CONTROL ESTADISTICO DE LA CALIDAD

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONTROL ESTADISTICO DE LA CALIDAD"

Transcripción

1 CICLO 2012-II Módulo: Unidad: 4 Semana: 4 CONTROL ESTADISTICO DE LA CALIDAD Ing. Enrique Montenegro Marcelo

2 GRAFICOS DE CONTROL

3 ORIENTACIONES Al finalizar este capitulo el alumno deberá poder construir los diferentes gráficos de control. El alumno podrá identificar que gráfico de control se adecua mejor para la solución de una problemática determinada.

4 CONTENIDOS TEMÁTICOS Variabilidad Grafico X-R Grafico X-S Gráfico P Gráfico NP Gráfico C Gráfico U

5 Variabilidad La variabilidad es debida a: Causas comunes. Inherentes al proceso. Causas especiales. Problemas del proceso Causas estructurales. Inherentes al proceso, aparecen como especiales. Para reducir las causas comunes, se debe mejorar el proceso. Para eliminar las causas especiales, se debe corregir el proceso.

6 Causas fortuitas y causas atribuibles Variabilidad natural o ruido de fondo Causas naturales (permanente) Otras causas de variabilidad causas atribuibles Aleatorio Cambios drásticos en la variabilidad se dan por cambios tecnológicos

7 GRAFICOS DE CONTROL Un gráfico de control es un diagrama especialmente preparado donde se van anotando los valores sucesivos de la característica de calidad que se está controlando. Los datos se registran durante el funcionamiento del proceso de fabricación y a medida que se obtienen.

8 Los productos de una fabricación en serie pueden diferir: - en la misma pieza - de una pieza a otra - de un momento de producción a otro. Los mismos conceptos son aplicables cuando el producto es la prestación de un servicio.

9 Objetivo General Todo grafico de control esta diseñado para presentar los siguientes principios: Fácil de entendimiento de los datos Claridad Consistencia GRAFICOS DE CONTROL Medir variaciones de calidad Objetivo Especifico Proceso de prevención para evitar que el producto llegue sin defectos al cliente. Detectar y corregir variaciones de calidad

10 Definición de los términos El gráfico de control tiene: Línea Central que representa el promedio histórico de la característica que se está controlando Límites Superior e Inferior que calculado con datos históricos presentan los rangos máximos y mínimos de Subgrupos variabilidad. Grupo de mediciones con algún criterio similar obtenidas de un proceso Se realizan agrupando los datos de manera que haya máxima variabilidad entre subgrupo y mínima variabilidad dentro de cada subgrupo Media Sumatoria de todos los subgrupos divididos entre el numero de muestras Rango Valor máximo menos el valor mínimo

11 GRAFICOS DE CONTROL Utilidad Los gráficos x-r se utilizan cuando la característica de calidad que se desea controlar es una variable continua.

12 La carta X detecta cambios significativos en la media del proceso. Cuando la curva se desplaza la carta manda una o varias señales de fuera de control La carta R detecta cambios significativos en la amplitud de la dispersión.

13 Pasos para una gráfica de control por variables Definir la característica de calidad (Lo que le interesa al cliente que se cumpla) Escoger el subgrupo racional (n) Reunir los datos Calcular los límites de control y la línea central Revisar los límites de control y la línea central Lograr el objetivo

14 Subgrupos racionales Tamaño del subgrupo Shewhart: Seleccionar subgrupos o muestras de manera que si hay causas atribuibles, la posibilidad de diferencia entre subgrupos sea máxima, mientras que la misma posibilidad dentro del subgrupo sea mínima. Base: orden de la producción Tener en cuenta diferencias entre turnos.

15 Límites de control 3 sigmas Límites Buenos resultados Menos de 3 sigmas Pérdidas en el proceso Costos de investigación, etc Fórmula general: Donde: W: característica LC: Límite de control E(w): Esperanza o media V(w):Varianza L: Valor en tablas LC( w) E( w) L V( w)

16 Principios estadísticos Error tipo I (α ) Riesgo de que un punto caiga fuera de los límites de control, cuando no existe una causa atribuible Error tipo II (β ) Riesgo de que un punto caiga dentro de los límites de control, cuando existe una causa atribuible.

17 Estimación de parámetros Xij= j-ésima observación de la muestra i i= 1,2,3,.m, j=1,2,3.n Xij~ N(μ,σ 2 ) x 1 n i X ij n j1 S 2 1 n ( X ij X i ) n 1 R i j1 Max 2 X MinX ij ij i=1,2,.k

18 Estimación de parámetros Estimador de la media m i X i m X 1 1 ˆ m i S i m ˆ Estimadores de la varianza ˆ m i S i m c c S ˆ m i R i m d d R

19

20 Capacidad del proceso (Casos) Satisfacción de requerimientos En Control Fuera de control Aceptable Caso 1 Caso 2 No Aceptable Caso 3 Caso 4

21 Gráfico de control del promedio n=tamaño de subgrupo m=número de subgrupos E(X ) Var( X ) n 2 LC( X ) E( X ) 3 Var ( X )

22 Gráfico de control de rangos Función de densidad de probabilidad de R 2 ) ( d R E 2 3 ) ( ) ( d R Var ) ( 3 ) ( ) ( R Var R E R LC dz z f z r f z F z r F n n r g r b a n ) ( ) ( ) ( ) ( 1) ( ) ( 2

23 Gráfico de control de desviación estándar y de varianza E( S) c4 E 2 2 ( S ) Var ( S) (1 c Var ( S 2 ) 2 ) 4 Nota.- Como por lo general en un estudio inicial no se conoce σ, esta puede estimarse a través de: Para el CASO DE LA VARIANZA: 4 2 n 1 Es mejor porque no tiene constantes no hay aproximaciones S C 4 2 Considerar que: ( n 1) S X n 1

24 Límites de cálculo fácil Para promedios y rangos LC( X ) X A3 S LC( X ) X A2 R LCI( R) D2 LCS( R) D4 R R

25 Límites de cálculo fácil Para desviación estándar y varianza LCI( S) B3 S LCS( S) B4 S LCI LCS 2 S n ( S ) X1 a / 2, n1 2 2 ( S ) X a / 2, n1 2 S n 1

26 Ejemplo de Grafico de Control-Minitab Usted realiza un estudio de los niveles de glucosa en la sangre de 9 pacientes, quienes siguen una dieta estricta y rutinas de ejercicios. Para monitorear la media y desviación estándar de los niveles de glucosa en la sangre de sus pacientes, usted crea una gráfica X y S. Usted toma las lecturas de la glucosa en la sangre de cada paciente todos los días durante 20 días

27 Datos Día paciente 1 paciente 2 paciente 3 paciente 4 paciente 5 paciente 6 paciente 7 paciente paciente 9

28

29 Rango de la muestra Media de la muestra Gráfica Xbarra-R de nivel de glucosa (9 pacientes) UC L=130, _ X=101,03 80 LC L=71, Muestra UC L=160, _ R=88, Muestra LC L=16,2

30

31 Desv.Est. de la muestra Media de la muestra Gráfica Xbarra-S Nivel de Glucosa (9 pacientes) UC L=130, _ X=101,03 80 LC L=71, Muestra UC L=50, _ S=28,77 10 LC L=6, Muestra

32 Gráficas de Control Por Atributos Introducción Las Gráficas de Control son gráficas utilizadas para estudiar como el proceso cambia a través del tiempo. Se gráfica el promedio como la línea central y los límites de control superior e inferior que son permitidos en el proceso. Estos límites se determinan con la data del proceso. Existen cuatro tipos de Gráficas de Control: n, np, c & u. UCL Avg LCL

33 Gráficas de Control Por Atributos Objetivos Identificar los diferentes tipos de Gráficas de Control Definir las reglas básicas a seguir para la elección, construcción e interpretación de las Gráficas de Control por Atributos Resaltar las situaciones en que pueden utilizarse las gráficas de control Indicar algunas Ventajas y Desventajas de las Gráficas de Control Mostrar ejemplos de cada una de las Gráficas de Control por Atributos

34 Gráficas de Control Por Atributos Glosario Atributos Data que se puede clasificar y contar Tipos Cantidad de defectos por unidad Nonconformities Cantidad de unidades defectuosas Nonconforming Gráficas de control Gráfica comparación cronológica (hora a hora, día a día) de las características de calidad reales del producto, parte o unidad, con límites que reflejan la capacidad de producirla de acuerdo con la experiencia de las características de calidad de la unidad.

35 Gráficas de Control Por Atributos Proceso en control Método visual para monitorear un proceso- se relaciona a la ausencia de causas especiales en el proceso. Gráfica c Número de defectos por unidad Gráfica p Porcentaje de fracción defectiva Gráfica u Proporción de defectos Gráfica np Número de unidades defectiuosas por muestra constante

36 Gráfica de Control por Atributos Gráfica de Control de Atributos Piezas Defectuosas Defectos por pieza Gráfica p Gráfica np Gráfica u Gráfica c

37 Gráficas de Control Por Atributos Límites de control Son calculados de la data obtenida del proceso Límite superior Valor máximo en el cual el proceso se encuentra en control Límite inferior Valor mínimo en el cual el proceso se encuentra en control. Línea central Es el promedio del número de defectos

38 Gráficas de Control Por Atributos Utilidad La función primaria de una Gráfica de Control es mostrar el comportamiento de un proceso. Identificar la existencia de causas de variación especiales (proceso fuera de control). Monitorear las variables claves en un proceso de manera preventiva. Indicar cambios fundamentales en el proceso.

39 Gráficas de Control Por Atributos Ventajas Resume varios aspectos de la calidad del producto; es decir si es aceptable o no Son fáciles de entender Provee evidencia de problemas de calidad

40 Gráficas de Control Por Atributos Desventajas Interpretación errónea por errores de los datos o los cálculos utilizados El hecho de que un proceso se mantega bajo control no significa que sea un buen proceso, puede estar produciendo constantemente un gran número de no conformidades. Controlar una característica de un proceso no significa necesariamente controlar el proceso. Si no se define bien la información necesaria y las características del proceso que deben ser controladas, tendremos interpretaciones erróneas debido a informaciones incompletas.

41 Gráficas de Control Por Atributos Gráfica p Representa el porcentaje de fracción defectiva Tamaño de muestra (n) varía. Principales objetivos Descubrir puntos fuera de control Proporcionar un criterio para juzgar si lotes sucesivos pueden considerarse como representativos de un proceso Puede influir en el criterio de aceptación.

42 Gráficas de Control Por Atributos Gráfica np Se utiliza para graficar las unidades disconformes Tamaño de muestra es constante Principales objetivos: Conocer las causas que contribuyen al proceso Obtener el registro histórico de una o varias características de una operación con el proceso productivo.

43 Gráficas de Control Por Atributos Gráfica c Estudia el comportamiento de un proceso considerando el número de defectos encontrados al inspeccionar una unidad de producción El artículo es aceptable aunque presente cierto número de defectos. La muestra es constante Principales objetivos Reducir el costo relativo al proceso Determinar que tipo de defectos no son permitidos en un producto

44 Gráficas de Control Por Atributos Gráfica u Puede utilizarse como: Sustituto de la gráfica c cuando el tamaño de la muestra (n) varía

45 Construcción Paso 7: Calcular los Límites de Control Tipo Data Gráficas de Control por Atributo Tamaño de Muestra Formula CL UCL LCL p np Piezas defectuosas Varia p=np/n p=σnp/σn p+3 p(1-p)/ n p-3 p(1-p)/ n n=σn/k Piezas defectuosas Constante p=np/n np=σnp/k np+3 np(1-p) np-3 np(1-p) c Defectos por Pieza Constante c c=σc/k c+3 c c-3 c u Defectos por Pieza Varia u=c/n u=σc/σn u+3 u/ n u-3 u/ n

46 Interpretación- Gráfica de Control por Atributos Identificación de causas especiales o asignables Pautas de comportamiento que representan cambios en el proceso: Un punto exterior a los límites de control. Se estudiará la causa de una desviación del comportamiento tan fuerte. Dos puntos consecutivos muy próximos al límite de control. La situación es anómala, estudiar las causas de variación. Cinco puntos consecutivos por encima o por debajo de la línea central. Investigar las causas de variación pues la media de los cinco puntos indica una desviación del nivel de funcionamiento del proceso. Fuerte tendencia ascendente o descendente marcada por cinco puntos consecutivos. Investigar las causas de estos cambios progresivos. Cambios bruscos de puntos próximos a un límite de control hacia el otro límite. Examinar esta conducta errática.

47 Gráficas de Control Por Atributos Ejercicio: Gráfica p n np P=np/n (1-p) = raiz cuadrada de n = p(1-p)= raiz cuad p(1-p)= raiz cuad p(1-p)*3= raiz cuad p(1-p)*3/raiz cuad de n= ucl= uad de n+p= n= cl=p lcl=cuad de n-p=

48 Gráfica p Grafica P

49 Gráficas de Control por Atributos Ejercicio: Gráfica np n np P=np/n (1-p) = p(1-p)= raiz cuad p(1-p)= raiz cuad p(1-p)*3=

50 Gráfica np

51 Gráfica de Control por Atributos Ejercicio: Gráfica u N C U=C/N raiz cuad u= raiz cuad*3= raiz cuad N= raiz cuad*3/raiz cuad N= raiz cuad*3/raiz cuad N + U= raiz cuad*3/raiz cuad N - U= U= C/N

52 Gráfica u

53 Gráfica de Control por Atributos Ejercicio: Gráfica c K C C= C/K raiz cuadrada C= raiz cuad C * raiz cuad*+ 5.7= UCL= LCL=

54 Gráfica c

55 Gráficas de Control Por Atributos Conclusión Del desarrollo de los conceptos y ejemplos se puede observar el enorme potencial que posee la utilización del Control Estadístico de la calidad como instrumento y herramienta destinada a un mejor control, una forma más eficaz de tomar decisiones en cuanto a ajustes, un método muy eficiente de fijar metas y un excepcional medio de verificar el comportamiento de los procesos.

56 CONCLUSIONES Y/O ACTIVIDADES DE INVESTIGACIÓN SUGERIDAS Se recomienda la aplicación de estas herramientas en el trabajo académico Resolver los ejercicios propuestos del Capítulo N 7 del Texto DUED Resolver los ejercicios propuestos del Capítulo N 8 del Texto DUED

57 CONCLUSIONES Y/O ACTIVIDADES DE INVESTIGACIÓN SUGERIDAS Se recomienda la aplicación de estas herramientas en el trabajo académico Resolver los ejercicios propuestos del Capítulo N 7 del Texto DUED Resolver los ejercicios propuestos del Capítulo N 8 del Texto DUED

58 HACERSE CARGO Somos lo que hacemos pero somos principalmente lo que hacemos para cambiar lo que somos. Eduardo Galeano

Unidad V. Control Estadístico de la Calidad

Unidad V. Control Estadístico de la Calidad UNIVERSIDAD NACIONAL DE INGENIERÍA UNI- NORTE - SEDE REGIONAL ESTELÍ Unidad V. Control Estadístico de la Calidad Objetivos Reconocer los principios estadísticos del control de calidad. Explicar la forma

Más detalles

Los Gráficos de Control de Shewart

Los Gráficos de Control de Shewart Los Gráficos de Control de Shewart La idea tradicional de inspeccionar el producto final y eliminar las unidades que no cumplen con las especificaciones una vez terminado el proceso, se reemplaza por una

Más detalles

Control Estadístico de Procesos (SPC) para NO estadísticos.

Control Estadístico de Procesos (SPC) para NO estadísticos. Control Estadístico de Procesos (SPC) para NO estadísticos. - Sesión 3ª de 4 - Impartido por: Jaume Ramonet Fernández Ingeniero Industrial Superior PMP (PMI ) Consultoría y Formación Actitud requerida

Más detalles

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes

Objetivos. Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos. Epígrafes Objetivos Aprender a construir gráficos p y/o np. Aprender a construir gráficos c y u. Cuando usarlos Epígrafes Introducción a los Gráficos p, np. Interpretación Gráficos c y u. Interpretación 2-1 Gráfico

Más detalles

HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS

HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS HERRAMIENTAS DE CALIDAD EN PROCESOS METROLÓGICOS Ing. Claudia Santo Directora de Metrología Científica e Industrial 17/05/2016 MEDELLÍN, COLOMBIA MEDIR Cómo sabemos que nuestras meciones son correctas?

Más detalles

1. Los datos siguientes dan el número de ensambles de rodamiento y sello

1. Los datos siguientes dan el número de ensambles de rodamiento y sello 3 2 EJERCICIOS 55 3 2 Ejercicios 1. Los datos siguientes dan el número de ensambles de rodamiento y sello disconformes en muestras de tamaño 100. Construir una carta de control para la fracción disconforme

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Tercera parte Aplicaciones de la Probabilidad en la Industria Dr Enrique Villa Diharce CIMAT, Guanajuato, México Verano de probabilidad y estadística CIMAT Guanajuato,Gto Julio 2010 Cartas de control Carta

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

LA CAPACIDAD DE UN PROCESO DE CUMPLIR LOS REQUISITOS DEL CLIENTE DEPENDE DE SU VARIABILIDAD.

LA CAPACIDAD DE UN PROCESO DE CUMPLIR LOS REQUISITOS DEL CLIENTE DEPENDE DE SU VARIABILIDAD. Procesos: Siempre tienen variabilidad LA CAPACIDAD DE UN PROCESO DE CUMPLIR LOS REQUISITOS DEL CLIENTE DEPENDE DE SU VARIABILIDAD. Alfredo Serpell Ingeniero civil industrial UC Phd University of Texas

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Los gráficos p, 100p y u difieren de los gráficos np y c en que los

Más detalles

GRÁFICOS DE CONTROL. Datos tipo atributo

GRÁFICOS DE CONTROL. Datos tipo atributo GRÁFICOS DE CONTROL Datos tipo atributo SELECCIÓN DE LOS GRÁFICOS DE CONTROL Total GRÁFICOS PARA ATRIBUTOS Se distinguen dos grandes grupos: Por unidad Los gráficos p, 100p y u difieren de los gráficos

Más detalles

5.1.- Aplicación del Diagrama de Pareto en el proyecto de investigación. Se desea analizar cuales son los defectos más frecuentes que aparecen en las

5.1.- Aplicación del Diagrama de Pareto en el proyecto de investigación. Se desea analizar cuales son los defectos más frecuentes que aparecen en las CAPITULO V.- ANÁLISIS DEL PROYECTO 5.1.- Aplicación del Diagrama de Pareto en el proyecto de investigación Se desea analizar cuales son los defectos más frecuentes que aparecen en las unidades al salir

Más detalles

GRAFICOS DE CONTROL DATOS TIPO VARIABLES

GRAFICOS DE CONTROL DATOS TIPO VARIABLES GRAFICOS DE CONTROL DATOS TIPO VARIABLES OBJETIVO DEL LABORATORIO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos de control, para realizar

Más detalles

LOS GRÁFICOS DE CONTROL

LOS GRÁFICOS DE CONTROL CAPÍTULO IX LOS GRÁFICOS DE CONTROL 9.1 INTRODUCCIÓN En cualquier proceso de generación de productos o servicios, sin importar su buen diseño y/o mantenimiento cuidadoso, siempre existirá cierto grado

Más detalles

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento

Más detalles

Unidad 5 Control Estadístico de la Calidad. Administración de Operaciones III

Unidad 5 Control Estadístico de la Calidad. Administración de Operaciones III Unidad 5 Control Estadístico de la Calidad Administración de Operaciones III 1 Contenido 1. Antecedentes del control estadístico de la calidad 2. Definición 3. Importancia y aplicación 4. Control estadístico

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

TEMA 3: Control Estadístico de la Calidad

TEMA 3: Control Estadístico de la Calidad TEMA 3: Control Estadístico de la Calidad 1. Introducción al control de la calidad. 2. Métodos de mejora de la calidad 3. Gráficos de control de Shewhart: Gráficos c Gráficos np Gráficos X y R 4. Interpretación

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

Carrera: CPB

Carrera: CPB Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Tópicos de ingeniería de calidad Ingeniería Industrial CPB - 0601 4-0- 8 2.- HISTORIA DEL PROGRAMA Lugar y

Más detalles

MUESTREO PARA ACEPTACION

MUESTREO PARA ACEPTACION MUESTREO PARA ACEPTACION Inspección de Calidad Consiste en un procedimiento técnico que permite verificar si los materiales, el proceso de fabricación y los productos terminados cumplen con sus respectivas

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth

Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I. L.A. y M.C.E. Emma Linda Diez Knoth 1 Puntuación Z ESTADÍSTICA APLICADA A LA EDUCACIÓN I Qué es la Puntuación Z? 2 Los puntajes Z son transformaciones que se pueden hacer a los valores o puntuaciones de una distribución normal, con el propósito

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 2 Estadística Descriptiva Clasificación de Variables Escalas de Medición Gráficos Tabla de frecuencias Medidas de Tendencia Central Medidas de Dispersión

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Histograma y Grafico de Control

Histograma y Grafico de Control 2014 Histograma y Grafico de Control Sustentantes: Sabrina Silvestre 2011-0335 Juan Emmanuel Sierra Santos 2011-0367 Rosa Stefany Flech Mesón 2011-0436 Docente: Ing.MS Eliza N. González Universidad Central

Más detalles

Enlace del Plan de Auditoría con los Riesgos y Exposiciones

Enlace del Plan de Auditoría con los Riesgos y Exposiciones Enlace del Plan de Auditoría con los Riesgos y Exposiciones Estándar principalmente relacionado: 2320 Análisis y Evaluación Los auditores internos deben basar sus conclusiones y los resultados del trabajo

Más detalles

Control Estadístico de Procesos Capacidad de Proceso

Control Estadístico de Procesos Capacidad de Proceso Control Estadístico de Procesos Capacidad de Proceso Un proceso de fabricación es un conjunto de equipos, materiales, personas y métodos de trabajo que genera un producto fabricado. Maquinaria Métodos

Más detalles

Metodología de la Investigación [DII-711] Capítulo 7: Selección de la Muestra

Metodología de la Investigación [DII-711] Capítulo 7: Selección de la Muestra Metodología de la Investigación [DII-711] Capítulo 7: Selección de la Muestra Dr. Ricardo Soto [[email protected]] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia Universidad

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

La inspección consiste en la evaluación de la calidad de alguna característica o parámetro en relación con las especificaciones.

La inspección consiste en la evaluación de la calidad de alguna característica o parámetro en relación con las especificaciones. La inspección consiste en la evaluación de la calidad de alguna característica o parámetro en relación con las especificaciones. 1. Interpretación de la especificación 2. Medición de la característica

Más detalles

Estadística. Sesión 4: Medidas de dispersión.

Estadística. Sesión 4: Medidas de dispersión. Estadística Sesión 4: Medidas de dispersión. Contextualización En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal es el caso del rango, la varianza y la desviación estándar,

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

EJEMPLO DE CLASE CONTROL ESTADÍSTICO DE LA CALIDAD

EJEMPLO DE CLASE CONTROL ESTADÍSTICO DE LA CALIDAD EJEMPLO DE CLASE CONTROL ESTADÍSTICO DE LA CALIDAD GRÁFICAS DE CONTROL POR VARIABLES Ejemplo 1 Gráfica X Calculando la desviación estándar Para Gráfica x cuando se conoce s Límite superior de control (LSC)

Más detalles

NORMA DE COMPETENCIA LABORAL

NORMA DE COMPETENCIA LABORAL Página 1 de 5 VERSION VERSION AVALADA MESA SECTORIAL MESA SECTORIAL GESTIÓN DE PROCESOS PRODUCTIVOS REGIONAL BOGOTA CENTRO CENTRO DE GESTION INDUSTRIAL METODOLOGO ALEXANDRA JIMENEZ VILLEGAS VERSION 1 FECHA

Más detalles

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables" no es aplicable.

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables no es aplicable. GRAFICOS DE CONTROL POR ATRIBUTOS 1.- INTRODUCCIÓN Este documento describe la secuencia de construcción y las pautas de utilización de una de las herramientas para el control de procesos, los Gráficos

Más detalles

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA

MÓDULO III. MEDIDAS DE TENDENCIA CENTRAL, DISPERSIÓN Y ASIMETRÍA 1 UNIVERSIDAD NACIONAL EXPERIMENTAL DE LOS LLANOS OCCIDENTALES EZEQUIEL ZAMORA VICE-RECTORADO DE PLANIFICACIÓN Y DESARROLLO SOCIAL PROGRAMA CIENCIAS SOCIALES Y JURIDICAS SUBPROGRAMA ADMINISTRACIÓN SUBPROYECTO:

Más detalles

NORMA ISO Introducción

NORMA ISO Introducción Introducción NORMA ISO 2859-1 Objetivo: eliminar productos defectuosos. Esencial para el enfoque basado en hechos de los SGC dado que la calidad no puede generarse sólo mediante inspección El control puede

Más detalles

Aspectos conceptuales de calidad. Ing. Isabel Escudero

Aspectos conceptuales de calidad. Ing. Isabel Escudero Aspectos conceptuales de calidad Ing. Isabel Escudero INTRODUCCIÓN Según las normas industriales japonesas el control de calidad es un sistema de métodos, todos de producción que económicamente genera

Más detalles

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO ESCUELA PREPARATORIA TEXCOCO MEDIDAS DE TENDENCIA CENTRAL Y DE DISPERSIÓN PARA DATOS NO AGRUPADOS MATERIAL DIDACTICO SOLO VISION ASIGNATURA QUE CORRESPONDE: ESTADISTICA

Más detalles

Análisis de Componentes de la Varianza

Análisis de Componentes de la Varianza Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable

Más detalles

4. Prueba de Hipótesis

4. Prueba de Hipótesis 4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los

Más detalles

Para controlar los procesos en tiempo real, la herramienta de base estadística, más significativa, es la carta de control.

Para controlar los procesos en tiempo real, la herramienta de base estadística, más significativa, es la carta de control. Control estadístico de los procesos Denominamos proceso a una serie de transformaciones destinadas a transformar entradas (materias primas, insumos, información, etc) en salidas (productos elaborados,

Más detalles

PROGRAMA INSTRUCCIONAL ESTADÍSTICA

PROGRAMA INSTRUCCIONAL ESTADÍSTICA UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE COMPUTACIÓN ESCUELA DE ELÉCTRICA PROGRAMA INSTRUCCIONAL

Más detalles

Diseño de Experimentos

Diseño de Experimentos Diseño de Experimentos p. Diseño de Experimentos Isabel Casas Despacho: 10.0.04 [email protected] Hector Cañada [email protected] Introducción Los modelos que vamos a estudiar son usados para

Más detalles

Micro y Macroeconomía

Micro y Macroeconomía Micro y Macroeconomía 1 Sesión No. 6 Nombre: Teoría del consumidor Contextualización: La microeconomía como herramienta de análisis nos permite el poder comprender el comportamiento de las personas en

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Estadística Descriptiva

Estadística Descriptiva M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Desde la segunda mitad del siglo anterior, el milagro industrial sucedido en Japón, hizo

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Guía para maestro. Medidas de dispersión. Guía para el maestro. Compartir Saberes

Guía para maestro. Medidas de dispersión. Guía para el maestro.  Compartir Saberes Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática [email protected] [email protected] Determinan si la media de la distribución de los datos es

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Práctica de Control Estadístico de Procesos Control por Variables

Práctica de Control Estadístico de Procesos Control por Variables Práctica de Control Estadístico de Procesos Control por Variables Fichero de datos: Sensorpresion.sf3 1. Los datos Un sensor de presión ha de trabajar en condiciones de alta temperatura. Para controlar

Más detalles

Instituto Politécnico Nacional Escuela Superior de Cómputo Modelos de Pronóstico

Instituto Politécnico Nacional Escuela Superior de Cómputo Modelos de Pronóstico Instituto Politécnico Nacional Escuela Superior de Cómputo Modelos de Pronóstico M. En C. Eduardo Bustos Farías 1 Gestión de Demanda Clientes Internos y Externos Proactiva: Promociones, Políticas de Precio,

Más detalles

Gráfico de Desgaste de Herramientas

Gráfico de Desgaste de Herramientas Gráfico de Desgaste de Herramientas Resumen El procedimiento Gráfico de Desgaste de Herramientas crea cuadros de control para una sola variable numérica donde se espera que cambien las cantidades en un

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 10 Estadísticos muestrales y sus aplicaciones Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las propiedades de los estadísticos muestrales.

Más detalles

Medidas de variabilidad (dispersión)

Medidas de variabilidad (dispersión) Medidas de posición Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

8.3 CONTROLAR LA CALIDAD PROYECTO TÉCNICO

8.3 CONTROLAR LA CALIDAD PROYECTO TÉCNICO 8.3 CONTROLAR LA CALIDAD PROYECTO TÉCNICO Documento redactado por Documento revisado por Documento aprobado por Joaquín De Abreu David Naranjo 03-09-12 Joaquín De Abreu 05-09-12 Jordi Labandeira 03-09-12

Más detalles

El ejemplo: Una encuesta de opinión

El ejemplo: Una encuesta de opinión El ejemplo: Una encuesta de opinión Objetivos Lo más importante a la hora de planificar una encuesta es fijar los objetivos que queremos lograr. Se tiene un cuestionario ya diseñado y se desean analizar

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero [email protected] http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

Estadística Inferencial. Estadística Descriptiva

Estadística Inferencial. Estadística Descriptiva INTRODUCCIÓN Estadística: Ciencia que trata sobre la teoría y aplicación de métodos para coleccionar, representar, resumir y analizar datos, así como realizar inferencias a partir de ellos. Recogida y

Más detalles

Estimaciones de la duración de actividades

Estimaciones de la duración de actividades 1 Estimaciones de la duración de actividades La estimación de la duración de cada actividad es el tiempo total transcurrido estimado desde el momento en que se inician actividad hasta el momento cuando

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

CARTAS DE CONTROL. Control Estadístico de la Calidad. Tuesday, August 5, 14

CARTAS DE CONTROL. Control Estadístico de la Calidad. Tuesday, August 5, 14 CARTAS DE CONTROL Control Estadístico de la Calidad PROCESOS PRODUCTIVOS Los procesos productivos son incapaces de producir dos unidades de producto exactamente iguales. Esto se debe a un sin número de

Más detalles

Recolección y uso de datos en la Producción de Alimentos

Recolección y uso de datos en la Producción de Alimentos Recolección y uso de datos en la Producción de Alimentos www.axonas.com.ar Durante mucho tiempo, la industria alimentaria se basó en las quejas de los consumidores, los reportes de enfermedades y el sentido

Más detalles

DEPARTAMENTO DE VINCULACION 1

DEPARTAMENTO DE VINCULACION 1 INGENIERÍA INDUSTRIAL DEPARTAMENTO DE VINCULACION 1 PROYECTOS DE ESTADÍA 1 2 3 4 5 6 7 8 9 10 11 12 Sistematizar la preparación del programa de Estructuración del plan maestro de Propuesta de proyecto

Más detalles

Medidas descriptivas I. Medidas de tendencia central A. La moda

Medidas descriptivas I. Medidas de tendencia central A. La moda Medidas descriptivas I. Medidas de tendencia central A. La moda Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neuman Gandía 1 Introducción En muchas ocasiones el conjunto

Más detalles

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.

GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill. GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Modelos Para la Toma de Decisiones

Modelos Para la Toma de Decisiones Modelos Para la Toma de Decisiones 1 Sesión No. 5 Nombre: Modelos de decisión. Primera parte. Contextualización Modelos para decidir? Hemos visto herramientas de tipo más bien matemático que nos permiten

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

ACCIONES CORRECTIVAS Y PREVENTIVAS

ACCIONES CORRECTIVAS Y PREVENTIVAS Hoja: 1 ACCIONES CORRECTIVAS Y PREVENTIVAS 1.- PROPÓSITO: Identificar las desviaciones que se presenten en los procesos dentro del Sistema de Gestión de Calidad de la UPAM, para generar una acción correctiva

Más detalles

PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ESTADISTICA I. - Pre requisitos : Matemática III

PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ESTADISTICA I. - Pre requisitos : Matemática III PROGRAMA DE ESTUDIO A. Antecedentes Generales - Nombre de la asignatura : ESTADISTICA I - Código : EME 221 - Carácter de la asignatura (obligatoria / electiva) : Obligatoria - Pre requisitos : Matemática

Más detalles

A qué nos referimos con medidas de dispersión?

A qué nos referimos con medidas de dispersión? Estadística 1 Sesión No. 4 Nombre: Medidas de dispersión. Contextualización A qué nos referimos con medidas de dispersión? En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

APLICACIÓN DE LA METODOLOGÍA DE DAUDIN A LOS GRÁFICOS POR ATRIBUTOS

APLICACIÓN DE LA METODOLOGÍA DE DAUDIN A LOS GRÁFICOS POR ATRIBUTOS 27 Congreso Nacional de Estadística e Investigación Operativa Lleida, 8-11 de abril de 2003 APLICACIÓN DE LA METODOLOGÍA DE DAUDIN A LOS GRÁFICOS POR ATRIBUTOS Elena Pérez Bernabeu 1, José M. Jabaloyes

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 9 Experimentación y presentación de datos Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de experimentación y determinación

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener

En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener ERRORES DE MEDICION Y SU PROPAGACION En ciencias e ingeniería (experimentales) es imprescindible realizar mediciones, que consisten en obtener la magnitud fisica de algun atributo de objetos ( proceso,

Más detalles

ACTIVIDAD 2: La distribución Normal

ACTIVIDAD 2: La distribución Normal Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la

Más detalles

MUESTREO APUNTE. Índice: MUESTREO. Media Varianza Desvío Ejemplo CURVA DE GAUSS ( TEÓRICO) Interpretación de los resultados TAMAÑO DE MUESTRA

MUESTREO APUNTE. Índice: MUESTREO. Media Varianza Desvío Ejemplo CURVA DE GAUSS ( TEÓRICO) Interpretación de los resultados TAMAÑO DE MUESTRA APUNTE MUESTREO Índice: MUESTREO Media Varianza Desvío Ejemplo CURVA DE GAUSS ( TEÓRICO) Interpretación de los resultados TAMAÑO DE MUESTRA Método de Cálculo Ejemplo Ing. Rogelio Hernán Bello Página 1

Más detalles

METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL

METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL METODOLOGÍA SEIS SIGMA A TRAVÉS DE EXCEL María Pérez Marqués Metodología Seis Sigma a través de Excel María Pérez Marqués ISBN: 978-84-937769-7-8 EAN: 9788493776978 Copyright 2010 RC Libros RC Libros es

Más detalles

Carrera: Ingeniería Civil CIM 0531

Carrera: Ingeniería Civil CIM 0531 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería Civil CIM 0531 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Conceptos básicos estadísticos

Conceptos básicos estadísticos Conceptos básicos estadísticos Población Población, en estadística, también llamada universo o colectivo, es el conjunto de elementos de referencia sobre el que se realizan las observaciones. El concepto

Más detalles

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática MINISTERIO DE EDUCACIÓN Dirección de Educación Técnica y Profesional Familia de especialidades:servicios Programa: Estadística Matemática Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 9no.

Más detalles

INTERPRETACIÓN NORMA OHSAS 18001:2007 MÓDULO 1 SESIÓN 1 INTERPRETACIÓN DE LA NORMA OHSAS 18001:2007 DOCENTE: Ing. Dª. Ana I.

INTERPRETACIÓN NORMA OHSAS 18001:2007 MÓDULO 1 SESIÓN 1 INTERPRETACIÓN DE LA NORMA OHSAS 18001:2007 DOCENTE: Ing. Dª. Ana I. INTERPRETACIÓN NORMA OHSAS 18001:2007 MÓDULO 1 SESIÓN 1 INTERPRETACIÓN DE LA NORMA OHSAS 18001:2007 DOCENTE: Ing. Dª. Ana I. Menac Lumbreras Especializados 1 TEMA 1 Contenidos INTRODUCCIÓN A LA NORMA OHSAS

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

MEDIDAS DE VARIABILIDAD

MEDIDAS DE VARIABILIDAD MEDIDAS DE VARIABILIDAD 1 Medidas de variabilidad Qué son las medidas de variabilidad? Las medidas de variabilidad de una serie de datos, muestra o población, permiten identificar que tan dispersos o concentrados

Más detalles

Pruebas de hipótesis

Pruebas de hipótesis Pruebas de hipótesis Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Prueba de hipótesis Uno de los objetivos de la estadística es hacer

Más detalles

Método Seis Sigma. Maria Soledad Lahitte

Método Seis Sigma. Maria Soledad Lahitte Método Seis Sigma Maria Soledad Lahitte Introducción Seis Sigma es el término elegido por Motorola, hace más de 17 años, para denominar su iniciativa de reducción radical de defectos en productos, lo cual

Más detalles

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos

Carrera: Ingeniería Civil Participantes Comité de Evaluación Curricular de Institutos Tecnológicos 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Probabilidad y Estadística Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3-2-8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles