Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9"

Transcripción

1 Unidad Temática 1: Unidad 3 Distribución de Probabilidad Tema 9

2 Distribución de Probabilidad Recordamos conceptos: Variable aleatoria: es aquella que se asocia un número o un dato probabilístico, como el resultado de un experimento aleatorio. Tipos de Variables: Variable aleatoria cualitativa (nominal u ordinal) Variable aleatoria cuantitativa (discreta) Variable aleatoria cuantitativa (continua) MODELO PROBABILITIO ONTINUO (clase pasada) Variable aleatorias cuantitativas continuas (proporcional o interválica) Distribución Normal o Modelo de Gauss z Xi

3 Distribución de Probabilidad Introducción: MODELO PROBABILITIO DIRETO El objetivo de éste capitulo de la estadística, es el de encontrar el Modelo Probabilístico que mejor describa a las variables cualitativas estudiadas en un experimento. Por ejemplo: aras de una moneda ( ); exo (M H); aras del dado (1, 2, 3, 4, 5, y 6), etc. Encontrar el Modelo probabilístico, significa encontrar una FUNIÓN que pueda explicar a la variable aleatoria en estudio. Los más utilizados son los siguientes Modelos: Distribución de Bernoulli Distribución binomial Distribución de Poisson

4 Distribución de Probabilidad Distribución de Bernoulli Distribución de probabilidad muy sencilla, con las siguientes características: e ejecuta una sola prueba, o lo que vale a decir una sola experiencia. Dicha prueba tiene solo dos resultados posibles: éxito o fracaso, y son mutuamente excluyentes uno de otro. La probabilidad de éxito se la denota o describe con p y el fracaso con q. Ejemplo: e revisa un conjunto de 8 caninos con el objeto de observar si los mismos presentan (éxito) o no (fracaso) parásitos externos (pulgas). Variable éxito = 1 Variable fracaso = e asigna con p a la probabilidad de éxito Y con q = 1 - p a la probabilidad de fracaso

5 Distribución de Probabilidad Distribución de Bernoulli Del experimento propuesto surge que 6 de los perros observados (n=8) están parasitados (75%), en tanto que el resto no presentaban pulgas: La Tabla de Bernoulli, con los siguientes resultados: y i P (y i ) Yi.P (y i ) (fracaso),25 1 (éxito),75,75 Σ - 1,75 álculos de estadígrafos para ~Bernoulli: E(Y) = p(yi) =,75 q = 1,75 =,25 μ(y) = n.p = 8*,75 = 6 σ 2 (Y) = n.p.q = 8*,75*,25 =,15 σ(y) = n.p.q =,15 =,387

6 Distribución de Probabilidad Distribución Binomial upongamos que tomamos una muestra de n observaciones (Y 1, Y 2, Y n ), con el modelo de Bernoulli; es decir éxito o fracaso, pero cada dato observado (Y i ) pueden tomar los dos valores de 1 éxito o fracaso, en este caso la distribución es de tipo BINOMIAL, con las siguientes características: Existe un número fijo o infinito de pruebas o experimentos. ada observación tiene solo dos resultados posibles; éxito o fracaso, que son mutuamente excluyentes, que representan el espacio muestral. La probabilidad de éxito se describe por p, por lo tanto tendrá asociada una probabilidad de fracaso que será q. ada ensayo es estadísticamente independiente, es decir la ocurrencia de uno no influye sobre el otro. Tiene asociados dos elementos a la distribución que son: el tamaño de la muestra n y el número de éxitos x.

7 Distribución Binomial Ejemplo Lanzamiento de una moneda e lanza una moneda 1 vez (2 eventos o sucesos posibles) éxito = cara fracaso = seca Evento (1c) p =,5 (1/2) Evento (1s) p =,5 (1/2)

8 Distribución Binomial Lanzamiento de una moneda e lanza una moneda dos veces (4 eventos o sucesos posibles) Evento (2c) p =,25 Evento (1c1s o 1s1c) p =,5 o Evento (2s) p =,25 (1/4)

9 Distribución Binomial e lanza una moneda tres veces (8 eventos o sucesos posibles) Evento (3c) p =,125 (1/8) Evento (2c1s) p =,375 (3/8) Evento (2s1c) p =,375 (3/8) Evento (3s) p =,125 (1/8)

10 Distribución Binomial e lanza una moneda 1 vez (2 eventos o sucesos) EM = 2 n Evento (1c) p =,5 (1/2) Evento (1s) p =,5 (1/2) 2 1 = 2 e lanza una moneda 2 veces (4 eventos o sucesos) 1/4 2 2 = 4 1/4 1/4 p =,5 X,5 =,25 1/4 e lanza una moneda 3 veces (8 eventos o sucesos) 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 2 3 = 8 p =,5 X,5 X,5 =,125

11 Distribución Binomial e lanza una moneda 4 veces 2 4 = 16 eventos posibles 4: 3: 4/16 2: 6/16 1: 4/16 : p =,5 X,5 X,5 X,5=,625

12 Distribución Binomial Podemos preguntarnos Qué probabilidad tengo que al lanzar 4 veces una moneda, 2 veces salgan caras? Para calcular las probabilidades para cualquier ejemplo aplicaremos la fórmula de la función de probabilidad para una variable aleatoria discreta con distribución Binomial: f ( x) n p p 4: =,625 3: 4/16 =,25 2: 6/16 =,375 1: 4/16 =,25 : =,625 x q nx x! n! n x n= 4; x= 2; n-x= 2; p=,5; q =,5 f ( x) 4! 2! 2.,5! 2.,5 2! p x q nx = 6 x,625 =,375

13 Distribución Binomial Qué probabilidad tengo de obtener 3 caras si lanzo 1 veces una moneda? 2 1 = 124 eventos posibles 1: 1/124 =,98 9: 1/124 =, : 1/124 =,98 f ( x) n p p x q nx x! n! n x! p x q nx n= 1; x= 3; n-x= 7; p=,5; q =,5 f ( x) 1! 3! 7.,5! 3.,5 7 = 12 x,98 =,1172

14 ,6,5,4,3,2,1,4,3 5,3,2 5,2,15,1, 5 TIRAR 1 VEZ LA MONEDA 1 REULTADO POIBLE TIRAR 4 VEE LA MONEDA REULTADO POIBLE,6,5,4,3,2,1,,2 5,2,15,1, 5 TIRAR 2 VEE LA MONEDA 2 1 REULTADO POIBLE TIRAR 5 VEE LA MONEDA,4,3 5,3,2 5,2,15,1, 5 TIRAR 3 VEE LA MONEDA μ = n.p = 1.,5 =,5 μ = n.p = 2.,5 = 1 μ = n.p = 3.,5 = 1, REULTADO POIBLE,3 5,3 μ = n.p = 4.,5 = 2 μ = n.p = 5.,5 = 2,5 μ = n.p = 1.,5 = 5, REULTADO POIBLE,25,2,15,1,5 TIRAR 1 VEE LA MONEDA REULTADO POIBLE,2,18,16,14,12,1,8,6,4,2 TIRAR 2 VEE LA MONEDA μ = n.p = 2.,5 = 1 REULTADO POIBLE

15 2M 19M 18M 17M 16M 15M 14M 13M 12M 11M Distribución Binomial 1M 9M 8M 7M 6M 5M 4M 3M 2M 1M M 1M 9M 8M 7M 6M 5M 4M 3M 2M 1M M,9,8,7,6,5,4,3,2,1,4 5,4,3 5,3,2 5,2,15,1, 5 Estimar la probabilidad de ocurrencia de obtener múltiplos de 5 en una serie cualquiera de números con un p=,2 (solo los números terminados en ó 5 sobre 1 eventos posibles), para un n=1, será:,25,2,15,1,5 n =. x =. p =,2 q= 1-p =,8 1M n= 1 M REULTADO POIBLE n=4 4M 3M 2M 1M M REULTADO POIBLE f ( x),7,6,5,4,3,2,1,,4 5,4,3 5,3,2 5,2,15,1, 5 n p p x q nx n= 2 n= 5 n= 2 x! 5M 4M 3M 2M 1M M REULTADO POIBLE n! n x 2M 1M M REULTADO POIBLE! p x,6,5,4,3,2,1 q,35,3,25,2,15,1,5 nx n= 3 3M 2M 1M M REULTADO POIBLE n= 1 REULTADO POIBLE REULTADO POIBLE

16 Distribución Binomial Particularidad de la Función Binomial onfiguración de la distribución binomial: I. i p = q =,5 la distribución binomial siempre será simétrica, independientemente del tamaño de n. II. i p q, la distribución será asimétrica, cuando p > q; la asimetría será a la derecha y cuando p < q; la asimetría será a la izquierda. III. uando el tamaño de la muestra n tiende al infinito, la distribución binomial toma forma simétrica o normal. Esta particularidad nos permite estimar la probabilidad de una variable binomial mediante la distribución Z i z X

17 Distribución Binomial Qué probabilidad tengo de obtener 3 caras si lanzo 1 veces una moneda? 2 1 = 124 eventos posibles n= 1; x= 3; n-x= 7; p=,5; q =,5 z Xi f ( x) 1! 3! 7.,5! 3.,5 7 μ = n.p = 1*,5 = 5 σ 2 = n.p.q = 1*,5*,5 = 2,5 σ = n.p.q = 2, 5 = 1,58 = 12 x,98 =,1172 e calcula el intervalo para el X i = 3 2,5 5 1,58 z 2,5 = -1,58 3,5 5 1,58 z 3,5 = -,95 P (Z -1,58) = P (Z -,95) = P (Xi = 3 ) =...

18 Distribución de Probabilidad Distribución de Poisson Esta distribución resulta aplicable a procesos donde hay una observación por unidad de tiempo o espacio, por ejemplo: N de llamadas recibidas por minuto, N de microorganismos por cm 3, N de bovinos tuberculosos por cada 1 que van a faena. uando a la unidad de tiempo o espacio la subdividimos en muchas parte (n muy grande), y la probabilidad de que ocurra un evento (éxito) es muy pequeña, entonces estamos ante una distribución de Poisson. ondiciones que debe reunir: Existe un número fijo e infinito de pruebas. ada una de ellas tiene solo dos resultados posibles; éxito o fracaso. El tamaño de la muestra es muy grande. La probabilidad de éxito es muy pequeña.

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

T1. Distribuciones de probabilidad discretas

T1. Distribuciones de probabilidad discretas Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL. Juan José Hernández Ocaña

DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL. Juan José Hernández Ocaña DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL APROXIMACIÓN LA CURVA NORMAL Juan José Hernández Ocaña DISTRIBUCIÓN PROBABILÍSTICA BINOMIAL Variable discreta.- Es aquella que casi siempre asume solamente un conjunto

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Discretas de Probabilidad UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

HOJA DE TRABAJO UNIDAD 3

HOJA DE TRABAJO UNIDAD 3 HOJA DE TRABAJO UNIDAD 3 1. Defina que es probabilidad Es el estudio de experimentos aleatorios o libres de determinación, el resultado es al azar. Se refiere al estudio de la aleatoriedad y a la incertidumbre.

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir

Más detalles

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD

TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD TEMA 2: DISTRIBUCIÓN DE PROBABILIDAD A partir de un experimento aleatorio cualquiera, se obtiene su espacio muestral E. Se llama variable aleatoria a una ley (o función) que a cada elemento del espacio

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL

APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL Autor: Mª Isabel Conde Collado APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL Mediante el estudio de dos ejemplos concretos de distribuciones se intentará un acercamiento al ajuste de distribuciones a una distribución

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 4 Variables aleatorias Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las características de las variables aleatorias discretas y continuas.

Más detalles

SESION 12 LA DISTRIBUCIÓN BINOMIAL

SESION 12 LA DISTRIBUCIÓN BINOMIAL SESION LA DISTRIBUCIÓN BINOMIAL I. CONTENIDOS:. La distribución omial.. Variables aleatorias en una distribución omial. 3. Descripciones de la distribución omial. 4. Distribución de Poisson. II. OBJETIVOS:

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Axiomática de la Teoría de Probabilidades

Axiomática de la Teoría de Probabilidades Axiomática de la Teoría de Probabilidades Modelos matemáticos Según el experimento Cada ejecución del experimento se denomina prueba o ensayo Determinísticos Aleatorios Conjunto de resultados posibles

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 3 PROBABILIDADES Definiciones Algunas definiciones en Probabilidades Teoría de conjuntos Espacio muestral (E) Evento o suceso Eventos mutuamente excluyentes

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 4 Distribución de Probabilidades Distribución de Probabilidades Distribución de Probabilidades Variables Aleatorias: Discreta y Continua Función Densidad

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

EXPERIMENTO ALEATORIO

EXPERIMENTO ALEATORIO EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

Concepto de Probabilidad

Concepto de Probabilidad Concepto de Probabilidad Prof. Miguel Hesiquio Garduño. Est. Mirla Benavides Rojas Depto. De Ingeniería Química Petrolera ESIQIE-IPN hesiquiogm@yahoo.com.mx mbenavidesr5@gmail.com PROBABILIDAD En cualquier

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

2.3 PROPIEDADES DE LA PROBABILIDAD

2.3 PROPIEDADES DE LA PROBABILIDAD 2.3 PROPIEDADES DE LA PROBABILIDAD 1. La probabilidad es positiva y menor o igual que 1. 0 p( 1 2. La probabilidad del suceso seguro es 1. p (E) = 1 3. Si A y B son incompatibles, es decir A B = entonces:

Más detalles

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero

Fundamentos de la Teoría de la Probabilidad. Ing. Eduardo Cruz Romero Fundamentos de la Teoría de la Probabilidad Ing. Eduardo Cruz Romero www.tics-tlapa.com Teoría elemental de la probabilidad (1/3) El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos

Más detalles

Tema 3. VARIABLES ALEATORIAS.

Tema 3. VARIABLES ALEATORIAS. 3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable

Más detalles

Bioestadística. Curso Capítulo 3

Bioestadística. Curso Capítulo 3 Bioestadística. Curso 2012-2013 Capítulo 3 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Variable aleatoria 2 2.1. Variables aleatorias discretas...............................

Más detalles

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer... TEMA 3. Algunos modelos de probabilidad de tipo discreto En este capítulo se abordan «familias» muy específicas de probabilidad, que con cierta frecuencia se nos presentan en el mundo real. Van a ser distribuciones

Más detalles

Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6.

Distribuciones Discretas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 6. Distribuciones Discretas de Probabilidad 1 Contenido 1. Variables Aleatorias. 2. Distribuciones Discretas de Probabilidad. 3. Valor Esperado y Varianza. Propiedades. 4. Distribución de Probabilidad Binomial.

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos

PROBABILIDAD. Profesor: Rafael Núñez Nogales CÁLCULO DE PROBABILIDADES. Experimentos y sucesos PROBABILIDAD CÁLCULO DE PROBABILIDADES Experimentos y sucesos Experimento aleatorio Es aquel cuyo resultado depende del azar, es decir no se puede predecir de antemano qué resultado se va a obtener aunque

Más detalles

La probabilidad de obtener exactamente 2 caras en 6 lanzamientos de una moneda es. 2) (2) (2) "it^g) = 64

La probabilidad de obtener exactamente 2 caras en 6 lanzamientos de una moneda es. 2) (2) (2) it^g) = 64 Las distribuciones binomial, normal y de Poisson CAPITULO 7 Wmmr LA DISTRIBUCION B I N O M I A L Si p es la probabilidad de que cualquier evento ocurra en un solo ensayo (denominada probabilidad de éxito)

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón fvela@correo.xoc.uam.mx FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento

Más detalles

La distribución de probabilidad de la variable aleatoria (v. a). Bernoulli, está dada por:

La distribución de probabilidad de la variable aleatoria (v. a). Bernoulli, está dada por: Distribución Bernoulli Una rueba o exerimento Bernoulli tiene uno de dos resultados mutuamente excluyentes, que generalmente se denotan S (éxito) y F (fracaso). Por ejemlo, al seleccionar un objeto ara

Más detalles

Un experimento binomial posee las siguientes características: 1. El experimento consiste de n ensayos repetidos.

Un experimento binomial posee las siguientes características: 1. El experimento consiste de n ensayos repetidos. Experimento Binomial Experimento que consiste en ensayos independientes repetidos, cada uno con dos posibles resultados que se denominan éxito y fracaso, donde la probabilidad de éxito es la misma en cada

Más detalles

Bioestadística. El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica.

Bioestadística. El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica. Bioestadística Tema 5: Modelos probabilísticos Variable aleatoria El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica. En estos casos aparece la noción de

Más detalles

3 PROBABILIDAD Y DISTRIBUCION NORMAL

3 PROBABILIDAD Y DISTRIBUCION NORMAL 3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 6 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Las variables aleatorias discretas son aquellas

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM

Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Probabilidades P(A) = Casos favorables Casos posibles Objetivos: Definir el concepto de

Más detalles

Tema I. Introducción. Ciro el Grande ( A.C.)

Tema I. Introducción. Ciro el Grande ( A.C.) 1.1. La ciencia de la estadística:. El origen de la estadística:. Ciencia descriptiva. Evaluación de juegos de azar Ciro el Grande (560-530 A.C.) Si tengo 1 As y 2 reyes, que descarte es mas conveniente

Más detalles

Bioestadística. El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica.

Bioestadística. El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica. Bioestadística Tema 5: Modelos probabilísticos Tema 5: Modelos probabilísticos 1 Variable aleatoria El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica.

Más detalles

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos 5.3-1 El % de los DVDs de una determinada marca son defectuosos. Si se venden en lotes de 5 unidades, calcular

Más detalles

Los rayos a tierra y las probabilidades de Poisson

Los rayos a tierra y las probabilidades de Poisson Nota técnica Los rayos a tierra y las probabilidades de Poisson Por Ing. Juan Carlos Arcioni e Ing. Jorge Francisco Giménez 1. Modelo probabilístico de Poisson (MPP) 2. Ejemplos típicos de variables de

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Tercera clase: Introducción al concepto de probabilidad y Distribuciones de probablidad discretas Programa Técnico en Riesgo, 2014 Agenda 1 Concepto de probabilidad

Más detalles

Procesos estocásticos. Definición

Procesos estocásticos. Definición Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

Nombre: Distribuciones de probabilidad discreta. Segunda parte. A qué nos referimos con probabilidad discreta?

Nombre: Distribuciones de probabilidad discreta. Segunda parte. A qué nos referimos con probabilidad discreta? Estadística 1 Sesión No. 9 Nombre: Distribuciones de probabilidad discreta. Segunda parte. Contextualización A qué nos referimos con probabilidad discreta? En la presente sesión analizarás y describirás

Más detalles

Probabilidad y Estadística Descripción de Datos

Probabilidad y Estadística Descripción de Datos Descripción de Datos Arturo Vega González a.vega@ugto.mx Division de Ciencias e Ingenierías Universidad de Guanajuato Campus León Universidad de Guanajuato, DCI, Campus León 1 / 28 Contenido 1 Probabilidad

Más detalles

Variables aleatorias discretas

Variables aleatorias discretas Variables aleatorias discretas Considere el espacio de probabilidad Ω, F, P) y la función X : Ω R. La imagen de Ω bajo X se define como sigue ImgX) = x R ω Ω : Xω) = x}. Si ImgX) es un conjunto contable,

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 4 Distribución de Probabilidades Distribución de Probabilidades Distribución de Probabilidades Variables Aleatorias: Discreta y Continua Función Densidad

Más detalles

EXPERIMENTO ALEATORIO, ESPACIO MUESTRAL Y SUCESO

EXPERIMENTO ALEATORIO, ESPACIO MUESTRAL Y SUCESO EXPERIMENTO ALEATORIO, EPAIO MUETRAL Y UEO Experimento aleatorio: Es una acción o proceso que puede tener distintos resultados posibles, y cuyo resultado no se conoce hasta que no se lleva a cabo. Ejemplos:

Más detalles

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN BIBLIOGRAFIA Walpole, Ronal E., Myres, Raymond H., Myres, Sharon L.: Probabilidad y Estadística para Ingenieros. McGraw Hill-Interamericana. Canavos G. Probabilidad

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Unidad Temática 2 Probabilidad

Unidad Temática 2 Probabilidad Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Ejemplo: Se tiene que dos bolas son seleccionadas aleatoriamente (sin reemplazo) de un caja que contiene r bolas rojas y b bolas azules. Cuál es la probabilidad de que la primera

Más detalles

Sesión 2: Teoría de Probabilidad

Sesión 2: Teoría de Probabilidad Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 6: Distribuciones estadísticas teóricas Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

Tema 6. Variables Aleatorias Discretas

Tema 6. Variables Aleatorias Discretas Presentación y Objetivos. Tema 6. Variables Aleatorias Discretas En esta unidad se presentan algunos ejemplos estándar de variables aleatorias discretas relacionadas de diversas formas dependiendo de su

Más detalles

Distribución binomial

Distribución binomial Distribución binomial Cuando la Distribución de Benoulli se preguntaba Que pasara si sucede un único evento? la binomial esta asociada a la pregunta " Cuantas veces hay que realizar la prueba para que

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

Tutorial MT-a3. Matemática Tutorial Nivel Avanzado. Probabilidad y estadística

Tutorial MT-a3. Matemática Tutorial Nivel Avanzado. Probabilidad y estadística 12345678901234567890 M ate m ática Tutorial MT-a3 Matemática 2006 Tutorial Nivel Avanzado Probabilidad y estadística Matemática 2006 Tutorial Probabilidad y estadística Marco Teórico 1. Probabilidad P(#)

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos

Tema 3: Cálculo de Probabilidades. Métodos Estadísticos Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

Teoría de la decisión

Teoría de la decisión Teoría de la decisión Repaso de Estadística Unidad 1. Conceptos básicos. Teoría de. Espacio muestral. Funciones de distribución. Esperanza matemática. Probabilidad condicional 1 Teoría de la decisión Teoría

Más detalles

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :

Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i : Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 3 Variables aleatorias Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Tema 5. Variables Aleatorias

Tema 5. Variables Aleatorias Tema 5. Variables Aleatorias Presentación y Objetivos. En este tema se estudia el concepto básico de Variable Aleatoria así como diversas funciones fundamentales en su desarrollo. Es un concepto clave,

Más detalles

DISTRIBUCIÓN DE POISSON

DISTRIBUCIÓN DE POISSON DISTRIBUCIÓN DE POISSON P O I S S O N Siméon Denis Poisson, (1781-1840), astronauta francés, alumno de Laplace y Lagrange, en Recherchés sur la probabilité des jugements..., un trabajo importante en probabilidad

Más detalles

Unidad II: Fundamentos de la teoría de probabilidad

Unidad II: Fundamentos de la teoría de probabilidad Unidad II: Fundamentos de la teoría de probabilidad 2.1 Teoría elemental de probabilidad El Cálculo de Probabilidades se ocupa de estudiar ciertos experimentos que se denominan aleatorios, cuya característica

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles