Probabilidad y Estadística
|
|
|
- Roberto Peralta Carrasco
- hace 9 años
- Vistas:
Transcripción
1 Probabilidad y Estadística Tema 10 Estadísticos muestrales y sus aplicaciones Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las propiedades de los estadísticos muestrales. Describir las aplicaciones de los estadísticos muestrales.
2 Introducción al tema En un sistema para la administración de almacenes de productos perecederos, se desarrollo un módulo de calidad cuyo objetivo era garantizar que el producto que entraba a las tiendas cumpliera con los requisitos mínimos de calidad. Introducción al tema Un punto importante dentro de la definición de los parámetros de calidad era la definición del tamaño de la muestra. Es decir, cuántos kilos de fruta de un camión de 2 toneladas deberían tomarse para evaluar la calidad?, cuántas piezas de carne serían suficientes para determinar si todo el embarque recibido cumplía con los requisitos mínimos de calidad esperados? En este tema, conoceremos los conceptos de muestreo y conoceremos los estimadores muestrales y sus aplicaciones, así como también revisaremos las principales aplicaciones que tiene un estimador.
3 Conceptos básicos La imposibilidad física de revisar todos los integrantes de una población. El costo de estudiar a toda la población a menudo pudiera ser prohibitivo. La naturaleza de ciertas pruebas destructivas. Por qué obtener una muestra de la población? El tiempo que se requiere para completar al estudio es limitado. Conceptos básicos Cada integrante de la población tiene probabilidad ser incluido en la muestra. Muestra probabilística Garantiza que un estudio de una población basado en una muestra es válido.
4 Métodos de muestreo probabilístico Muestra aleatoria simple Muestra aleatoria sistemática Muestra aleatoria estratificada Muestra conglomerada Se formula de manera que cada integrante de la población tenga la misma probabilidad de quedar incluido. Se determina ordenando los integrantes de la población por algún método, se selecciona al azar un punto de inicio y después se elige cada k-ésimo elemento de la población. Se separa la población en subgrupos denominados estratos, y se selecciona una muestra de cada estrato. Se subdivide una región en áreas y se seleccionan ciertas áreas al azar pare realizar una selección de la muestra. Métodos de muestreo probabilístico Es poco probable que la media muestral sea idéntica a la media poblacional. De igual forma, la desviación estándar calculada a partir de la muestra, probablemente no será la exactamente igual al valor correspondiente de la población. A la diferencia entre una estadística de muestra y su parámetro poblacional correspondiente se le denomina error de muestreo, atribuible simplemente al azar.
5 Estadísticos muestrales Media muestral Varianza muestral Desviación estándar muestral Un estadístico muestral es una medida cuantitativa de una muestra aleatoria, usado para estimar una medida cuantitativa poblacional. Media muestral La media aritmética es la medida de tendencia central de uso más amplio. La media de una muestra se obtiene con la siguiente fórmula. Donde: = Media muestral X = Valor específico de la muestra n = Número total de observaciones
6 Media muestral Los pesos netos en gramos de cinco envases de un perfume, seleccionados en forma aleatoria de la línea de producción son: 84.4, 85.3, 84.9, 85.4 y Cuál es la media de las observaciones muestrales de los pesos de los envases? Aplicando la fórmula de media muestral: La media aritmética muestral de los pesos de los envases es de 85.2 gramos. Varianza muestral La conversión de la fórmula poblacional a la muestral, no es tan directa; se debe hacer una ligera modificación en el denominador. Donde: = Varianza muestral = Media muestral X = Valor específico de la muestra n = Número total de observaciones
7 Varianza muestral Los sueldos por hora en una muestra de trabajadores de medio tiempo son: $2, $10, $6, $8 y $9. Cuál es la varianza poblacional? Calculando la media muestral: El sueldo por hora promedio de la muestra es de $ 7 Varianza muestral Para obtener la varianza muestral, tenemos: Utilizando la fórmula, tenemos: La varianza muestral es de $ 10
8 Desviación estándar muestral La desviación estándar muestral se utiliza como un estimador de la desviación estándar poblacional. Donde: s = Desviación estándar muestral = Media muestral X = Valor específico de la muestra n = Número total de observaciones Desviación estándar muestral La varianza muestral del ejemplo anterior para los sueldos por hora se calculó como 10. Cuál es la desviación estándar de la muestra? La desviación estándar muestral es de $3.16, obtenida de la raíz cuadrada de 10.
9 Propiedades de un estadístico muestral Se dice que un estadístico muestral es insesgado cuando el valor esperado del estadístico muestral, es igual al estadístico poblacional. Estadístico muestral insesgado. Un estadístico muestral es eficiente cuando el error estándar del estadístico sea igual a 0. Eficiencia de un estadístico muestral. Se dice que un estadístico muestral es consistente si su valor tiende a estar más cerca del parámetro poblacional, a medida que aumenta el tamaño de la muestra. Consistencia de un estadístico muestral. Propiedades de un estadístico muestral Suficiencia de un estadístico muestral. Un concepto de reciente introducción es el de la suficiencia de un estadístico, fue introducido en 1922 por el científico inglés Ronald Fisher. Se dice que un estadístico es suficiente para la inferencia estadística, si contiene toda la información acerca de la función de distribución poblacional.
10 Aplicaciones de los estadísticos muestrales Estimación puntual. Utiliza los estadísticos muestrales para determinar el valor de un parámetro desconocido de una población. Pruebas de hipótesis. Procedimientos basados en la evidencia muestral y en la teoría de probabilidad empleada para determinar. Si la teoría es razonable no debe rechazarse, de lo contario, debe ser rechazada. Cierre Con el fin de solventar los diferentes problemas a los que se enfrentan las compañías y los investigadores a la hora de estudiar un problema, se establecieron métodos de muestreo estadístico que permitan inferir información acerca de toda una población. Los métodos de selección de muestras con el mismo objetivo en común: garantizar que cada elemento de la población tiene probabilidad de ser elegido como parte de la muestra. Lo métodos puede aplicarse en diferentes situaciones o combinados.
11 Cierre Para garantizar que un estadístico muestral se considere como un buen estimador de una población, dicho estadístico muestral debe ser insesgado, eficiente y consistente, pues de ello depende de que el estudio realizado en la muestra tenga alguna utilidad en el análisis de toda la población. En el siguiente tema profundizaremos en el estudio de los estimadores puntuales, así como su aplicación en la estadística descriptiva. Te invito a que juntos sigamos aprendiendo los conceptos de inferencia estadística. Referencias bibliográficas Devore, J. (2008). Probabilidad y estadística para ingeniería y ciencias. (7a. Ed.). México: Cengage Learning. Capítulos: 1 y 5. Wakerly, D., Mendenhall, W. et al. (2002). Estadística matemática con aplicaciones. (6a. Ed). México: Cengage Learning. Spiegel, M.(2004). Probabilidad y estadística (2a. Ed). México: McGraw Hill.
12 Créditos Diseño de contenido: Ing. Armando Calzada Mezura, MA, PMP Coordinador académico: Lic. José de Jesús Romero Álvarez, MC y MED. Edición de contenido: Lic. Verónica Montes de Oca Pinzón. Edición de texto: Lic. Arcelia Ramos Monobe, MEE Diseño Gráfico: Lic. Alejandro Calderas González, MATI
Probabilidad y Estadística
Probabilidad y Estadística Tema 11 Estimadores puntuales y de intervalo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de los estimadores puntuales y de intervalo.
Probabilidad y Estadística
Probabilidad y Estadística Tema 4 Variables aleatorias Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las características de las variables aleatorias discretas y continuas.
Probabilidad y Estadística
Probabilidad y Estadística Tema 13 Inferencia en una población Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar el procedimiento de pruebas en la inferencia estadística. Aplicar
Probabilidad y Estadística
Probabilidad y Estadística Tema 15 Análisis de datos discretos Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar la prueba de hipótesis Chi-Cuadrada para datos agrupados. Aplicar
Probabilidad y Estadística
Probabilidad y Estadística Tema 9 Experimentación y presentación de datos Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de experimentación y determinación
Probabilidad y Estadística
Probabilidad y Estadística Tema 5 Distribuciones de probabilidad discretas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir las características de las distribuciones de
Probabilidad y Estadística
Probabilidad y Estadística Tema 2 Probabilidad condicional e independencia Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir los eventos condicionales de los eventos independientes.
Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central
Capítulo 8 Métodos de Muestreo y el Teorema de Límite Central Objetivos: Al terminar este capítulo podrá: 1. Explicar por qué una muestra es la única forma posible de tener conocimientos acerca de una
TEMA 2: EL PROCESO DE MUESTREO
2.5. Determinación del tamaño de la muestra para la estimación en muestreo aleatorio estratificado TEMA 2: EL PROCESO DE MUESTREO 2.1. Concepto y limitaciones 2.2. Etapas en la selección de la muestra
Probabilidad y Estadística
robabilidad y stadística robabilidad y stadística Tema 3 Técnicas de Conteo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Analizar los principios de conteo utilizados en probabilidad.
Estadística Inferencial. Sesión 2. Distribuciones muestrales
Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral
TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07
TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones
Técnicas de Muestreo Métodos
Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad
Probabilidad y Estadística
Probabilidad y Estadística Tema 8 Distribución normal estándar y distribuciones relacionadas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar los conceptos de la distribución
Estadística Inferencial
Estadística Inferencial 1 Sesión No.2 Nombre: Distribuciones muestrales Contetualización Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico
Fundamentos para la inferencia. Unidad 3 Parte II Estadísca Prof. Tamara Burdisso
Fundamentos para la inferencia Estadísca 017 - Prof. Tamara Burdisso 1 Distribución muestral de la varianza muestral Hasta aquí nos ocupamos de hacer inferencia sobre la media y/o la proporción de una
Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11
Unidad Temática 2: Unidad 5 Estadística Inferencial Temas 10 y 11 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como
Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos
Estadística Inferencial. Sesión 3. Estimación de parámetros y por intervalos Contextualización. Se denomina estadístico a un estimador insesgado de un parámetro poblacional si la media o la esperanza del
DEPARTAMENTO: Matemáticas NOMBRE DEL CURSO: Probabilidad y Estadística CLAVE: 1016M ACADEMIA A LA QUE PERTENECE: Probabilidad y Estadística
PROGRAMA DE CURSO Modelo 2009 DEPARTAMENTO: Matemáticas NOMBRE DEL CURSO: Probabilidad y Estadística CLAVE: 1016M ACADEMIA A LA QUE PERTENECE: Probabilidad y Estadística PROFESIONAL ASOCIADO Y LICENCIATURA
Carrera de Restauración y Museología
Carrera de Restauración y Museología PROCESO DE INVESTIGACIÓN CIENTÍFICA Selección del tamaño de la muestra Selección del método de muestreo Determinación del método de recolección de datos Unidad 3 Tema
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:
ESTADISTICA DESCRIPTIVA Y PROBABILIDAD
ESTADISTICA DESCRIPTIVA Y PROBABILIDAD CODIGO 213543 (COMPUTACION) 223543 (SISTEMAS) 253443 (CONTADURIA) 263443( ADMINISTRACION) 273443 (GRH) HORAS TEORICAS HORAS PRACTICAS UNIDADES CREDITO SEMESTRE PRE
INFERENCIA ESTADISTICA
1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,
Estadística para la toma de decisiones
Estadística para la toma de decisiones S Y L L A B U S D E L C U R S O INFORMACIÓN DE LA ASIGNATURA 1 UNO Escuela o Facultad: Programa o Área: Curso: Código: Escuela de Administración Especialización en
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Mag. María del Carmen Romero 2014 [email protected] Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo
Muestreo y Distribuciones en el Muestreo
Muestreo y Distribuciones en el Muestreo Departamento de Estadística-FACES-ULA 03 de Abril de 2013 Introducción al Muestreo En algunas ocaciones es posible y práctico examinar a cada individuo en el Universo
Distribuciones muestrales. Distribución muestral de Medias
Distribuciones muestrales. Distribución muestral de Medias TEORIA DEL MUESTREO Uno de los propósitos de la estadística inferencial es estimar las características poblacionales desconocidas, examinando
Estadística Inferencial. Sesión 4. Estimación por intervalos
Estadística Inferencial. Sesión 4. Estimación por intervalos Contextualización. Como se definió en la sesión anterior la estimación por intervalos es utilizada para medir la confiabilidad de un estadístico.
PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ESTADISTICA I. - Pre requisitos : Matemática III
PROGRAMA DE ESTUDIO A. Antecedentes Generales - Nombre de la asignatura : ESTADISTICA I - Código : EME 221 - Carácter de la asignatura (obligatoria / electiva) : Obligatoria - Pre requisitos : Matemática
Estadística Inferencial. Sesión 7. Pruebas de hipótesis para diferencia de medias y proporciones.
Estadística Inferencial. Sesión 7. Pruebas de hipótesis para diferencia de medias y proporciones. Contextualización. En la sesión anterior se mostró como realizar una prueba de hipótesis cuando se trata
INFERENCIA ESTADÍSTICA Notas de clase. Profesores: A. Leonardo Bañuelos S. Nayelli Manzanarez Gómez
INFERENCIA ESTADÍSTICA Notas de clase Profesores: A. Leonardo Bañuelos S. Naelli Manzanarez Gómez TEMA II ESTIMACIÓN PUNTUAL DE PARÁMETROS POBLACIONALES La estimación puntual de un parámetro relativo a
PROGRAMA DE ESTUDIO : UN SEMESTRE ACADÉMICO : TERCER AÑO, PRIMER SEMESTRE
PROGRAMA DE ESTUDIO A. Antecedentes Generales ASIGNATURA : Estadística CÓDIGO : IIM313A DURACIÓN : UN SEMESTRE ACADÉMICO PRE - REQUISITO : PROBABILIDADES CO REQUISITO : NO TIENE UBICACIÓN : TERCER AÑO,
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Un estimador es una regla que establece cómo calcular una estimación basada en las mediciones contenidas en una muestra
Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido
Tema : Introducción a la Teoría de la Estimación Introducción Sea X la variable aleatoria poblacional con distribución de probabilidad f θ (x), donde θ Θ es el parámetro poblacional desconocido Objetivo:
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #9 Tema: Estimación puntual y por Intervalo de confianza Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos:
Técnicas de investigación cuantitativas: Tema 4: MUESTREO PROBABILÍSTICO
Técnicas de investigación cuantitativas: Tema 4: MUESTREO PROBABILÍSTICO Grado en Criminología Curso 2014/2015 Técnicas de investigación cualitativa y cuantitativa Diseño muestral Recordemos (Tema 3):
Programa de Asignatura ESTADISTICA I
Programa de Asignatura ESTADISTICA I A. Antecedentes Generales 1. Unidad Académica FACULTAD DE ECONOMÍA Y NEGOCIOS 2. Carrera INGENIERÍA COMERCIAL 3. Código EME221 4. Número de clases por 2 Módulos semana
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
CURSO DE MÉTODOS CUANTITATIVOS I
CURSO DE MÉTODOS CUANTITATIVOS I TEMA VI: INTRODUCCIÓN AL MUESTREO Ing. Francis Ortega, MGC Concepto de Población y Muestra POBLACIÓN (N) Es el conjunto de todos los elementos de interés en un estudio
LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO
LIMITES O INTERVALOS DE CONFIANZA LUIS FRANCISCO HERNANDEZ CANDELARIA ATENCIA ROMERO TRABAJO DE ESTADISTICA PROBABILISTICA PRESENTADO A LA PROFESORA MARIA ESTELA SEVERICHE SINCELEJO CORPORACIÓN UNIVERSITARIA
INDICE Prefacio Como usar este libro Capitulo 1. Introducción Capitulo 2. Análisis exploratorio de los datos
INDICE Prefacio Como usar este libro Capitulo 1. Introducción 1 El comienzo de todo: determinación lo que se debe saber 2 Evaluación numérica de las unidades de observación con la ayuda de las escalas
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA
Juan Carlos Colonia INFERENCIA ESTADÍSTICA
Juan Carlos Colonia INFERENCIA ESTADÍSTICA PARÁMETROS Y ESTADÍSTICAS Es fundamental entender la diferencia entre parámetros y estadísticos. Los parámetros se refieren a la distribución de la población
UNIVERSIDAD MILITAR NUEVA GRANADA FACULTAD DE CIENCIAS BASICAS Y APLICADAS DEPARTAMENTO DE MATEMÁTICAS
CONTENIDO PROGRAMÁTICO Fecha Emisión: 2011/09/15 AC-DO-F-8 Revisión No. 1 Página 1 de 6 ESTADÍSTICA II CÓDIGO 12251 PROGRAMA ADMINISTRACIÓN DE EMPRESAS Y CONTADURÍA PÚBLICA ÁREA DE FORMACIÓN CIENCIAS BÁSICAS
Presentación de la Asignatura. Estadística II. Prof. Sergio Jurado Chamorro
Presentación de la Asignatura Estadística II Prof. Sergio Jurado Chamorro Estadística II: La asignatura Contexto Enfoque Nivel matemático Conocimientos básicos Otro requerimientos Herramienta de apoyo
Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I
Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la
INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica
INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables
07 Estimación puntual e introducción a la estadística inferencial
07 Estimación puntual e introducción a la estadística inferencial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Contenido Qué es la estadística inferencial?
UNIVERSIDAD MILITAR NUEVA GRANADA
CONTENIDO PROGRAMÁTICO Fecha Emisión: 2011/09/15 AC-DO-F-8 Revisión No. 1 Página 1 de 5 ESTADÍSTICA II CÓDIGO 22081 PROGRAMA ADMINISTRACIÓN DE LA SEGURIDAD INTEGRAL ÁREA DE FORMACIÓN ESTADÍSTICA SEMESTRE
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Intervalos de confianza Álvaro José Flórez 1 Escuela de Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio
Estimación de Parámetros. Jhon Jairo Padilla A., PhD.
Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de
Estimación de Parámetros. Jhon Jairo Padilla A., PhD.
Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de
República de Panamá CONTRALORIA GENERAL DE LA REPÚBLICA Instituto Nacional de Estadística y Censo Unidad de Muestreo
República de Panamá CONTRALORIA GENERAL DE LA REPÚBLICA Instituto Nacional de Estadística y Censo Unidad de Muestreo METODOLOGÍA DEL DISEÑO DE MUESTREO Encuesta entre Empresas no Financieras 2013 1. El
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA. práctica, Total: 85 Horas a la semana: 5 teoría: 4 prácticas: 1 Créditos:
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA Probabilidad y Estadística 18/01/10 Clave: 214 Semestre: 1 Duración del curso: semanas: 17 horas: 68 de teoría y 17 de práctica, Total: 85 Horas
Contenidos Programáticos
Página 1 de 6 FACULTAD: CIENCIAS ECONÓMICAS Y EMPRESARIALES PROGRAMA: ADMINISTRACIÓN DE EMPRESAS DEPARTAMENTO DE: ADMINISTRACIÓN CURSO: ESTADISTICA I CÓDIGO: 157011 ÁREA: BÁSICA REQUISITOS: CORREQUISITO:
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016
ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una
Estimaciones puntuales. Estadística II
Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar
Programa Regular. Probabilidad y Estadística.
Programa Regular Probabilidad y Estadística. Modalidad de la asignatura: teórico-práctica. Carga horaria: 5hs. Objetivos: Con relación a los conocimientos a impartir en el desarrollo de la materia, es
Notas de clase Estadística R. Urbán R.
Inferencia estadística Sabemos que una población puede ser caracterizada por los valores de algunos parámetros poblacionales, por ello es lógico que en muchos problemas estadísticos se centre la atención
Juan Carlos Colonia DISTRIBUCIONES MUESTRALES
Juan Carlos Colonia DISTRIBUCIONES MUESTRALES POBLACIÓN Es el conjunto de individuos u objetos que poseen alguna característica común observable y de la cual se desea obtener información. El número de
UNIDAD V Distribuciones Muestrales
UNIDAD V Distribuciones Muestrales UNIDAD 5 BASE CONCEPTUAL Hoy la estadística está considerada como la teoría de la información, no solo como función descriptiva, si o con el objeto básico de hacer estimaciones
UNIDAD XI Distribuciones Muestrales
UNIDAD XI Distribuciones Muestrales 74 UNIDAD 11 BASE CONCEPTUAL Hoy la estadística está considerada como la teoría de la información, no solo como función descriptiva, si o con el objeto básico de hacer
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
TOTAL DE HORAS: Semanas de clase: 5 Teóricas: 3 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Probabilidad y Estadística
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: SEMESTRE: 5 (QUINTO) MODALIDAD
LA ESTADÍSTICA APLICADA AL ANÁLISIS ECONÓMICO. Introducción 1
LA ESTADÍSTICA APLICADA AL ANÁLISIS ECONÓMICO ÍNDICE CONCEPTO Página Introducción 1 I Generalidades... 3 I.1 Definiciones de Estadística... 4 I.2 Diferentes clases de Estadística... 8 II La Estadística
Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema
Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características
ASPECTOS DEL PERFIL PROFESIONAL QUE APOYA LA ASIGNATURA
I. DATOS GENERALES UNIVERSIDAD RICARDO PALMA FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES ESCUELA ACADÉMICO PROFESIONAL DE ADMINISTRACIÓN Y GERENCIA SILABO 1.1 Curso : ESTADISTICA APLICADA 1.2 Código
Muestreo de variables aleatorias
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como
Intervalos de Confianza
Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de
SILABO DEL CURSO TEORÍA DE MUESTREO
FACULTAD DE ESTUDIOS DE LA EMPRESA CARRERA DE MARKETING SILABO DEL CURSO TEORÍA DE MUESTREO 1. DATOS GENERALES 1.1. Carrera Profesional : Marketing 1.2. Departamento : Marketing 1.3. Tipo de Curso : Obligatorio
Estadísticas básicas y medidas epidemiológicas para la Investigación en Salud Pública
Enfoque científico de la Salud Pública Estadísticas básicas y medidas epidemiológicas para la Investigación en Salud Pública Dr. Luis Gabriel Montes de Oca Lemus Objetivos Analizar las estadísticas de
Teléfono:
Apartado postal 17-01-218 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ESTADISTICA II CÓDIGO: 15017 CARRERA: Economía NIVEL: Cuarto No. CRÉDITOS: SEMESTRE / AÑO ACADÉMICO: III semestre 2011-2012 PROFESOR:
Teoría de la decisión
Unidad 7.. Definiciones. Muestreo aleatorio y estadístico. Estadísticos importantes. Técnica de muestreo. Transformación integral Muestreo: selección de un subconjunto de una población ) Representativo
PLANEACIÓN DIDÁCTICA FO205P
PLANEACIÓN DIDÁCTICA FO205P11000-44 DIVISIÓN (1) INGENIERÍA EN TICS DOCENTE (2) ING. JULIO MELÉNDEZ PULIDO NOMBRE DE LA ASIGNATURA (3) PROBABILIDAD Y ESTADISTICA CRÉDITOS (4) 5 CLAVE DE LA ASIGNATURA (5)
TEMA 3: MUESTREO Y ESTIMACIÓN. Las muestras estadísticas
TEMA 3: MUESTREO Y ESTIMACIÓN Las muestras estadísticas EL PAPEL DE LAS MUESTRAS Se llama población o universo al conjunto de todos los individuos de un estudio estadístico. Por ejemplo si estamos interesado
PROBABILIDAD Asignatura Clave Semestre Créditos. COORDINACIÓN DE CIENCIAS APLICADAS División Departamento Licenciatura
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO CIENCIAS BÁSICAS PROBABILIDAD Asignatura Clave Semestre Créditos COORDINACIÓN DE CIENCIAS APLICADAS División Departamento
Probabilidad y Estadística Descripción de Datos
Descripción de Datos Arturo Vega González [email protected] Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 28 Contenido 1 Probabilidad
Probabilidad y Estadística
Probabilidad y Estadística Unidad 4 Distribuciones muestrales de probabilidad Prof. Héctor Ulises Cobián L. [email protected] elcampanariodelasmatematicas.wordpress.com April 14, 2016 1 Razones
Cuál es el campo de estudio de la prueba de hipótesis?
ESTIMACIÓN Establecer generalizaciones acerca de una población a partir de una muestra es el campo de estudio de la inferencia estadística. La inferencia estadística se divide en estimación y prueba de
Prof. Angel Zambrano ENERO 2009 Universidad de Los Andes Escuela de Estadística
Prof. Angel Zambrano ENERO 009 Universidad de Los Andes Escuela de Estadística Muestreo: Es una metodología que apoyándose en la teoría estadística y de acuerdo a las características del estudio, indica
Dirección de Desarrollo Curricular Secretaría Académica
PLAN DE ESTUDIOS DE EDUCACIÓN MEDIA SUPERIOR CAMPO DISCIPLINAR Matemáticas PROGRAMA DE ASIGNATURA (UNIDADES DE APRENDIZAJE CURRICULAR) Probabilidad y Estadística PERIODO IV CLAVE BCMA.06.04-08 HORAS/SEMANA
