Problemario 25 de mayo de 2006
|
|
|
- María del Rosario Silva Villalba
- hace 8 años
- Vistas:
Transcripción
1 Mecánica Clásica Problemario 25 de mayo de Considere el problema de Kepler, es decir, un cuerpo de masa µ en el potencial central V (r) = α/r. a) Demuestre que el vector de Laplace Runge Lenz, A = p L µα r r, es una constante de movimiento, es decir, d dt A = 0. b) Verifique que el vector A cae en el plano de la órbita. Calcule el producto escalar (A r) e identifique el resultado con la ecuación para la órbita. A partir de esta identificación, demuestre que A apunta hacia el perihelio de la órbita y tiene módulo A = µαe, en donde e es la eccentricidad de la órbita. 2. Considere un sistema descrito por las coordenadas generalizadas (q 1,...,q n ) y la función lagrangiana L(q, q, t). Sea (Q 1,...,Q n ) otro conjunto de coordenadas generalizadas y q 1 = q 1 (Q 1,...,Q n,t). =. = q n (Q 1,...,Q n,t) q n la ley de tranformación que permite de pasar de las coordenadas (Q 1,...,Q n ) a las coordenadas (q 1,...,q n ). Usando el cálculo elementar muestre que, si L (Q, Q,t) es la lagrangiana del sistema en función de las nuevas coordenadas, resulta d L dt Q = L, i Q i esto es, que las ecuaciones de Euler-Lagrange son invariantes respecto a un cambio de coordenadas.
2 3. Una cuenta de masa m es ensartada en un alambre y puede deslizarse a lo largo de ello sin fricción. El alambre se halla en un plano vertical y la cuenta está sujeta a la fuerza de gravedad F = mgŷ. Considere dos casos: a) alambre de forma parabólica (con ecuación y = ax 2 ); b) alambre de forma circular (con ecuación x 2 + y 2 = c 2 ). Usando el método de los multiplicadores de Lagrange determine en los casos a) y b) a) las ecuaciones dinámicas del punto; b) la fuerza de reacción de la ligadura en función de la posición y velocidad del punto. Solucione el caso b) usando tanto coordenadas cartesianas cuanto coordenadas polares. 4. La función de Lagrange de una partícula puntual de masa m y carga eléctrica Q en un campo electromagnético externo (independiente de la posición y velocidad de la carga Q) está dada por L(r,ṙ,t) = m (ṙ ) 2 ṙ2 + Q A(r,t) φ(r,t) c (en unidades de Gauss). Note que el argumento r de los potenciales vectorial A y escalar φ es la posición de la partícula. Verifique que las ecuaciones de Euler Lagrange para esta función de Lagrange coinciden con las ecuaciones de Newton para la fuerza de Lorentz, ( m r = Q E(r,t) + ṙ ) c B(r,t), en donde E = φ 1 A c t, B = A. Sugerencias: Escriba las ecuaciones de Euler Lagrange para las componentes cartesianas de r (y ṙ), utilice el tensor de Levi Cività para la representación de los productos vectoriales y emplee la identidad ɛ ijm ɛ mkl = δ ik δ jl δ il δ jk (con la convención de sumación).
