UNIVERSIDAD DE ATACAMA
|
|
|
- David Silva Blázquez
- hace 8 años
- Vistas:
Transcripción
1 UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Segundo Semestre El problema de Galileo. Un príncipe italiano preguntó en una ocasión al famoso físico Galileo, por qué cuando se lanzan tres dados, se obtiene con más frecuencia la suma 10 que la suma 9, aunque se puedan obtener de seis maneras distintas cada una?. En relación a esta situación: a) (5 %) Determinar el espacio muestral Ω asociado a este experimento aleatorio. Ω = {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} = {1, 2, 3, 4, 5, 6} 3 b) (5 %) Identificar la variable aleatoria X asociada a este experimento. X : suma de los números que aparecen en los tres dados. c) (5 %) Cuál es el rango de X? X {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18} d) (5 %) Calcular P (dados sumen 9) y P (dados sumen 10). Suman 9 Suman casos casos casos casos casos casos casos casos casos casos caso casos Total 25 casos Total 27 casos P (sumen 9) = = 0,116, P (sumen 10) = 63 6 = 0, da. PRUEBA PARCIAL 1
2 2. La probabilidad de que un Banco reciba un cheque sin fondos es 1 %. a) (5 %) Si en una hora reciben 20 cheques, cuál es la probabilidad de que se tenga algún cheque sin fondos? n = 20, X : número de cheques sin fondos, X Bin(20, 0,01) ( ) 20 P (X 1) = 1 P (X < 1) = 1 P (X = 0) = 1 (0,01) 0 (0,99) 20 = 1 0,8179 = 0,182 0 b) (5 %) El Banco dispone de 12 sucursales en la capital, cuál es la probabilidad de que al menos 4 de las sucursales reciban algún cheque sin fondos? n = 12, Y : número de sucursales que reciben al menos 1 cheque sin fondos, Y Bin(12, 0,182) P (Y 4) = 1 P (Y < 4) = 1 {P (Y = 0)+P (Y = 1)+P (Y = 2)+P (Y = 3)} = 0,1599 c) (5 %) Si la media del valor de los cheques sin fondos es de $ y el Banco trabaja 6 horas diarias, qué cantidad total de pesos no se espera pagar? 1 hora 20 cheques, 6 horas 120 cheques. E(X) = np = (120)(0,01) = 1,2 cheques sin fondos, y por lo tanto (1,2)(580000) = pesos no se espera pagar. d) (5 %) Si se computaran los primeros 500 cheques, cuál es la probabilidad de recibir entre 3 y 6 (inclusive) cheques sin fondos? n = 500, X : número de cheques sin fondos, X Bin(500, 0,01), λ = np = (500)(0,01) = 5. Como n es grande y la probabilidad p muy pequeña, se usa la distribución Poisson, es decir X P(5) P (3 X 6) = P (X = 3) + P (X = 4) + P (X = 5) + P (X = 6) = 53 e e e e 5 3! 4! 5! 6! = 0, , , ,1462 = 0,6376 2da. PRUEBA PARCIAL 2
3 3. Una caja contiene 100 artículos, de los que 4 son defectuosos. Sea X el número de artículos defectuosos encontrados en una muestra de tamaño 9. a) (6 %) Hallar P (X = 2) El número de defectuosos X sigue una hipergeométrica con N = 100, D = 4, N D = 96 y tamaño de la muestra n = 9. P (X = 2) = ( 4 )( 96 ) 2 7 ( 100 ) = 0, b) (7 %) Aproximar la probabilidad anterior por una Binomial. Con una Binomial con n = 9 y p = 4 = 0.04 tenemos: 100 ( ) 9 P (X = 2) = (0,04) 2 (0,96) 7 = 0, c) (7 %) Aproximar la probabilidad anterior por una Poisson. Por Poisson con λ = np = 9(0,04) = 0,36, obtenemos: P (X = 2) = (0,36)2 e 0,36 2! = 0,0452 2da. PRUEBA PARCIAL 3
4 4. Una fábrica dispone de 20 transportistas, 45 empleados de mantenimiento y 5 ingenieros supervisores. La contratación de todo el personal se divide en planta y contrata. De los transportistas 8 son de planta; de los empleados de mantenimiento 35 son de planta y de los ingenieros 3 son de planta. Si elegimos una persona al azar: Se diseña una tabla de doble entrada para obtener las probabilidades con facilidad: Empleado Planta (P L) Contrata (C) Transporte (T ) Mantenimiento Ingeniero (I) a) (6 %) Cuál es la probabilidad de que sea un trabajador a contrata? P (C) = 24 b) (7 %) Cuál es la probabilidad de que sea un trabajador a contrata y no sea ingeniero? P (C I c ) = 22 c) (7 %) Si elegimos una persona de planta, cuál es la probabilidad de que sea un transportista? P (T P L) = P (T P L) P (P L) = 8 46 = da. PRUEBA PARCIAL 4
5 5. Una agencia inmobiliaria dedicada a la venta de departamentos en Caldera ha realizado un estudio de ventas, comprobando que solo el 5 % de las personas que acuden a visitar el piso piloto compran un departamento. Se pide: a) (6 %) Calcular la probabilidad de que tenga que recibir 10 visitas hasta vender un departamento. Sea X el número de visitas hasta vender un departamento, X es Ge(p = 0,05): P (X = 10) = (1 0,05) 9 (0,05) = 0,03151 b) (7 %) Calcular la probabilidad de que tenga que recibir 10 visitas hasta vender dos departamentos. Sea Y el número de visitas hasta vender dos departamentos, Y es BN(r = 2, p = 0, 05): P (Y = 10) = ( ) 9 (1 0,05) 8 (0,05) 2 = 0, c) (7 %) Se han tenido que recibir 10 visitas hasta vender 2 departamentos. Cuál es la probabilidad de que las 3 primeras visitas no efectuaran ninguna compra? Equivale a que las tres primeras han sido fracasos y en las siete restantes dos éxitos siendo uno de ellos la última visita, es decir: P (Y > 3 sin éxito en las tres primeras Y = 10) = (0,95)(0,95)(0,95)( ) 6 1 (0,05) 2 (0,95) 5 P (Y = 10) = 6 9 2da. PRUEBA PARCIAL 5
Concepto de Probabilidad
Concepto de Probabilidad Prof. Miguel Hesiquio Garduño. Est. Mirla Benavides Rojas Depto. De Ingeniería Química Petrolera ESIQIE-IPN [email protected] [email protected] PROBABILIDAD En cualquier
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 4 Nombre: Distribuciones de probabilidad para variables Contextualización En la sesión anterior se definió el concepto de variable aleatoria
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
SESION 12 LA DISTRIBUCIÓN BINOMIAL
SESION LA DISTRIBUCIÓN BINOMIAL I. CONTENIDOS:. La distribución omial.. Variables aleatorias en una distribución omial. 3. Descripciones de la distribución omial. 4. Distribución de Poisson. II. OBJETIVOS:
Curso de Probabilidad y Estadística
Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola [email protected] Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica
5 DISTRIBUCIONES BINOMIAL Y DE POISSON
5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
Ensayo o prueba: es la realización concreta de un experimento aleatorio.
Tema 4. Probabilidad Resumen del tema 4.1. Introducción a la Probabilidad Experimento: cualquier proceso que permite asociar a cada individuo de una población un símbolo (numérico o no) entre los símbolos
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN: PRUEBA PARCIAL N o 2 Profesor: Hugo S. Salinas. Primer Semestre 20. El gerente
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...
TEMA 3. Algunos modelos de probabilidad de tipo discreto En este capítulo se abordan «familias» muy específicas de probabilidad, que con cierta frecuencia se nos presentan en el mundo real. Van a ser distribuciones
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
Probabilidad, Variables aleatorias y Distribuciones
Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer
Distribución Muestral.
Distribución Muestral [email protected] Uno de los objetivos de la Estadística es tratar de inferir el valor real de los parámetros de la población Por ejemplo Cómo podríamos asegurar que una empresa
TEMA 1: PROBABILIDAD
TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA. práctica, Total: 85 Horas a la semana: 5 teoría: 4 prácticas: 1 Créditos:
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA Probabilidad y Estadística 18/01/10 Clave: 214 Semestre: 1 Duración del curso: semanas: 17 horas: 68 de teoría y 17 de práctica, Total: 85 Horas
Unidad 1: Espacio de Probabilidad
Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar
INFERENCIA DE LA PROPORCIÓN
ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En
Unidad IV: Distribuciones muestrales
Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia
Un experimento binomial posee las siguientes características: 1. El experimento consiste de n ensayos repetidos.
Experimento Binomial Experimento que consiste en ensayos independientes repetidos, cada uno con dos posibles resultados que se denominan éxito y fracaso, donde la probabilidad de éxito es la misma en cada
Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid
Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X
Objetivo: Entender la diferencia entre una desviación y una distribución. Reconocer los tipos de desviaciones y distribuciones.
PROBABILIDAD Y ESTADÍSTICA Sesión 2 2 MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS DISCRETOS 2.1 Definición de variable aleatoria discreta 2.2Función de probabilidad y de distribución 2.3 Valor esperado
LA PARTIDA DOBLE Y LA ECUACION PATRIMONIAL
LA PARTIDA DOBLE Y LA ECUACION PATRIMONIAL LA PARTIDA DOBLE Se llama partida doble al movimiento contable que afecta a por lo menos dos cuentas; movimiento que representa un movimiento deudor y un movimiento
DISTRIBUCIÓN NORMAL. > = P (Z > 0,6) = 0, El 72,58% de las vacas pesa más de 570 kg. Puede esperarse que 73 vacas superen ese peso.
DISTRIBUCIÓN NORMAL 1. El peso de las 100 vacas de una ganadería se distribuye según una normal de media 600 kg y una desviación típica de 50 kg. Se pide: Cuántas vacas pesan más de 570 kilos? Cuántas
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.
Variable Aleatoria. Relación de problemas 6
Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es
Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS.
Estadística Tema 4 Curso /7 Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Objetivos Conceptos: Conocer los siguientes modelos discretos de probabilidad: uniforme, binomial, geométrico y Poisson. De cada
UNIDAD XI Eventos probabilísticos
UNIDAD XI Eventos probabilísticos UNIDAD 11 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;
DISTRIBUCIONES DE PROBABILIDAD
DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos
Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección?
. Un juego de azar consiste en escoger números distintos del al 7. De cuántas formas se puede realizar esta selección?. 7 0 4 840 De cuántas maneras distintas se pueden ordenar personas en un círculo?.
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis
Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA HT
a) Definir un espacio muestral S apropiado para este experimento. b) Consideremos la variable aleatoria
7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).
UNIDAD II Eventos probabilísticos
UNIDAD II Eventos probabilísticos UNIDAD 2 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;
Prueba Integral Lapso /6
Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,
PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS QUIMICAS
1. DATOS INFORMATIVOS: PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS QUIMICAS MATERIA: ESTADISTICA II CODIGO: 12820 CARRERA: CIENCIAS QUIMICAS,
DISTRIBUCIÓN DE POISSON
DISTRIBUCIÓN DE POISSON P O I S S O N Siméon Denis Poisson, (1781-1840), astronauta francés, alumno de Laplace y Lagrange, en Recherchés sur la probabilité des jugements..., un trabajo importante en probabilidad
ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016
ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 Ejercicio 1 Una empresa de selección de personal llama a 12 postulantes para una entrevista de empleo. Se sabe por experiencia
Ejercicio 1(10 puntos)
ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa
P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249
Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
Tema 5: Principales Distribuciones de Probabilidad
Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad
PROBABILIDAD Y ESTADÍSTICA
PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo
Capítulo 6: Variable Aleatoria Bidimensional
Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el
Estadística Aplicada
Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.
Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.
1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA
INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso
INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento
UNIVERSIDAD DEL NORTE
UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO
TALLER 3 ESTADISTICA I
TALLER 3 ESTADISTICA I Profesor: Giovany Babativa 1. Un experimento consiste en lanzar un par de dados corrientes. Sea la variable aleatoria X la suma de los dos números. a. Determine el espacio muestral
TEMA 3: Probabilidad. Modelos. Probabilidad
TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)
INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que
Distribuciones de probabilidad discretas
Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO -.1 - CONVOCATORIA: Junio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo
RELACIÓN DE EJERCICIOS TEMA 2
1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación
Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...
Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme
Variable Aleatoria Continua. Principales Distribuciones
Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables
Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.
Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Condiciones para una distribución binomial
ESTADÍSTICA INFERENCIAL FUNCIONES DE PROBABILIDAD DISCRETAS: BINOMIAL y POISSON EJERCICIOS RESUELTOS DE FUNCIÓN DE PROBABILIDAD BINOMIAL USANDO TABLAS y EXCEL Prof.: MSc. Julio R. Vargas A. Fórmulas de
PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:
Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con
Ejercicios elementales de Probabilidad
Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS
EJERCICIOS RESUELTOS TEMA 3
EJERCICIOS RESUELTOS TEMA Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº.- En una urna hay bolas numeradas de al. Etraemos una bola al azar y observamos
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Espacio muestral. Operaciones con sucesos
Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado
La distribución de Probabilidad normal, dada por la ecuación:
La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada
Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev
PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;
Probabilidad y Estadística
Probabilidad y Estadística Tema 2 Probabilidad condicional e independencia Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir los eventos condicionales de los eventos independientes.
RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad
RELACIÓN DE PROBLEMAS Distribuciones de probabilidad 1. Se lanzan al aire dos monedas tres veces consecutivas. Sea X la v.a. que representa el número de veces que se obtiene cara en ambas monedas en los
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro
HOJA DE TRABAJO UNIDAD 3
HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.
Teoría de muestras 2º curso de Bachillerato Ciencias Sociales
TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------
Regresión y Correlación
Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios
Discretas. Continuas
UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de
PROBABILIDAD Y ESTADISTICA
PLAN DE ESTUDIOS 2008 LICENCIADO EN INFORMÁTICA FACULTAD DE CONTADURÍA, ADMINISTRACIÓN E INFORMÁTICA ASIGNATURA: PROBABILIDAD Y ESTADISTICA ÁREA DEL MATEMÁTICAS CLAVE: I2PE1 CONOCIMIENTO: ETAPA FORMATIVA:
Al conjunto de todos los sucesos que ocurren en un experimento aleatorio se le llama espacio de sucesos y se designa por S. Algunos tipos de sucesos:
1.- CÁLCULO DE PROBABILIDADES. Un experimento aleatorio es aquel que puede dar lugar a varios resultados, sin que pueda ser previsible enunciar con certeza cuál de éstos va a ser observado en la realización
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
Distribuciones de Probabilidad, Binomial& Otros (Cap. 5) Math. 298 Prof. Gaspar Torres Rivera
Distribuciones de robabilidad, inomial& Otros (Cap. 5) Math. 9 rof. aspar Torres Rivera Distribución de robabilidad Def. Es la distribución de las probabilidades asociadas con cada uno de los valores de
Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.
Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el
Tema 4. Probabilidad Condicionada
Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello
ESTADÍSTICA I, curso Problemas Tema 4
ESTADÍSTICA I, curso 007-008 Problemas Tema 4 1. En un problema de una prueba aplicada a niños pequeños se les pide que hagan corresponder tres dibujos de animales con la palabra que identifica a ese animal.
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
