Probabilidad y Estadística
|
|
- Hugo Cárdenas Sosa
- hace 5 años
- Vistas:
Transcripción
1 Probabilidad y Estadística Tema 4 Variables aleatorias Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las características de las variables aleatorias discretas y continuas.
2 Introducción al tema Hasta el momento hemos observado las propiedades de la probabilidad y la estadística y hemos explorado los conceptos de probabilidad condicional e independencia, así como algunas técnicas de conteo para determinar el número de combinaciones posibles en un experimento. Introducción al tema En el intento de crear maneras para predecir el resultado futuro de un experimento, los investigadores han creado modelos matemáticos para describir el comportamiento y evaluar posibilidades de que ocurra una cosa u otra. Durante este tema, discutiremos los principios matemáticos que nos permiten clasificar los experimentos en diferentes distribuciones de probabilidad, conoceremos el concepto de valor esperado y la varianza de una variable aleatoria y haremos algunos cálculos para determinar resultados con base en una distribución de probabilidad.
3 Distribuciones de probabilidad Una distribución de probabilidad es un resumen gráfico o tabular que nos muestra los resultados esperados de un experimento, así como la probabilidad asociada con cada uno de los resultados esperados. Distribuciones de probabilidad Supongamos que estamos interesados en determinar la suma de los puntos al lanzar dos dados balanceados. Hay 11 posibles resultados de la suma de los dos dados. El espacio muestral para este experimento es: S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
4 Distribuciones de probabilidad El resumen de los resultados se ve en la siguiente tabla: Dado 1 Dado 2 Suma Dado 1 Dado 2 Suma Dado 1 Dado 2 Suma Distribuciones de probabilidad De la tabla podemos concluir el número de ocurrencias para cada resultado, es decir, el número de resultados del experimento donde se obtiene una suma de 2 es 1, mientras que el número de resultados donde se obtiene una suma de 7 es 6.
5 Total de ocurrencias Probabilidad y Estadística Distribuciones de probabilidad La siguiente tabla se incluye la probabilidad de que ocurra cada uno de los resultados. Resultado esperado Número de ocasiones Probabilidad Distribuciones de probabilidad Gráficamente, podemos observar la distribución de probabilidad de la suma de los puntos de dos dados balanceados Suma de puntos de dos dados
6 Variables aleatorias Variable cuyo valor representa la cantidad resultado de un experimento aleatorio, que debido al azar, puede tomar valores distintos. El número de empleados ausentes los lunes, que puede tomar el valor de 0, 1, 2, 3 El peso de una barra de acero, que puede tomar el valor de 2500, , , etc., dependiendo de la exactitud de la báscula. El número de caras al lanzar dos monedas, que puede tomar el valor de 0, 1 o 2. La suma de los puntos al tirar dos dados, que puede tomar el valor de 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 o 12. Variables aleatorias discretas Una variable aleatoria discreta es válida para cierto número de valores definidos y distantes (no necesariamente números enteros). Es una variable que sólo puede tomar ciertos valores claramente separados y que es resultado de contar algún elemento de interés. Un claro ejemplo de una variable aleatoria discreta es la suma de los puntos de dos dados balanceados.
7 Variables aleatorias continuas Una variable aleatoria continua es válida para un número infinito de valores dentro de un rango, en otras palabras, es una variable que puede tomar cualquier valor de una cantidad infinitamente grande de valores y que es resultado de medir algún elemento de interés. Valor esperado de una variable aleatoria El valor esperado de una variable aleatoria es una medida de tendencia central que representa a una distribución probabilística. También es el valor promedio a largo plazo de la variable aleatoria, representado por E(X).
8 Valor esperado de una variable aleatoria El valor esperado de una variable aleatoria se calcula con la siguiente fórmula: Donde: P(X) = La probabilidad de los diversos resultados de El valor esperado de una variable aleatoria se calcula sumando las multiplicaciones individuales de cada valor de X por su probabilidad de ocurrencia. Varianza de una variable aleatoria La varianza de una variable aleatoria muestra el grado de dispersión en una distribución de probabilidad y se calcula con la siguiente fórmula: La varianza de una variable aleatoria se obtiene como la suma de las diferencias entre la media y cada valor individual, multiplicado por su probabilidad de ocurrencia.
9 Ejemplo de valor esperado y varianza Una tienda de electrodomésticos vende televisores, ha establecido la siguiente distribución de probabilidad para el número de televisores que espera vender en un sábado en particular. Número de televisores vendidos X Probabilidad (X) Ejemplo de valor esperado y varianza Sea X la variable aleatoria discreta para el número de televisores vendidos en un sábado en particular, obtenemos el valor esperado: Número de televisores vendidos X Probabilidad (X) X * P(X) E(X) = 2.10
10 Ejemplo de valor esperado y varianza Para calcular la varianza, podemos utilizar nuevamente una tabla: Número de televisores vendidos X P(X) (X- μ) (X- μ)^2 [(X- μ)^2 * P(x)] σ^2=1.290 Cierre En el mundo real, los experimentos están basados en un resultado esperado, es decir, medimos la probabilidad de que un resultado sea favorable o no para el interesado en el experimento.
11 Cierre A este resultado deseado se le denomina variable aleatoria, pues dado que no conocemos su resultado final, el azar nos obliga a pensar en la aleatoriedad de la situación. La manera de representar el comportamiento de los posibles resultados de un experimento se le denomina distribución de probabilidad. En ella podemos determinar la probabilidad individual de todos y cada uno de los eventos que rodean al experimento, en donde la suma de dichas probabilidades siempre será 1. Cierre Este tema nos ha servido para iniciar el estudio de las distribuciones de probabilidad más conocidas; como la distribución binomial como una representante de las distribuciones de probabilidad discretas, o como la distribución normal, la máxima representante de las distribuciones de distribución continuas.
12 Referencias bibliográficas Devore, J. (2008). Probabilidad y estadística para ingeniería y ciencias. (7a. Ed.). México: Cengage Learning. Capítulo: 3 y 4 Wakerly, D., Mendenhall, W. et al. (2002). Estadística matemática con aplicaciones. (6a. Ed). México: Cengage Learning Spiegel, M.(2004). Probabilidad y estadística (2a. Ed). México: McGraw Hill Créditos Diseño de contenido: Ing. Armando Calzada Mezura, MA, PMP Coordinador académico: Lic. José de Jesús Romero Álvarez, MC y MED. Edición de contenido: Lic. Verónica Montes de Oca Pinzón. Edición de texto: Lic. Arcelia Ramos Monobe, MEE Diseño Gráfico: Lic. Alejandro Calderas González, MATI
Probabilidad y Estadística
Probabilidad y Estadística Tema 2 Probabilidad condicional e independencia Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir los eventos condicionales de los eventos independientes.
Probabilidad y Estadística
Probabilidad y Estadística Tema 10 Estadísticos muestrales y sus aplicaciones Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las propiedades de los estadísticos muestrales.
Probabilidad y Estadística
Probabilidad y Estadística Tema 15 Análisis de datos discretos Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar la prueba de hipótesis Chi-Cuadrada para datos agrupados. Aplicar
Probabilidad y Estadística
Probabilidad y Estadística Tema 14 Inferencia en dos poblaciones Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar el procedimiento de pruebas en la inferencia estadística
Probabilidad y Estadística
Probabilidad y Estadística Tema 9 Experimentación y presentación de datos Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir los conceptos de experimentación y determinación
Probabilidad y Estadística
robabilidad y stadística robabilidad y stadística Tema 3 Técnicas de Conteo Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Analizar los principios de conteo utilizados en probabilidad.
Probabilidad y Estadística
Probabilidad y Estadística Tema 13 Inferencia en una población Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar el procedimiento de pruebas en la inferencia estadística. Aplicar
Probabilidad y Estadística
Probabilidad y Estadística Tema 8 Distribución normal estándar y distribuciones relacionadas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar los conceptos de la distribución
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD
Distribuciones de Probabilidad para Variables Aleatorias Discretas 1
Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,
Distribuciones Paramétricas
Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica
Tema 4: Variables Aleatorias
Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto
Concepto de Probabilidad
Concepto de Probabilidad Prof. Miguel Hesiquio Garduño. Est. Mirla Benavides Rojas Depto. De Ingeniería Química Petrolera ESIQIE-IPN hesiquiogm@yahoo.com.mx mbenavidesr5@gmail.com PROBABILIDAD En cualquier
Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero
Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos
DISTRIBUCIÓN DE PROBABILIDAD JUAN JOSÉ HERNÁNDEZ OCAÑA
DISTRIBUCIÓN DE PROBABILIDAD VARIABLES DISCRETAS Variable aleatoria UNA VARIABLE ALEATORIA ES AQUELLA DONDE LOS RESULTADOS SE PRESENTAN AL AZAR VARIABLE ALEATORIA DISCRETA Es aquella característica que
VARIABLES ALEATORIAS
VARIABLES ALEATORIAS Ejemplo: lanzar dos dados y sumar lo que sale en las dos caras. El espacio muestral está formado por los 36 resultados posibles (de lanzar los dados) Y el resultado del experimento
PROBABILIDAD Asignatura Clave Semestre Créditos. COORDINACIÓN DE CIENCIAS APLICADAS División Departamento Licenciatura
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO CIENCIAS BÁSICAS PROBABILIDAD Asignatura Clave Semestre Créditos COORDINACIÓN DE CIENCIAS APLICADAS División Departamento
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
ESTADISTICA DESCRIPTIVA Y PROBABILIDAD
ESTADISTICA DESCRIPTIVA Y PROBABILIDAD CODIGO 213543 (COMPUTACION) 223543 (SISTEMAS) 253443 (CONTADURIA) 263443( ADMINISTRACION) 273443 (GRH) HORAS TEORICAS HORAS PRACTICAS UNIDADES CREDITO SEMESTRE PRE
GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.
GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos
Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6.
Distribuciones Discretas de Probabilidad 1 Contenido 1. Variables Aleatorias. 2. Distribuciones Discretas de Probabilidad. 3. Valor Esperado y Varianza. Propiedades. 4. Distribución de Probabilidad Binomial.
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
Contenidos Programáticos
Página 1 de 6 FACULTAD: CIENCIAS ECONÓMICAS Y EMPRESARIALES PROGRAMA: ADMINISTRACIÓN DE EMPRESAS DEPARTAMENTO DE: ADMINISTRACIÓN CURSO: ESTADISTICA I CÓDIGO: 157011 ÁREA: BÁSICA REQUISITOS: CORREQUISITO:
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema
Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características
DISTRIBUCIONES DE PROBABILIDAD DISCRETA
Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Combinando métodos descriptivos y probabilidades En este capítulo vamos
Variables Aleatorias Discretas
Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.
PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ESTADISTICA I. - Pre requisitos : Matemática III
PROGRAMA DE ESTUDIO A. Antecedentes Generales - Nombre de la asignatura : ESTADISTICA I - Código : EME 221 - Carácter de la asignatura (obligatoria / electiva) : Obligatoria - Pre requisitos : Matemática
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00
U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 6)
TEMA Nº 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Ser capaz de definir correctamente una o más variables aleatorias sobre los resultados de un experimento aleatorio y determinar
Distribuciones de probabilidad discretas
Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin
1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional
1 Tema 4: Variable Aleatoria Bidimensional y n-dimensional 4.1. Variable aleatoria bidimensional Las Variables Aleatorias Bidimensionales o N-Dimensionales surgen cuando es necesario trabajar en espacios
Curso de nivelación Estadística y Matemática
Curso de nivelación Estadística y Matemática Tercera clase: Introducción al concepto de probabilidad y Distribuciones de probablidad discretas Programa Técnico en Riesgo, 2014 Agenda 1 Concepto de probabilidad
Unidad II: Fundamentos de la teoría de probabilidad
Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Segundo Semestre 2008 1. El problema de Galileo.
FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de
PROBABILIDAD Introducción La Probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO F A C U L T A D D E Q U Í M I C A P R O G R A M A E D U C A T I V O D E Q U Í M I C O E N A L I M E N T O S PROBABILIDAD Y ESTADÍSTICA UNIDAD TEMÁTICA TEORÍA DE
CONTENIDO PROGRAMÁTICO
CONTENIDO PROGRAMÁTICO Fecha Emisión: 2015/09/30 Revisión No. 2 AC-GA-F-8 Página 1 de 5 ESTADÍSTICA II CÓDIGO 160012 PROGRAMA ECONOMÍA ÁREA DE FORMACIÓN CIENCIAS BÁSICAS SEMESTRE TERCERO PRERREQUISITOS
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X
Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También
4 VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS Una ruleta está dividida en cuatro sectores de 90º de los que dos opuestos por el vértice son Azules, y los otros dos son uno Blanco y el otro Rojo. Conderemos el experimento
Matemáticas Propedéutico para Bachillerato. Introducción
Actividad 5. Nociones básicas de Probabilidad y Estadística. Introducción Alguna vez te has preguntado qué es la estadística? Y más aún eso a mi para qué me sirve? La estadística no es sino un sistema
UNIVERSIDAD DEL NORTE
UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA INDUSTRIAL Y DE SISTEMAS ESCUELA PROFESIONAL DE INGENIERIA AGROINDUSTRIAL ASIGNATURA: ESTADÍSTICA I CODIGO : 5B0067 I.- DATOS GENERALES SILABO
UNIVERSIDAD PILOTO DE COLOMBIA PLAN ANALÍTICO DEL PROGRAMA AREA COMÚN DE MATEMÁTICAS PROGRAMA DE PROBABILIDAD. Obligatorio
UNIVERSIDAD PILOTO DE COLOMBIA PLAN ANALÍTICO DEL PROGRAMA AREA COMÚN DE MATEMÁTICAS PROGRAMA DE PROBABILIDAD 1. PRESENTACIÓN DE LA ASIGNATURA O CURSO ACADÉMICO Nombre del curso Código del curso (opcional)
Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9
Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como
Asignaturas antecedentes y subsecuentes
PROGRAMA DE ESTUDIOS PROBABILIDAD Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0056 Asignaturas antecedentes y subsecuentes PRESENTACIÓN
T1. Distribuciones de probabilidad discretas
Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
ANALISIS DE FRECUENCIA EN HIDROLOGIA
ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos
PLANES CURRICULARES GRADO9º/ 01 PERIODO
PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento
VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN
VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN BIBLIOGRAFIA Walpole, Ronal E., Myres, Raymond H., Myres, Sharon L.: Probabilidad y Estadística para Ingenieros. McGraw Hill-Interamericana. Canavos G. Probabilidad
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Variable Aleatoria. Relación de problemas 6
Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
Probabilidad. Carrera: IFM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad Licenciatura en Informática IFM - 0429 3-2-8 2.- HISTORIA DEL PROGRAMA
Capítulo 6: Variable Aleatoria Bidimensional
Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el
HOJA DE TRABAJO UNIDAD 3
HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA
Disponible en el sitio OCW de la Universidad Nacional de Córdoba.
OCW - UNC OpenCourseWare I UNC Curso: Estadística I U 4. Variables Aleatorias Autora: Rosanna Casini Cómo citar el material: Disponible en el sitio OCW de la Universidad Nacional de Córdoba. Casini, Rosanna
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS
Química Propedéutico para Bachillerato OBJETIVO
Actividad 14. CÁLCULO DEL PESO MOLECULAR OBJETIVO Calcular los pesos moleculares de los compuestos químicos D.R. Universidad TecMilenio 1 INTRODUCCIÓN Las reacciones químicas son representadas mediante
Dirección de Desarrollo Curricular Secretaría Académica
PLAN DE ESTUDIOS DE EDUCACIÓN MEDIA SUPERIOR CAMPO DISCIPLINAR Matemáticas PROGRAMA DE ASIGNATURA (UNIDADES DE APRENDIZAJE CURRICULAR) Probabilidad y Estadística PERIODO IV CLAVE BCMA.06.04-08 HORAS/SEMANA
TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD
TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD A partir de un experimento aleatorio cualquiera, se obtiene su espacio muestral E. Se llama variable aleatoria a una ley (o función) que a cada elemento del espacio
Carrera: IAM Participantes. Representantes de las academias de Ingeniería Ambiental. Academia de Ingeniería
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y estadística Ingeniería Ambiental IAM - 0423 3-2-8 2.- HISTORIA DEL
Tema 7: Estadística y probabilidad
Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro
Semestre II-2007 PROGRAMA DE ESTUDIO ANALÍTICO. Estadística I Código: MAT LICENCIATURA EN ADMINISTRACIÓN Y GESTIÓN MUNICIPAL JULIO 2007
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA VICERRECTORADO ACADÉMICO Semestre II-2007 PROGRAMA DE ESTUDIO
PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.
1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto
Distribuciones de Probabilidad
Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
Axiomática de la Teoría de Probabilidades
Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS
1 1. DATOS INFORMATIVOS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS MATERIA: ESTADISTICA CODIGO: 11715 CARRERA: INGENIERIA DE SISTEMAS NIVEL: TERCERO
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA CARRERA: Licenciatura en Física PLAN DE ESTUDIOS: Plan 2010 ASIGNATURA: Estadística
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;
Nombre: Distribuciones de probabilidad discreta. Segunda parte. A qué nos referimos con probabilidad discreta?
Estadística 1 Sesión No. 9 Nombre: Distribuciones de probabilidad discreta. Segunda parte. Contextualización A qué nos referimos con probabilidad discreta? En la presente sesión analizarás y describirás
9 APROXIMACIONES DE LA BINOMIAL
9 APROXIMACIONES DE LA BINOMIAL 1 Una variable aleatoria sigue una distribución binomial B(n = 1000; p = 0,003). Mediante la aproximación por una distribución de POISSON, calcular P(X = 2), P(X 3) y P(X
PROGRAMA ANALÍTICO DE ASIGNATURA
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO COORDINACIÓN DE DOCENCIA DIRECCIÓN DE PLANEACIÓN Y DESARROLLO EDUCATIVO PROGRAMA ANALÍTICO DE ASIGNATURA 1.- DATOS GENERALES 1.1 INSTITUTO: Instituto de Ciencias
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA. práctica, Total: 85 Horas a la semana: 5 teoría: 4 prácticas: 1 Créditos:
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA Probabilidad y Estadística 18/01/10 Clave: 214 Semestre: 1 Duración del curso: semanas: 17 horas: 68 de teoría y 17 de práctica, Total: 85 Horas
matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4
PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área
UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA (PROGRAMA EJECUTIVO CUATRIMESTRAL)
UNIVERSIDAD DEL VALLE DE MÉXICO PROGRAMA DE ESTUDIO DE LICENCIATURA (PROGRAMA EJECUTIVO CUATRIMESTRAL) NOMBRE DE LA ASIGNATURA: PROBABILIDAD Y ESTADISTICA FECHA DE ELABORACIÓN: FEBRERO, 2003 CUATRIMESTRE
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA I. DATOS GENERALES Unidad Académica: Departamento de Suelos Programa Educativo: Ingeniería en Recursos Naturales Renovables Nivel educativo: Licenciatura Eje curricular: Ingeniería
Tema 5. Variables Aleatorias
Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,
Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.
Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.
Carrera: Ingeniería Civil CIM 0531
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería Civil CIM 0531 3 2 8 2.- HISTORIA DEL PROGRAMA
Variables aleatorias
Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADÍSTICA NIVEL: LICENCIATURA CRÉDITOS: 9 CLAVE: ICAD24.500919 HORAS TEORÍA: 4.5 SEMESTRE: CUARTO HORAS PRÁCTICA: 0 REQUISITOS:
TALLER N 4 DE ESTADÍSTICA
UNIVERSIDAD CATÓLICA DEL MAULE FACULTAD DE CIENCIAS BÁSICAS PEDAGOGÍA EN MATEMÁTICA Y COMPUTACIÓN TALLER N 4 DE ESTADÍSTICA Integrante 1 : Victor Córdova Cornejo (heibubu@hotmail.com) Integrante 2 : Rodrigo