3 5. Considere una variante del principio de Hamilton donde la función de Lagrange de un sistema físico depende además de la segunda derivada respecto al tiempo de las coordenadas generalizadas. La trayectoria del sistema se determina entonces como la que extremiza la acción S[q i (t)] = t1 t 0 dtl(q i (t), q i (t), q i (t),t), manteniendo q i (t 0 ), q i (t 0 ), q i (t 1 ) y q i (t 1 ) fijas. a) Derive las ecuaciones de Euler Lagrange correspondientes a esta variante del principio de Hamilton. b) Escriba explícitamente las ecuaciones de movimiento que resultan de la función de Lagrange L = m 2 q q k 2 q2. 6. Considere un sistema unidimensional que consiste de un cuerpo de masa m que se encuentra en un extremo de un resorte de constante k y sin masa. El otro extremo del resorte se mueve con velocidad constante v 0. Escriba el Lagrangiano de este sistema usando dos diferentes sistemas de coordenadas: a) la coordenada del cuerpo en el sistema inercial en el que el otro extremo del resorte se mueve con velocidad v 0, b) la coordenada del cuerpo relativo al otro extremo del resorte, es decir, la distancia entre los dos extremos del resorte. Para los dos sistemas de coordenadas, calcule el Hamiltoniano. En qué caso el Hamiltoniano es independiente del tiempo, y en qué caso corresponde a la energía física del sistema? 7. Considere un sistema de dos péndulos idénticos de masa m y longitud l acoplados por un resorte de constante k. La longitud en reposo del resorte sea tal que no ejerce ninguna fuerza sobre los péndulos cuando éstos se encuentran en reposo. Para el caso de que los movimientos de los dos péndulos y el resorte caen en el mismo plano, calcule las frecuencias normales y los modos normales del sistema para pequeñas desviaciones del equilibrio.
4 8. a) Demuestre que los campos eléctrico y magnético quedan invarianten ante una transformación de norma de los potenciales, φ(r,t) φ (r,t) = φ(r,t) 1 c t λ(r,t) A(r,t) A (r,t) = A(r,t) + λ(r,t), en donde λ(r, t) es una función dos veces continuamente diferenciable pero por lo demás arbitraria. b) Demuestre que la función de Lagrange de una partícula cargada en un campo electromagnético externo cambia ante transformaciones de norma de los potenciales por la derivada total respecto al tiempo de una cierta función y determine esta función. 9. Considere una masa m que se mueve sin fricción a lo largo de un círculo de radio R que se encuentra verticalmente parado en el campo gravitacional de la tierra, y que gira con la velocidad angular fija Ω alrededor de su eje vertical. a) Escriba la función de Lagrange del sistema en términos del ángulo θ que forma la posición de la masa, vista desde el centro del círculo, con la vertical (dirigida hacia abajo). b) Calcule la función de energía, h(θ, θ) = L θ θ L(θ, θ), del sistema. Argumente que es una cantidad conservada. Ahora calcule la energía física del sistema y compárela con h. Concluya que la energía del sistema no se conserva. c) Demuestre que el cambio de la energía en el tiempo se puede atribuir al trabajo que efectúa la fuerza de restricción sobre el sistema en contra de la fuerza de Coriolis, al mantener la velocidad angular Ω constante. 10. La lagrangiana de un sistema mecánico con un grado de libertad tiene la forma L(q, q,t) = m ( q 2 sin 2 (ωt) + ωq q sin(2ωt) + ω 2 q 2 cos(2ωt) ). 2
5 Determine la función hamiltoniana correspondiente y diga si la hamiltoniana se conserva. Sea Q = q sin(ωt) una nueva coordenada generalizada. Exprese la lagrangiana en función de Q y Q y la hamiltoniana en función de Q y de su momento asociado P y diga si la nueva hamiltoniana se conserva. 11. Considere la transformación de norma de una función de Lagrange, L (q i, q i,t) = L(q i, q i,t) + d dt F(q i, t), en donde F(q i,t) es una función dos veces continuamente diferenciable. Determine la relación entre los momentos conjugados y entre las funciones de Hamilton correspondientes a las dos diferentes funciones de Lagrange. Verifique explícitamente la equivalencia de las ecuaciones de Hamilton en las dos formulaciones. Sugerencia: Para la última parte, distinga cuidadosamente entre derivadas parciales con p k constante y con p k constante (p k y p k los momentos conjugados asociados con las dos diferentes funciones des Lagrange). 12. Demuestre que la transformación ( ) 1 Q = log q sin p es canónica. P = q cot p 13. Considere la transformación, definida por las ecuaciones Q = log (1 + q cos p) P = 2 (1 + q cos p) q sin p, que pone en correspondencia las variables (q, p) con las variables (Q,P). Muestre directamente que la transformación es canónica. Compruebe que la función F 3 (p, Q) = ( e Q 1 ) 2 tanp es una función generatriz de la transformación.
