. OSCILOSCOPIOS CON DOBLE BASE DE TIEMPO. OSCILOSCOPIO HM 1004 (III). MULTIVIBRADOR ASTABLE INTEGRADO. DETERMINACIÓN DE LA FRECUENCIA DE TRABAJO. MEDIDAS DE PARÁMETROS DE LA SEÑAL AYUDADOS DE
SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.
SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores
TEMA 6: CIRCUITOS DE ACONDICIONAMIENTO PARA SENSORES RESISTIVOS
TEMA 6: CICUITOS DE ACONDICIONAMIENTO PAA SENSOES ESISTIOS Bibliografía: Sensores y acondicionadores de señal Pallás Areny,. Marcombo, 1994 Instrumentación electrónica moderna y técnicas de medición Cooper,
Instrumentación y Ley de OHM
Instrumentación y Ley de OHM A) INSTRUMENTACIÓN 1. OBJETIVOS. 1. Conocer el manejo de instrumentos y materiales de uso corriente en los experimentos de electricidad y magnetismo. 2. Conocer el área de
TEMA 3: Control secuencial
TEMA 3: Control secuencial Esquema: Índice de contenido TEMA 3: Control secuencial...1 1.- Introducción...1 2.- Biestables...3 2.1.- Biestables asíncronos: el Biestable RS...4 2.1.1.- Biestable RS con
Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT.
EL ABC DE LA AUTOMATIZACION ALGORITMO DE CONTROL PID; por Aldo Amadori Introducción El Control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales,
Figura 1 Fotografía de varios modelos de multímetros
El Multímetro El multímetro ó polímetro es un instrumento que permite medir diferentes magnitudes eléctricas. Así, en general, todos los modelos permiten medir: - Tensiones alternas y continuas - Corrientes
ETN 404 Mediciones Eléctricas Docente: Ing. Juan Carlos Avilés Cortez. 2014
UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE INGENIERIA INGENIERIA ELECTRONICA ETN 404 Mediciones Eléctricas Docente: Ing. Juan Carlos Avilés Cortez. 2014 El amplificador Operacional El Amplificador Operacional
Introducción. 3.1 Modelo del Transistor
3 Celdas Básicas Introducción Muchas de las celdas utilizadas a lo largo de este trabajo están conformadas por circuitos más pequeños que presentan un comportamiento particular. En capítulos posteriores
Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor
Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor El descubrimiento del diodo y el estudio sobre el comportamiento de los semiconductores desembocó que a
Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra
Integrantes: Luis Valero Antoni Montiel Kelwin Contreras Gabriel Jiménez Jefferson Saavedra Lógica de resistencia transistor La lógica de resistencia-transistor RTL es una clase de circuitos digitales
OSCILOSCOPIO FUNCIONAMIENTO:
OSCILOSCOPIO El osciloscopio es un instrumento electrónico - digital o analógico- que permite visualizar y efectuar medidas sobre señales eléctricas. Para esto cuenta con una pantalla con un sistema de
Práctica 3. LABORATORIO
Práctica 3. LABORATORIO Electrónica de Potencia Convertidor DC/AC (inversor) de 220Hz controlado por ancho de pulso con modulación sinusoidal SPWM 1. Diagrama de Bloques En esta práctica, el alumnado debe