6 14. Considere la siguiente transformación en el espacio fase: Q i = q i, P i = p i + f q i, en donde f(q i,t) es una función arbitraria dada (dos veces continuamente diferenciable e independiente de los p i ). a) Utilice los brackets de Poisson para demostrar que esta transformación es canónica. b) Determine la función generatriz G(q i,p i,t) de la transformación. Verifique la condición de invertibilidad, ( ) 2 G det 0, q i P j y calcule el Hamiltoniano K(Q i,p i,t) para un Hamiltoniano H(q i,p i,t) dado. Comentarios: Esta transformación canónica corresponde a una transformación de norma del Lagrangiano. 15. Sea S(q i,α i,t) una solución de la ecuación de Hamilton Jacobi, con ( ) 2 S det 0. q α Demuestre directamente que las funciones q i (t) y p i (t) definidas a través de ( ) ( ) S S β i = y p i = (1) α i q j q i α j (con α i y β i constantes), satisfacen las ecuaciones de Hamilton. Indicaciones: Considere la primera derivada respecto al tiempo de las ecuaciones (1), intercambie el orden de las derivadas parciales y utilice la ecuación de Hamilton Jacobi. Empiece con la primera ecuación en (1). 16. Un punto material de masa m sujeto a la fuerza de gravedad F = mg se mueve sin fricción a lo largo de un plano inclinado (con inclinación θ). Escoja como coordenada generalizada la distancia x que separa
7 el punto material del punto O del plano inclinado (véase figura 1) y escriba la hamiltoniana de la partícula. Use el método de Hamilton- Jacobi para obtener la ley horaria x = x(t) que corresponde a las condiciones iniciales x(0) = 0 y ẋ(0) = 0. O x m θ Figura 1: Plano inclinado 17. Para un oscilador armónico en una dimensión con Hamiltoniano H = 1 2m p2 + mω2 2 x2, determine las variables de acción y ángulo, calcule la frecuencia de la trayectoria en el plano (x, p), y despeje x(t) para obtener la solución de las ecuaciones de movimiento. Sugerencias: En las integrales sobre x, sustituya mω 2 y = 2E x y en seguida sin θ = y.
8 18. Considere la densidad lagrangiana bidimensional del sistema Sine Gordon para el campo Φ(x,t) L [Φ(x,t)] = 1 2 ( µφ) 2 + m4 λ donde m y λ son constantes. [ cos( ] λφ/m) 1, a) Explique la naturaleza de la no linealidad del sistema. b) Derive la ecuación de campo correspondiente. c) Desarrolle en serie de Taylor con respecto al parámetro λ tanto la densidad lagrangiana como la ecuación de campo y comente sobre los resultados obtenidos a primer orden.
Práctico 2: Mecánica lagrangeana
Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las
Tema III: Sistemas Hamiltonianos: Variables acción
Tema III: Sistemas Hamiltonianos: Variables acción ángulo 1. Transformaciones canónicas Sea Hq, p, t) un hamiltoniano tal que ṗ = H q q = H p Una transformación en el espacio de fases Q = Qq, p) es canónica,
MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006
Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
PROGRAMA DE FÍSICA I TEORÍA
Pág. 1/5 UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA PROGRAMA DE FÍSICA I TEORÍA Código: 0846203T Teoría: 4 horas/semana
Contenido. 1 / Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/43 43
Contenido 1. Transformaciones canónicas 1.1 Definición de transformaciones canónicas y función generatriz 1.2 Enfoque simpléctico y transformaciones infinitesimales 1.3 Corchetes de Poisson y de Lagrange
Dinámica en dos o tres dimensiones
7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el
Contenido. 4. Dinámica Lagrangiana y Hamiltoniana. 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/38 38
Contenido 4. Dinámica Lagrangiana y Hamiltoniana 1 / Omar De la Peña-Seaman IFUAP Métodos Matemáticos Propedéutico Física 1/38 38 Contenido: Tema 04 4. Dinámica Lagrangiana y Hamiltoniana 4.1 Coordenadas
Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.
Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento
CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS
CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer
Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física
Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.
1 Dinámica newtoniana y ecuaciones de Lagrange. 2 Simetrías y teoremas de conservación.
Mecánica Teórica 1 Dinámica newtoniana y ecuaciones de Lagrange. Mecánica de una partícula. Mecánica de un sistema de partículas. Ligaduras. Clasificación y coordenadas generalizadas. El principio de D
Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:
Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de
10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10
PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE
UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES
Mecánica Aplicada. Dinámica
Mecánica Aplicada Dinámica PROYECTO EDITORIAL SÍNTESIS INGENIERÍA Áreas de Publicación INGENIERÍA INDUSTRIAL COORDINADORA: Alicia Larena Mecánica Aplicada Dinámica Armando Bilbao Enrique Amezua Óscar Altuzarra
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante
Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:
Contenido. Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/19 19
Contenido 1. Cuerpo rígido II: ecuaciones de movimiento 1.1 Movimiento compuesto: traslación + rotación 1.2 Tensor de inercia y momento de inercia 1.3 Ejes principales y momentos principales de inercia
EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía
Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,
FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN
FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo
Forma polar de números complejos (repaso breve)
Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia
Física III (sección 1) ( ) Ondas, Óptica y Física Moderna
Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería
CAPÍTULO 1. Ecuaciones de Movimiento del Sistema
CAPÍTULO 1 Ecuaciones de Movimiento del Sistema El sistema que se construyó y cuyo análisis es del presente capítulo tiene las siguientes constricciones: 1. El carro solo se puede desplazar en la dirección
UNIDAD I. EL MUNDO EN QUE VIVIMOS
ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas
Tema 5: Elementos de geometría diferencial
Tema 5: Elementos de geometría diferencial José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, abril de 2011 Coordenadas locales y atlas. Funciones y curvas.
INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión
INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos
TALLER DE OSCILACIONES Y ONDAS
TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado
Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)
Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?
INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3
INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía
Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas
Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS Código: CNM- 517 Nombre: Análisis vectorial Prerrequisitos: CNM-295 Duración del semestre: 16 semanas Intensidad
INDUCCIÓN MAGNÉTICA. b N v u e l t a s. a B
INDUCCIÓN MAGNÉTICA 1) Un solenoide posee n vueltas por unidad de longitud, radio 1 y transporta una corriente I. (a) Una bobina circular grande de radio 2 > 1y N vueltas rodea el solenoide en un punto
Una Ecuación Escalar de Movimiento
Una Ecuación Escalar de Movimiento Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta una ecuación escalar de movimiento que es invariante bajo
Tensores cartesianos.
Tensores cartesianos. Transformación de coordenadas. Consideremos dos sistemas de coordenadas cartesianas ortogonales en el plano, identificados como σ y σ. Supongamos que ambos tienen un origen común,
Fuerzas y potenciales, III
Capítulo 17 Fuerzas y potenciales, III 17.1 Potencial de Schering Puede ocurrir que entre entre las fuerzas generalizadas haya alguna que, sin ser conservativas en el sentido usual, pueda obtenerse a partir
FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA
A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que
Para establecer la relación entre coordenadas cartesianas y polares es suficiente proyectar r sobre los ejes x e y. De la gráfica se sigue que:
COORDENADAS POLARES. Algunas veces conviene representar un punto P en el plano por medio de coordenadas polares planas (r, ), donde r se mide desde el origen y es el ángulo entre r y el eje x (ver figura).
Física III (sección 3) ( ) Ondas, Óptica y Física Moderna
Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería
FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA
FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los
Prof. Jorge Rojo Carrascosa CINEMÁTICA
CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio
Slide 1 / 71. Movimiento Armónico Simple
Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico
Olimpiadas de Física Córdoba 2010
E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2012. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio) y otros
2 Estudio local de funciones de varias variables.
a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 2 Estudio local de funciones de varias variables. 2.1 Derivadas de orden superior. Problema 2.1 Sea
a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1
OPCIÓN A Cuestión 1.- Un sistema elástico, constituido por un cuerpo de masa 00 g unido a un muelle, realiza un movimiento armónico simple con un periodo de 0,5 s. Si la energía total del sistema es 8
Cinemática: parte de la Física que estudia el movimiento de los cuerpos.
CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio
TEMA CONTENIDO OBJETIVO BIBLIOGRAFÍA HORAS TEORÍA Y TALLER(*)
FÍSICA I CON LAB. Datos de identificación 6885 Unidad Didáctica: Teoría, Taller y Laboratorio Horas clase: Tres, dos y dos, horas, semana, mes Tipo de materia: Obligatoria Eje de formación: Básica Materia
DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.
DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley
1 La fuerza de Lorentz
1 La fuerza de Lorentz 1.1 Definición del campo magnético Dr. Gustavo A Pérez M. 1.- Dado un campo eléctrico E y un campo magnético B la fuerza sobre una partícula que se mueve con velocidad v es F = q
Tema 9: Introducción a la Dinámica
Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática
FIS1 - Física 1
Unidad responsable: 230 - ETSETB - Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona Unidad que imparte: 748 - FIS - Departamento de Física Curso: Titulación: 2016 GRADO EN INGENIERÍA
Tema 5: Dinámica del punto II
Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico
CONSIDERACIONES GENERALES SOBRE ESTÁTICA
CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR
Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este
Formulario PSU Parte común y optativa de Física
Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud
Ayudantía 4. Ignacio Reyes Dinámica, Trabajo y Energía
P. Universidad Católica de Chile Facultad de Física Estática y Dinámica Profesor Rafael Benguria Ayudantía 4 Ignacio Reyes ([email protected]). Prob. 2/I--200 Dinámica, Trabajo y Energía Una partícula de masa
1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A
PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)
FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre
Mario Cosenza Mec anica Cl asica Versi on A-2016
Mario Cosenza Mecánica Clásica Versión A-2016 Mario Cosenza Universidad de Los Andes Mérida, Venezuela Mecánica Clásica Versión A-2016 c MMXVI a Claudia Mi propósito es exponer una ciencia muy nueva que
TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL
Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona
PRINCIPIOS DE LA DINÁMICA
Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento
2DA PRÁCTICA CALIFICADA
2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA
Mediante este programa se persigue desarrollar las siguientes habilidades:
PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios
1. Introducción: Movimiento Circular Uniforme
FI1A2 - SISTEMAS NEWTONIANOS GUIA TEORICA Departamento de Física Unidad 5A: Oscilaciones Facultad de Ciencias Físicas y Matemáticas Profs: H. Arellano, D. Mardones, N. Mujica Universidad de Chile Semestre
SEGUNDO TALLER DE REPASO
SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:
3. Cinemática de la partícula: Sistemas de referencia
3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la
Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos
Física 3 - Turno : Mañana Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos 1. Estudie la trayectoria de una partícula de carga q y masa m que
Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)
Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas
Resumen sobre mecánica analítica
Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula
Física Examen Final 20/05/05
Física Examen Final 20/05/05 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre [6 Ptos.] 1. Una partícula de 500 g describe un M.A.S. con una frecuencia de 1,59 Hz. Las energías iniciales
ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez
2. DE LAS PARTICULAS 2. DE LAS PARTICULAS 2.1 Introducción Estudiar el efecto de las fuerzas sobre las partículas Sustituir dos o mas fuerzas por una RESULTANTE Relaciones necesarias para EQUILIBRIO de
PROGRAMA ANALÍTICO. Mg. Ing. Luis A. Lifschitz Profesor Titular Ing. Javier A. Puiatti Ayudante de Primera
PROGRAMA ANALÍTICO DEPARTAMENTO: CIENCIAS BÁSICAS CARRERA: INGENIERÍA MECÁNICA ASIGNATURA: MECÁNICA TEÓRICA CÓDIGO: 0326 AÑO ACADÉMICO: 2014 PLAN DE ESTUDIO: 2005 UBICACIÓN EN EL PLAN DE ESTUDIO: 1ER.
Instituto de Física Universidad de Guanajuato Agosto 2007
Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que
10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si
Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten
INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR
Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz
ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS
Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
Mecánica de Fluidos. Análisis Diferencial
Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de
La ciencia que estudia los fenómenos balísticos en general se denomina «Balística».
OTROS CONCEPTOS del MOVIMIENTO DEL PROYECTIL La ciencia que estudia los fenómenos balísticos en general se denomina «Balística». Contenido 1 Ecuaciones de la trayectoría balística 2 Movimiento balístico
Contenidos. Importancia del tema. Conocimientos previos para este tema?
Transformación conforme Contenidos Unidad I: Funciones de variable compleja. Operaciones. Analiticidad, integrales, singularidades, residuos. Funciones de variable real a valores complejos. Funciones de
CERTAMEN GLOBAL FIS110 FORMA R (Jueves 7 de diciembre 2006) FORMULARIO
AEIDO ATENO, ATENO, NOBES O US CETAEN GOBA FIS11 FOA (Jueves 7 de diciembre 6) DESAOO O FUNDAENTACIÓN O ESCITO. alas y omitidas NO dan puntaje arcar las OITIDAS en Hoja de espuestas FOUAIO g 1 [m/s dy
III. Vibración con excitación armónica
Objetivos: 1. Definir que es vibración con excitación.. Analizar la respuesta de un sistema no amortiguado con excitación. 3. Analizar la respuesta de un sistema amortiguado con excitación. 4. Analizar
EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
Unidad Nº 10. Magnetismo
Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.
TEMARIO PRUEBA DE SÍNTESIS FISICA NIVEL SEPTIMO
NIVEL SEPTIMO Fuerza y movimiento Fuerzas que actúan simultáneamente sobre un objeto en movimiento o en reposo Condición de equilibrio de un cuerpo Fuerza peso, normal, roce, fuerza aplicada Diferencia
ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10)
ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (10) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2006 INDUCCION DE FARADAY Al cambiar el flujo magnético enlazado
Movimiento armónico simple
Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).
Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT
Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil
GALICIA/ JUNIO 01. LOGSE / FÍSICA / EXAMEN COMPLETO
Desarrollar una de las dos opciones propuestas. Cada problema puntúa 3 (1,5 cada apartado) y cada cuestión teórica o práctica 1. OPCIÓN 1 Un cilindro macizo y homogéneo de 3 kg de masa y 0,1 m de radio
PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO.
PROBLEMAS Física 2º Bachillerato ELECTROMAGNETISMO. 1) Halla el radio de la órbita que describe un electrón que entra en un campo magnético de 10 T, con una velocidad de 10 4 m/s, de modo que forma un
5. Introducción a la Formulación Lagrangiana y Hamiltoniana
5. Introducción a la Formulación Lagrangiana y Hamiltoniana Introducción Definiciones: coordenadas, momentos y fuerzas generalizados. Función Lagrangiana y ecuaciones de Euler-Lagrange. Coordenadas cíclicas.
Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago
Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo
Movimiento armónico simple
Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).
Planos y Rectas. 19 de Marzo de 2012
el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos
